当前位置:文档之家› 甘草有效成分的提取纯化方法研究进展

甘草有效成分的提取纯化方法研究进展

甘草有效成分的提取纯化方法研究进展
甘草有效成分的提取纯化方法研究进展

甘草有效成分的提取纯化方法研究进展

甘草为豆科(Zeguminosae)植物甘草(Glycyrrhiza uralensis Fisch)、胀果甘草(Glycyrrhiza infIata Bat.)和光果甘草(Glycyrrhia glabra L.)的根及根茎,始载于《神农本草经》,列为上品,传统中医药认为它具有补脾益气,清热解毒,祛痰止咳,缓急止痛,调和药性的功效。

甘草中的化学成分比较复杂,主要有三萜皂苷类化合物(甘草酸、甘草次酸)、黄酮类化合物(甘草苷、异甘草苷)及甘草多糖等。现代药理学实验表明黄酮类化合物具有抗肿瘤、抗氧化、抗菌抗病毒等作用;甘草酸具有保肝和治肝、治疗肾病和心脏疾病、抗病毒、抗菌等作用;甘草多糖具有抗病毒、抗肿瘤、提高免疫功能。随着对甘草化学成分研究的不断深入,如何将有限的甘草资源分离纯化成更多、更纯的甘草有效成分具有广泛的经济效益和社会效益,受到越来越多国内外学者的关注,甘草有效成分的提取、纯化工艺已成为近年来的一个研究热点。目前甘草有效成分提取、纯化方法很多,本文将有关其提取、纯化甘草有效成分的方法做一概述,为进一步研究甘草有效成分的提取、纯化工艺提供参考。

1提取方法

1.1溶剂法

1.1.1水提法

水提取法是最原始,也是过去常用的提取甘草有效成分的一种方法,此法虽然对提取设备要求简单、操作简便,但提取得率较低,并且提取液存放易腐败变质,后续的过滤等操作困难、费时,原因可能是由于极性大的水作溶剂,易把蛋白质、糖类等易溶于水的成分浸提出来,因此也易霉变。但如果需要提取多糖、苷类等极性大的成分时,因为此法溶剂价格低廉,仍为一种可取的提取方法。

1.1.2有机溶剂提取法

有机溶剂提取法是提取甘草有效成分最常用的方法,由于其生产成本较低,设备简单,在工业中得到广泛应用。该方法工艺简单,收率高,同时可以实现工业化生产,但容易造成环境污染以及产品中的有机溶剂残留,影响产品质量。由于甘草的主要成分是黄酮类和三萜皂苷类,因此广泛用于提取甘草的有机溶剂主要有甲醇、乙醇、丙酮和氯仿。此外,也有采用稀氨水或氨性乙醇提取的报道。甘草有效成分的提取常采用浸渍法、渗漉法和回流提取法。

1.2超声提取法

超声提取法是利用超声波的空化作用、机械作用、热效应等以增大物质分子运动频率和速度,增加溶剂穿透力,从而提高目标成分浸出率的方法,它具有省时、节能、提取效率高

等优点,是一种快速、高效的提取新方法,且提取中无加热过程,可避免加热因素引起的药物成分结构发生变化,能用于热敏性成分的提取,目前适用于工业化生产的超声提取设备已经研制成功,为这一技术的实现产业化奠定了基础。利用超声法可以提取甘草中的多种成分,如:甘草酸、甘草黄酮和甘草多糖等。

1.3超临界CO2萃取法

超临界流体萃取技术(简称SFE)是一种以超临界流体(简称SCF或SF)代替常规有机溶剂对植物有效成分进行萃取和分离的新型技术。其原理是利用流体(溶剂)在临界点附近的超临界区域内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动,利用超临界流体作溶剂,可以从多种液态或固态混合物中萃取出待分离组分,具有“定向提取分离”的能力。CO2安全、无毒、廉价、不污染环境,临界温度(Tc=31.2℃)和临界压力(Pc=7.38 MP a)都较低,因此可在室温的条件下操作,并且有效成分不易被破坏,此方法在提取纯化甘草化学成分方面也有广泛应用。

1.4微波法

微波辅助提取(Microwave-assisted extraction,MAE),又称微波萃取或微波提取,是微波和传统的溶剂提取法相结合后形成的一种新型提取技术。近年来,国内外科研工作者将微波技术应用于天然产物活性成分的提取过程,有效提高了收率,取得了可喜的进展,而且逐渐朝着工业化方向发展。目前,微波辅助提取技术也应用于提取甘草中的有效成分。微波法具有提取快速、节省时间、节省溶剂、操作简便、有效成分提取率高、耗能低等优点,缺点是目前设备较为昂贵。

1.5半仿生提取法(简称SBE法)

半仿生提取法(Semibionic ExtractionMethod,简称SBE法)是根据中药药效物质部分已知,大部分未知的现实,利用“灰思维方式”,将整体药物研究法与分子药物研究法相结合,从生物药剂学的角度为经消化道给药的中药及其复方创立的一种提取新技术。它模拟口服给药及药物经胃肠道转运的过程,适合工业化生产,体现中医治病综合成分作用的特点,有利于用单体成分控制制剂质量。半仿生提取法提取过程符合口服药物在胃肠道运转吸收的特点。但是,目前仍采用高温煎煮的方式,影响某些受热易分解的有效成分,使药效大大降低。因此,我们不妨以后把提取温度改为接近人体的温度,使提取环境更接近于人体。

1.6闪式提取法

闪式提取法是指将生物组织加入提取溶剂进行高速组织匀浆,以提取组织中有效成分。该方法可有效缩短提取时间,提高提取效率,简化操作步骤。

1.7负压空化提取法

负压空化提取技术是利用负压空化气泡产生强烈的空化效应和机械振动,造成样品颗粒细胞壁快速破裂,加速了胞内物质向介质释放、扩散和溶解,促进提取过程。同时负压空化提取法具有提取温度低、溶剂用量少、时间短和纯度高的特点。并且设备简单、易于操作,适于工业化生产,为中药提取现代化提供了.一种新的方法和手段。

1.8超高压法

超高压提取(ultrahigh-pressure extraction,UHPE),也称超高冷等静压提取,是指在常温下用100~1 000 MPa的流体静压力作用于提取溶剂和中药的混合液上,并在预定压力下保持一段时间,使有效成分达到平衡后迅速卸压。由于细胞内外渗透压力忽然增大,细胞膜的结构发生变化,使得细胞内的有效成分转移到细胞外的提取液中,达到提取中药有效成分的目的。实验证明,该方法是一种适合从甘草中快速提取甘草酸的高效、节能的新方法,用于甘草酸工业化生产的前景十分广阔。

2纯化方法

2.1 大孔树脂法

大孔吸附树脂是一类不含离子交换基团的交联聚合物,理化性质稳定,不溶于酸、碱及有机溶媒,对有机物有浓缩、分离作用且不受无机盐类及强离子、低分子化合物的干扰,为一类不同于离子交换树脂的吸附和筛选性能相结合的分离材料。大孔树脂法目前是最常用的纯化方法之一。已广泛应用于皂苷类、黄酮类、苷类和生物碱类等各种化学成分的分离、富集,是迄今为止最适用于工业化的工艺之一,它的过程主要是吸附和解吸附,所使用的溶剂主要是水和乙醇,工艺简单、无污染、效率高。它在纯化甘草酸和甘草黄酮方面有很好的效果。

2.2聚酰胺法

聚酰胺色谱是由酰胺聚合而成的一类高分子物质,其吸附黄酮类化合物的原理是由于其分子内部的许多酰胺基和羰基与黄酮混合物形成氢键,其形成氢键的能力与溶剂有关,在水

中形成氧键的能力最强。同时,聚酰胺的膨胀性又可以使被吸附的物质渗入其内部,从而使其具有较大的吸附容量。

2.3膜技术

膜分离过程以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。

2.4泡沫分离法

泡沫分离技术是一种基于溶质间表面活性的差异,以泡沫形式提供气液界面,分离浓缩表面活性溶质的分离方法。该技术具有设备简单、易于操作、成本低、分离效果好等特点,已在选矿、污水处理、生化工程等领域得到广泛应用。在中药领域中,甘草酸是甘草中一重要成分,由2分子葡萄糖醛酸和甘草次酸组成,易溶于水,是一种良好的天然表面活性成分,因此,该技术特别适合应用于甘草酸的分离。

2.5高速逆流色谱法

高速逆流色谱技术(high-speed counter-current chromatography technique,HSCCC),是一种不用任何固态载体或支撑体的液-液分配色谱技术,目前已成功地开发出分析型、生产型两大类高速逆流色谱仪,可分别用于中药有效成分的定量分析和分离制备。因为HSCCC分离过程无需固定相,所以可以避免形成死吸附,大大减少了有效成分分离过程中的损失、变性,特别适合于一些微量成分的分离、制备。

2.6其他方法

此外还有利用双水相体系提取甘草酸单铵盐,采用模拟移动床色谱技术提纯甘草苷的研究报道。

3小结与讨论

甘草作为最常用的中药之一,对其化学成分的研究一直受到各国学者的重视,迄今为止,已从甘草属植物中已分离得到61种三萜类化合物,300多种黄酮类化合物。但目前以甘草单体成分作为主成分的上市药品多以甘草酸及其衍生物为主,不少厂家在提取甘草酸及其衍生物时,产生了大量含有甘草黄酮的废渣,不仅污染了环境,还造成了甘草资源的极大浪费。但甘草中除了甘草酸及其衍生物有药理活性外,甘草黄酮也被证明有多种药理活性。因此我

们有必要加大提取甘草黄酮工艺的研究力度,早日将其开发成新药,这样一方面可以避免环境的污染,提高甘草资源的利用率,又可以增加经济效益和社会效益。

甘草有效成分的提取纯化方法多种多样,既有传统的工艺(如溶剂提取法),又有现代高科技技术手段(如高速逆流色谱技术),但各种方法都各有利弊,可以根据化学成分的性质,采取不同的提取纯化方法,如提取甘草酸和甘草黄酮时可以选择本文提到的几乎所有方法,而纯化甘草酸时可以选择大孔树脂法、膜技术、泡沫分离法;纯化甘草黄酮时可以选择大孔树脂法、聚酰胺法、高速逆流色谱法。近年来,甘草中新的化合物不断发现,其中很多都是微量成分,像这种用传统提取纯化方法很难被分离出来,但却推动了提取纯化技术的发展,如制备、半制备型高效液相色谱法,高速逆流色谱法的迅速发展使有效成分的分离定位更准确,更灵敏。随着科学技术的不断发展,各种新型的技术,如分子印迹技术J、酶法提取技术等,都可以应用于甘草有效成分的研究中,同时也可以多种提取纯化技术相结合,取长补短,优选出效率高、成本低、重现性好的提取纯化工艺。以提高甘草有效成分的得率、纯度为目的的提取纯化方法成为研究热点之一,这样不仅可以大大节约宝贵的甘草资源,而且为甘草全面、综合的合理开发与利用提供了科学的技术支持。我们相信,随着提取纯化技术的日趋成熟、完善,甘草资源的合理开发与利用必将得到很好的发展,这些技术的发展与应用必将在生产实践中给社会带来更多的好处。那么,甘草提取纯化工艺的研究会成为甘草研究的又一重要热门领域。

参考文献

[1]Cong Jingxiang,Lin Bingchang.Separation of Liquiritin by simulated moving bed chromatography[J].J Chromatogr A,2007,1145(1-2):190—194.

[2]谢彦,徐淑永,曾和平.甘草属植物中三萜类化合物研究概述[J].广州化工,2004,32(1):1-5.

[3]Li Wei,Asada Y,Yoshikawa T.Flavonoid constituents fromGlycyrrhiza glabra hairy root cultures[J].Phytochemistry,2000,55(5):447-456.

[4]彭晓霞,迟栋,龚来觐.分子印迹技术在中药提取分离中的应用[J].中国中医药信息杂志,2009,16(1):102-104.

[5]陈栋,周永传.酶法在中药提取中的应用和进展[J].中国中药杂志,2007,32(2):99-101,119.

甘草酸的提取、分离和纯化

甘草酸的提取、分离及纯化实验 甘草酸的性质及用途 甘草为豆科植物的根,主要产于我国内蒙古、山西、甘肃、宁夏、新疆等地。甘草味甘,故又名甜草、蜜草。其主要化学成分有四类:三萜类、黄酮类、生物碱类及多糖类。其中三萜类成分有甘草酸、羟基甘草次酸等。 甘草酸又称甘草皂苷、甘草甜素。白色结晶,可用冰醋酸结晶,有很强的甜味。分子式为C42H62O16,分子量为822.90。纯品为白色、无臭的结晶性粉末,熔点212~217℃,易溶于热水及热的稀乙醇,几乎不溶于无水乙醇或乙醚。甘草酸在植物中常以钙、钾、铵盐等形式存在。从甘草根为原料制得的甘草浸膏中提取的铵盐,其甜度为蔗糖的50~100倍,精制甘草酸钠、钾盐的甜度为蔗糖的200~300倍,是一种天然的甜味剂。 甘草素入口后不能立刻感觉到甜味,而是逐渐才有感觉,并且一直延续很长时间还留有余味,因此甘草素与砂糖、葡萄糖等糖类复配,可以得到口感良好的甜味。因为它是非糖类、高甜度的甜味剂,因此没有褐变、吸湿及发酵等缺点。甘草素在医药上还可用作消化道溃疡治疗剂、解毒剂、消炎剂以及降血脂、抗动脉粥样硬化、降胆固醇等。目前,甘草素已广泛用于食品、医药、化妆品、饮料、卷烟等行业。 我国甘草资源丰富,带皮甘草中含甘草酸7%~10%,去皮甘草中约5.5%~9.0%。甘草经溶剂浸取,可以制得甘草浸膏,再进一步加工可以制得甘草酸。 1 实验目的 1.掌握甘草酸的提取原理和方法。 2.掌握甘草酸的分离纯化方法。 2 实验原理 甘草酸在原料中以钾盐或钙盐形式存在,其盐易溶于水,因此可用极性溶剂提取。 提取后滤液再加硫酸,因难溶于酸性溶液而析出游离甘草酸。 3实验材料、仪器和试剂 实验材料:甘草 实验仪器:电子分析天平(精确至0.001g)、移液管、紫外分光光度计、超声波清洗器、抽滤装置、水浴锅、旋转蒸发仪、容量瓶(10mL、25mL、100mL) 试剂:70 %的乙醇溶液、蒸馏水、硫酸(3.5mol/L)、浓氨水、25 %氨水、冰醋酸、80%甲醇 质量分数为70 %的乙醇溶液(100 mL):用量筒量取75 mL 无水乙醇,25 mL 二次重蒸馏水于烧杯中,混匀;质量分数为10 %的乙醇溶液(100 mL):用量筒量取12.5 mL 无水乙醇,87.5 mL 二次重蒸馏水于烧杯中,混匀;质量分数为0.5 %的氨水溶液(100 mL):

推荐-甘草有效成分的提取与分离 精品

20XX-20XX学年第二学期 药用植物资源与开发 名称甘草化学成分的提取与分离 年级 20XX 学院中药材学院 专业植物科学与技术 学号 07107107 姓名林俊旭 任课教师张永刚 完成时间 20XX-5-11 成绩

甘草中化学成分的提取与分离 摘要:本文主要介绍了甘草中主要的化学成分以及这些化学成分的含量和性质,并简述了甘草酸,甘草次酸和甘草甘的提取和有效成分的含量测定,为进一步的生产实践做出贡献。 关键词:甘草化学成分提取 正文:甘草属于豆科甘草属,以根和根状茎入药。甘草在我国集中分布于三北地区(东北、华北和西北各省区),而以新疆、内蒙古、宁夏和甘肃为中心产区。随着药学及其相关学科以及科研设备的发展,甘草中主要含有的甘草酸、甘草次酸、黄酮、生物碱和氨基酸等化学成分,具有广泛的生物活性。 一、化学成分 药用甘草质量与其化学成分的组成、积累变化有直接的关系。先后从甘草属植物中提取、分离、鉴定了200多种化学成分,涉及甘草属植物10个种。其中最重要并已证实具有生物活性的成分主要是甘草酸等三萜皂苷类、黄酮类、香豆素类、多糖、生物碱、氨基酸等。 三萜皂苷类化合物:甘草属植物中三萜皂类成分具有量高、生理活性强的特点,甘草的许多药理作用都与这类成分有直接关系。至今在甘草属植物中已鉴定得到61种三萜类化合物,其中苷元45个。这些三萜类化合物其苷元均为3β-经基齐墩果烷型化合物的衍生物;皂苷一般为3β-羟基上的氧苷,糖元多为D-葡萄糖酸或D-葡萄糖。甘草酸一直被认为是甘草中最重要三萜类化合物,《中国药典》把甘草酸的量作为评价甘草药材及其制品质量的重要指标,通常要求不低于2%。 黄酮类成分:是近年来研究最活跃的天然活性成分之一,广泛存在于植物界中。这类化合物的存在对植物生长、发育、开花、结果以及抵御异物的侵入起着重要的作用。目前,从甘草属植物中已发现黄酮及其衍生物153种,它们的基本母核结构类型有15种,其中包括:黄酮、黄酮醇、双氢黄酮、双氢黄酮醇、查尔酮、异黄酮、双氢异黄酮、异黄烷、异黄烯等。对甘草中黄酮类成分的药理作用研究表明,这些成分在抗肿瘤、抗氧化、抗病毒方面作用显著。 甘草中黄酮类成分的分布和积策也表现出一定的特点。乌拉尔甘草无论是野生还是栽培,在一个生长季中,叶中总黄酮量最高,而地下部分的t相对较低;在5—10月,叶中的总黄酮量逐渐下降,而地下部分总黄酮盆具有上升趋势。各

天然药物有效成分的提取方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 天然药物有效成分的提取方法 天然药物有效成分的提取方法介绍天然药物化学成分的提取方法,主要介绍溶剂提取法。 重点:溶剂提取法的原理,化学成分的极性、常用溶剂、极性大小顺序及提取溶剂的选择;常见的提取方法及应用范围。 常用三种方法,溶剂提取法、水蒸气蒸馏法、升华法。 另外新方法还有超临界提取法。 提取的概念:指用选择的溶剂或适当的方法,将所要的成分溶解出来并同天然药物组织脱离的过程。 一溶剂提取法(一)提取原理:根据天然药物化学成分与溶剂间“极性相似相溶”的原理,依据各类成分溶解度的差异,选择对所提成分溶解度大、对杂质溶解度小的溶剂,依据“浓度差”原理,将所提成分从药材中溶解出来的方法。 (二)化学成分的极性:被提取成分的极性是选择提取溶剂最重要的依据。 1 影响化合物极性的因素: (1) 化合物分子母核大小(碳数多少):分子大、碳数多,极性小;分子小、碳数少,极性大。 (2) 取代基极性大小:在化合物母核相同或相近情况下,化合物极性大小主要取决于取代基极性大小。 常见基团极性大小顺序如下;酸>酚>醇>胺>醛>酮>酯>醚>烯>烷。 1/ 8

天然药物化学成分不但数量繁多,而且结构千差万别。 所以极性问题很复杂。 但依据以上两点,一般可以判定。 需要大家判断的大多数是母核相同或相近的化合物,此时主要依据取代基极性大小。 2 常见天然药物化学成分类型的极性:极性较大的:苷类、生物碱盐、糖类、蛋白质、氨基酸、鞣质、小分子有机酸、亲水性色素。 极性小的:游离生物碱、苷元、挥发油、树脂、脂肪、大分子有机酸、亲脂性色素。 以上不是绝对的,具体成分要具体分析。 比如,有的苷类化合物极性很小,有的苷元极性很大。 (三)提取溶剂及溶剂的选择: 1. 常用提取溶剂的分类与极性:1)分类:通常分三类:水类;亲水性有机溶剂;亲脂性有机溶剂。 2)极性大小:水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3 ) >苯(C6H6)>四氯化碳(CCl4)>正己烷≈ 石油醚(Pet.et)。 水类还包括酸水、碱水;亲水性有机溶剂包括甲醇、乙醇、丙酮;亲脂性有机溶剂为正丁醇后所有的。 这三类溶剂间互溶情况:水和亲水性有机溶剂可互溶,水和亲脂性有机溶剂间不互溶,有机溶剂间除甲醇和石油醚不互溶外,其它均互溶。 3)溶剂极性大小的实质:介电常数不同,介电常数大的溶剂极性

甘草酸的纯化工艺研究分析

河北工大学 毕业论文 作者:贾晋阳学号: 学院:化工学院 系(专业):制药工程 题目:甘草酸的纯化工艺研究 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2012年6月9日

甘草酸的纯化工艺研究 摘要:从6种树脂中通过静态吸附筛选出了ADS-17树脂作为提取纯化甘草酸的最佳树脂。研究了pH值、上样液流速、上样液浓度、洗脱液浓度、洗脱液用量这五个因素对甘草酸吸附、解吸作用的影响,并通过正交试验考察了最佳工艺条件。实验结果证明最佳吸附条件为:pH值为6.0、上样液流速为2BV/h、上样浓度为10mg/ml;最佳解吸条件为:洗脱剂10%乙醇、洗脱液用量234ml。在实验得出的最佳条件下,甘草酸的纯度为65.07%,回收率为61.39%。另外,我们还在氢氧化钠回流的条件下进行了甘草酸构型的转换,结果表明转构后的甘草酸纯度为87.66%,产率44.1%。 关键词:大孔树脂吸附纯化甘草酸

Title The research of the Purification Technology of Glycyrrhizic Acid Abstract By static adsorption, ADS-17 resin is filtered as the optimal resin to extract purified glycyrrhizic acid from the six kinds of resins. The study of pH, supernatant flow rate, supernatant concentration, eluent concentration and eluent amount shows these five factors effects on the adsorption and desorption of glycyrrhizic acid, and optimum conditions were investigated by orthogonal experiment. Experimental results showed that the optimum adsorption conditions as follows: pH 6.0, supernatant flow rate for 2BV/h, the concentration of the supernatant for 10mg/ml; best desorption conditions were as follows: 10% ethanol, eluent amount for 234ml. Under optimal conditions droved by experiment, the purity of glycyrrhizic acid was 65.07%, recovery rate was 65.3%. In addition, we completed the structural conversion of glycyrrhizic acid under a condition of sodium hydroxide's reflux; results showed that the purity of glycyrrhizic acid reached 87.66%; recovery rate reached 44.1% after the conversion. Keywords:Macroporous resins Adsorption Purification Glycyrrhizic Acid

甘草有效成分的提取与分离

2012-2013学年第二学期 药用植物资源与开发 论文名称甘草化学成分的提取与分离 年级 2010 学院中药材学院 专业植物科学与技术 学号 07107107 姓名林俊旭 任课教师张永刚 完成时间 2013-5-11 成绩

甘草中化学成分的提取与分离 摘要:本文主要介绍了甘草中主要的化学成分以及这些化学成分的含量和性质,并简述了甘草酸,甘草次酸和甘草甘的提取和有效成分的含量测定,为进一步的生产实践做出贡献。 关键词:甘草化学成分提取 正文:甘草属于豆科甘草属,以根和根状茎入药。甘草在我国集中分布于三北地区(东北、华北和西北各省区),而以新疆、内蒙古、宁夏和甘肃为中心产区。随着药学及其相关学科以及科研设备的发展,甘草中主要含有的甘草酸、甘草次酸、黄酮、生物碱和氨基酸等化学成分,具有广泛的生物活性。 一、化学成分 药用甘草质量与其化学成分的组成、积累变化有直接的关系。先后从甘草属植物中提取、分离、鉴定了200多种化学成分,涉及甘草属植物10个种。其中最重要并已证实具有生物活性的成分主要是甘草酸等三萜皂苷类、黄酮类、香豆素类、多糖、生物碱、氨基酸等。 三萜皂苷类化合物:甘草属植物中三萜皂类成分具有量高、生理活性强的特点,甘草的许多药理作用都与这类成分有直接关系。至今在甘草属植物中已鉴定得到61种三萜类化合物,其中苷元45个。这些三萜类化合物其苷元均为3β-经基齐墩果烷型化合物的衍生物;皂苷一般为3β-羟基上的氧苷,糖元多为D-葡萄糖酸或D-葡萄糖。甘草酸一直被认为是甘草中最重要三萜类化合物,《中国药典》把甘草酸的量作为评价甘草药材及其制品质量的重要指标,通常要求不低于2%。 黄酮类成分:是近年来研究最活跃的天然活性成分之一,广泛存在于植物界中。这类化合物的存在对植物生长、发育、开花、结果以及抵御异物的侵入起着重要的作用。目前,从甘草属植物中已发现黄酮及其衍生物153种,它们的基本母核结构类型有15种,其中包括:黄酮、黄酮醇、双氢黄酮、双氢黄酮醇、查尔酮、异黄酮、双氢异黄酮、异黄烷、异黄烯等。对甘草中黄酮类成分的药理作用研究表明,这些成分在抗肿瘤、抗氧化、抗病毒方面作用显著。 甘草中黄酮类成分的分布和积策也表现出一定的特点。乌拉尔甘草无论是野生还是栽培,在一个生长季中,叶中总黄酮量最高,而地下部分的t相对较低;在5—10月,叶中的总黄酮量逐渐下降,而地下部分总黄酮盆具有上升趋势。各

甘草酸提取及抑菌活性研究

甘草酸提取及抑菌活性研究 以新疆乌拉尔甘草饮片为原料,研究了在超声波条件下影响甘草酸提取率的几个因素,结果表明:以浓度为60%的乙醇为提取剂,料液比1:15,超声作用时间40min,浸泡4h为最佳。此外,分别以甘草酸对真菌(包括棉花枯萎病菌、小麦纹枯病菌、辣椒根腐病菌、辣椒疫病病菌)进行抑菌活性研究,结果表明浓度为1000mg/L的甘草酸对小麦纹枯病菌抑制率为68.15%,抑菌作用明显,对棉花枯萎病菌、辣椒根腐病菌、辣椒疫病病菌抑制作用相对较弱。 标签:甘草;甘草酸;提取工艺;抑菌研究 甘草酸(glycyrrhizic acid,GA)是豆科(legumrrihiza)甘草属(glycyrrhiza)植物的根或根茎中提取的一种天然甜味剂。研究表明甘草酸具有广阔的应用领域,且应用价值极高,但提取效率、成本、纯度又是影响效能的关键问题之一。超声辅助提取在天然植物有效成分的提取中取得良好的效果,且在甘草酸类或同类物质的提取中收效明显,表现出省时、选择性好、收率高、操作方便等一系列满足技术和市场方面的优点。为此,我们提出利用超声波的各种优良特性,在不影响甘草酸的物化、生物活性的基础上,不同条件下促进甘草酸的提取率。 从保护生态环境的角度来看,甘草酸对人体无害而有益,本研究以甘草酸乙醇提取液对真菌进行抑菌活性研究,以甘草酸做为新型杀菌剂防除农田有害病源微生物,将可能成为绿色农药发展的一个新方向。 1材料与方法 1.1材料及设备 材料:甘草饮片购于益和大药房;试剂:glycyrrhizicacid(SIGMA),其他试剂均为分析纯;供试菌种为吉林农业大学实验室提供。 主要设备:KQ5200E超声波清洗器昆山超声仪器有限公司;RE-52A旋转蒸发仪上海亚荣生化仪器厂;UV-2000紫外-可见分光光度计尤尼柯有限公司;DHP-9162电热温恒培养箱上海齐欣科学仪器有限公司。 1.2方法 1.2.1提取工艺设计 准确称取甘草粉末5g,加入10mL 70%的乙醇溶液,浸泡后超声波辅助提取2次,抽滤,合并滤液。吸取0.2mL提取液用70%的乙醇定容至25mL,取定容后溶液4mL二次定容至25mL,测定溶液吸光度。采用反复结晶法,将甘草酸超声波粗提液加酸沉淀,再经乙醇溶提,氨化成盐析出,反复结晶得到甘草酸纯品。

甘草的研究概况

疗.中医正骨,1993,4(3):13. 〔3〕张国忠.中药治疗痛性骨质疏松症28例报告1 中国中医骨伤科,1994,2(4):29.〔4〕于康冉,韩宜印1中药治疗老年性骨质疏松症 64例.四川中医,1995,13(4):49.〔5〕梁立.补肾中药治疗骨质疏松症的临床观察. 中医杂志,1992,33(11):39.〔6〕刘佳珍.中药治疗老年类风湿性关节炎所致骨 质疏松的临床研究.中国骨伤,1993,6(1):7.〔7〕刘珂军.健骨冲剂治疗老年性骨质疏松症的临 床研究.湖南中医杂志,1994.10(6):19.〔8〕马禄林141例骨质疏松症的中药热敷治疗.中 国骨伤,1993,6(2):31.〔9〕范增源.愈骨丸治疗原发性骨质疏松症的疗效 观察.四川中医,1995,13(1):43.〔10〕邵金莹.龙牡壮骨冲剂对大鼠实验性骨质疏 松的影响.中药药理与临床,1989,5(4):25.〔11〕赵咏芳,石印玉,沈培之,等1仙灵骨葆对卵巢 切除大鼠骨组织形态学的影响.中医正骨,2000,12(4):3.〔12〕冯坤,刘月桂,张灵菊,等1中药坚骨液对卵巢 切除后骨质疏松大鼠血、尿生化的影响.中医正骨.1996,8(1):3.〔13〕沈霖,杜靖远,杨家玉,等.补肾密骨片对大鼠 卵巢切除诱导的实验性骨质疏松的影响.中 华骨科杂志,1996,16(7):462.〔14〕王贤才主译.临床药用大典.青岛:青岛出版 社,1994.1709~1728.〔15〕王云钊,曹来宾.骨放射诊断学.北京:北京医 科大、中国协和医科大联合出版社,1998,394.〔16〕柴本甫.绝经期骨质疏松症的病理生理及治 疗.中华骨科杂志,1984,4(1):58.〔17〕张华俦.降钙素鼻喷剂治疗骨质疏松症骨痛 的初步疗效观察.中国骨质疏松杂志,1995,1(1):50.〔18〕陆强.1(OH )亚乙基二磷酸盐长程、间歇、周期 治疗绝经后骨质疏松的计量学变化.国外医学.内分泌分册,1993,1(3):封3.〔19〕陈慧.新一代抗骨质疏松药物—异丙氧黄酮. 医学综述,2000.6(3):136.〔20〕刘忠厚,薛延.骨质疏松症.北京:化学工业出 版社,1992.208~210.345;423.〔21〕蒋位庄,王和鸣1中医骨病学.北京:人民卫生 出版社,1989.258.〔22〕郭世绂.原发性骨质疏松的发病机制.中华骨 科杂志,1995,15(5):312. (收稿日期:2000-07-18) 甘草的研究概况 李 明 (甘肃中医学院中药系,甘肃 兰州 730000) 作者简介:李明(1963-),女,黑龙江人,讲师,理学硕士,主要从事药用植物资源开发及生理生化方面的研究。 摘 要:从甘草的化学成分、药理、栽培及综合利用几方面论述了近年来我国甘草的研究概况。随 着对甘草的深入研究,甘草的应用也愈来愈广泛。今后应加强开发甘草在食品、轻工方面的产品研制及在防治爱滋病方面的机理和临床的研究,使其发挥更大的作用。 关键词:甘草;化学成分;药理;栽培中图分类号:R285.5 文献标识码:A 文章编号:1003-8450(2000)03-0059-04 甘草是豆科甘草属(G lycyrrhiza )植物。其根和根茎是最常用的中药。近年来,随着新技术的不断应用,人们对甘草的认识和应用也愈来愈深入和广泛。甘草不仅广泛应用在医药上,而且也应用于食品、轻工等方面。此外,甘草还具有防沙固沙、改良土壤等作用,人们也将它应用于环保方

甘草及其有效成分的药理活性解析

甘草及其有效成分的药理活性解析 摘要:《本草纲目》记载:甘草甘、平、无毒,主治二十二种常见疾病。近年来,随着科技的发展,医学的进步,人们对甘草有效成分和药理活性的研究也更加深入,现已发现其在治疗炎症、过敏、肝病,提高人体免疫缺陷以及肿瘤、癌症等治疗上均有不同程度的治疗效果。 关键词:甘草;药理活性;有效成分 甘草实为中性药材,别名蜜草、甜草等。属豆科,英文Leguminosae,其根及根状茎部最有价值。甘草分多种,有乌拉尔甘草(Glycyrrhiza uralensis Fisch.)、洋甘草 (G1ycyrrhizaglabra L)和欧甘草(Glycyrrhiza inflata Bat.)。医药界中甘草用途极广,主要作为复方药予以配合,味偏甘甜,能中和药物苦味,性既不寒亦不燥,能滋补脾胃、补充气血,亦可解燥热、减痰量,清疼痛。现在为止,由甘草提取的黄酮混合物总数已有300种之多,皂苷元化合物种类高达20余种。现代医学研究表明:甘草能护肝、抗炎消毒、抵抗病菌,亦可防咳嗽,抵抗癌症,增强免疫力。 1.甘草有效成份 甘草中的有效成分主要有:黄酮类、多糖类、三萜类等。药理研究主要集中在皂苷类化合物、甘草黄铜与其他酚类化合物等方面。其中,皂苷类化合物又以甘草酸(glycyrrhizic)和甘草次酸(glycyrrhetinic acid)为主,甘草黄酮与其他酚类化合物则以甘草素( liquiritigenin)、光甘草定(glabridin)、甘草查耳酮( licochalcone)、其他黄酮类成分等为主。 2.甘草黄酮提取方法 2.1水提取 甘草黄酮提取方式中最古老的是水提取,即将甘草粉和水以既定的比例调和,温度达80至95摄氏度,进行甘草粉提取。因甘草、黄酮能溶于水,所以借助其溶水特性进行分离提取。这种方法提取的甘草、黄酮通常杂质较多,耗时较长,虽然所需设备较简单,但回收率极低,因此已很少被使用。 2.2有机溶剂提取 有机溶剂提取是当下提取黄酮时使用最多的一种方式,黄酮化合物能溶于有机溶剂,如甲醇乙醇等,操作过程包括冷水浸入和加热抽离。甘草的总黄酮提取步骤为先把甘草根茎置于干燥环境,放置时间60Day,后用浓度95%的乙醇浸泡48Hour,同时对过滤后的液体提取,并将提取完成的滤液放于温度为70℃的水中浓缩,直至溶液浓度ph值达到5-6之后进行萃取。对乙酸乙酯提取液进行萃取,采取5%Na2CO3为萃取液。Na2CO3的PH值可以采用浓盐酸进行调整控制。最佳提取方式应该遵循一定比例,一般按照20:1的比例调配甘草粉和酸液含量,提取时间一般为2个小时,对总黄酮提取率的测定采用分光光度法处理,则提取得率为2.56%。 2.3超声波提取 超声波提取依靠超声波的震荡过程来完成有效物质的提取过程,使组织细胞在短时间内空化,加速了细胞破裂速度,缩短了有机溶剂进入细胞的过程与时间,加快黄酮化合物溶解的速率。超声波方式可确保提取物质的纯度,减少了耗时,节省了成本,而且无需耗费过多的有机溶剂。但在采用超声波提取时,需注意时间的把握,最佳时长一般为80min。此时物质所含黄酮比例为1.312%,回收比率可达99.2%。 2.4微波提取 微波提取的原理是基于物质的不同性质,尤其是提取物中的分子结构不同,在微波提取的过程中,微波和分子之间可相互作用,微波的能量致使分子分子剧烈运动,导致了提取体系的升温,依靠所产生的热效果来实现黄酮的提取,由于热效应使介质直达细胞壁并破坏组

甘草酸的粗提工艺研究[1]

甘草酸的粗提工艺研究 余华1陈芳2* (1.四川出入境检验检疫局,四川成都 610041; 2. 西南大学药学院,重庆 400715) 2*为通讯作者。 摘要:甘草酸的提取是甘草开发和甘草应用的关键技术之一。试验以甘草的饮片为原料,乙醇作溶剂,用超声波辅助提取法提取甘草酸,研究了在超声波条件下影响提取率的几个因素:包括溶剂用量、溶剂浓度、超声时间、浸泡时间,粒度等几个方面,得到了一条操作简便、省时、提取率高、纯度较高、选择性好的工艺。最佳提取工艺为:以浓度为70%的乙醇为提取溶剂,超声作用时间60min,浸泡2h,粒度为50目。通过此工艺, 提取时间较传统提取工艺缩短,甘草酸的得率有所提高。 关键词:甘草酸;正交实验设计;超声波;提取工艺。 Study on the Primary Process of Glycyrrhizic Acid Extracting from Glycyrrhiza Yu hua1Chen Fang2* (1.Sichuan Entry-Exit Inspection and Quaranting Bureau of P.R. China, Sichuan Chengdu, 610041; 2. School of Pharmaceutical sciences , Southwest University, Chong qing, 400715,China ) Abstract:Glycyrrhizin extraction of Radix Glycyrrhiza is one of the key technologies of the development and application of Radix Glycyrrhiza. This paper used Radix Glycyrrhiza as the

甘草的功效与禁忌

甘草的功效与禁忌 甘草的功效和作用 1.用于心气虚,心悸怔忡,脉结代,以及脾胃气虚, 倦怠乏力等。前者,常与桂枝配伍,如桂枝甘草汤、炙甘草汤。后者,常与党参、白 术等同用,如四君子汤、理中丸等。 2.用于痈疽疮疡、咽喉肿痛等。可单用,内服或外敷,或配伍应用。痈疽疮疡,常与 金银花、连翘等同用,共奏清热解毒之功,如仙方活命饮。咽喉肿痛,常与桔梗同用,如 桔梗汤。若农药、食物中毒,常配绿豆或与防风水煎服。 3.用于气喘咳嗽。可单用,亦可配伍其他药物应用。如治湿痰咳嗽的二陈汤;治寒痰 咳喘的苓甘五味姜辛汤;治燥痰咳嗽的桑杏汤;治热毒而致肺痈咳唾腥臭脓痰的桔梗汤;治 咳唾涎沫的甘草干姜汤等。另风热咳嗽、风寒咳嗽、热痰咳嗽亦常配伍应用。 4.用于胃痛、腹痛及腓肠肌挛急疼痛等,常与芍药同用,能显著增强治挛急疼痛的疗效,如芍药甘草汤。 5.用于调和某些药物的烈性。如调味承气汤用本品缓和大黄、芒硝的泻下作用及其对 胃肠道的刺激。另外,在许多处方中也常用本品调和诸药。 7 甘草有类似肾上腺皮质激素样作用。对组胺引起的胃酸分泌过多有抑制作用;并有 抗酸和缓解胃肠平滑肌痉挛作用。 8. 甘草黄酮、甘草浸膏及甘草次酸均有明显的镇咳作用;祛痰作用也较显著,其作用 强度为甘草酸>甘草黄酮>甘草浸膏。 9. 甘草还有抗炎,抗过敏作用,能保护发炎的咽喉和气管粘膜。甘草浸膏和甘草酸 对某些毒物有类似葡萄糖醛酸的解毒作用。 10. 甘草常用来治疗随更年期而来的症状.因为甘草里含有甘草素,是一种类似激素 的化合物,它有助于平衡女性体内的激素含量。 甘草的禁忌 甘草不要多服、久服或当甜味剂嚼食尤其是儿童,会产生类似肾上腺皮脂激素样的副 作用,使血钠升高,钾排出增多,导致高血压、低血钾症,出现浮肿、软瘫等临床表现。 久服甘草,还会引起低血钙,出现钙性抽搐等症状,还可能引起肾上腺皮质小球带萎缩, 导致肾上腺皮质机能减退等。但是,只要辨证准确,适当配伍利尿、理气药可防患于未然。如若出现副作用,应立即停用甘草。

大孔吸附树脂纯化甘草提取物中甘草酸的研究

大孔吸附树脂纯化甘草提取物中甘草酸的研究 目的研究光果甘草中甘草酸的最佳大孔树脂纯化工艺。方法以大孔吸附树脂纯化物中甘草酸的含量为考察指标,从24种大孔吸附树脂中筛选出纯化甘草粗提物中甘草酸的最佳大孔吸附树脂,并确定纯化甘草酸的最佳工艺条件。结果AB-8大孔吸附树脂纯化甘草酸效果最佳,最佳工艺条件:上柱液浓度为0.11mg/mL,径高比为1:8,上样体积为所用树脂2BV,上样速度与洗脱速度均为2BV/h,用30%、50%的乙醇除杂,用80%乙醇富集甘草酸。纯化后产品纯度为60.74%,收率为3.29%,转移率为76.33%。结论采用AB-8大孔吸附树脂可较好地纯化甘草酸。 标签:甘草;甘草酸;AB-8大孔吸附树脂 药用甘草为豆科植物甘草(Glycyrrhiza uralensis Fish.),胀果甘草(Glycyrrhiza inflata Batalin)或光果甘草(Glycyrrhiza glabra L.)的干燥根及根茎[1]。甘草为药食两用植物,甘草酸又称甘草皂苷,是甘草的主要活性成分之一,具有促肾上腺皮质激素作用,能减少尿量及钠排出,增加钾排出,血钠上升,血钙降低。可用于解毒,抗炎[2],镇咳,抗肿瘤,抗溃疡,抗菌等[3]。近年来的药理研究发现,甘草酸类药物对防治病毒性肝炎、高血脂症和癌症等疾病有一定的疗效[3-4],对艾滋病毒也有一定的抑制增殖作用[5]。 长期以来,我国是甘草主要出口国,但产品多为原草或浸膏等初加工产品,缺乏深加工。研究有工业应用价值的甘草酸分离与精制技术具有重要意义。本实验将考察24种大孔树脂,选择出最优树脂进行甘草酸的纯化实验,并确定纯化的最佳条件。制定出稳定可靠,成本低廉的纯化工艺,以期对工业化生产有所帮助。 1 材料 LC-2010A高效液相色谱仪(日本岛津公司),FA10004N型万分之一分析天平(上海精密科学仪器有限公司),树脂(河北沧州宝恩吸附材料有限公司),甲醇色谱纯(天津市康科德科技有限公司),冰醋酸分析纯(天津市康科德科技有限公司),醋酸铵分析纯(天津市北方天医化学试剂场),光果甘草(购于河北安国药市长安中药材有限公司,经李天翔教授(天津中医药大学)鉴定),剪段约为3cm,砸至酥松,50℃干燥备用。甘草酸单铵盐对照品(批号为110731-201115,购于天津市药品检验所,纯度>98%)。 2 方法与结果 2.1甘草酸含量测定 2.1.1色谱条件色譜柱为MERITECH-C18柱(4.6mm×200mm,5μm),流动相:甲醇-0.2mol/L醋酸铵溶液-冰醋酸(67:32:1),柱温:30℃,流速:1ml/min,

甘草化学成份

甘草化学成份 1、三萜类化合物:甘草根和根茎甘草甜素(Glycyrrhizin),主要系甘草酸(Glycy-rrhizic acid)的钾、钙盐,为甘草的甜味成分。甘草酸水解后得二分子葡萄糖醛酸和一分子18β-甘草次酸(18β-Glycyrrbetinic acid)。近报导根尚还分解得24-羟基甘草次酸,3β-羟基齐墩果烷-11,13(18)-二烯-30-酸(3-β-Hydroxyolean-11,13(18)-dien30-oic acid)、3β- 羟基齐墩果叶烷-9(11),12(13)-二烯-30-酸。光果甘草 (G. glabra)的根和根茎除分离得甘草酸、甘草次酸之外,尚分得多种三萜类化合物;去氧甘草次酸I(Deo-xyglycyrrhetic acid I),去氧甘草次酸Ⅱ(Deoxyglycyrrhetic acidⅡ),18-α-羟基甘草次酸(18-α-Hydroxyglycyrrhetic acid),异甘草次酸(Liqui-ritic acid),甘草萜醇(Glycyrrhetol),甘草内酯(Gabrolide)等。近十几年来国内外对甘草属不同种的植物进行较广泛的研究,迄今为止,已知的三萜类成分达20余种。 为了进一步扩大中药甘草和提取甘草次酸的原料资源,中国医学科学院药物所对国产的几种甘草进行了甘草甜素和甘草次酸的定性、定量分析,结果见下表。 六种甘草中甘草次酸与甘草甜素的含量种类拉丁名产地次酸含量%甜素含量%甘草 G.uralensis内蒙古4.25.2甘草G.uralensis新疆7.1211.1甘草G.uralensis甘肃 3.488.6光果甘草G.glabra新疆 3.40 4.02胀果甘草G.inflata甘肃 3.724.6黄甘草 G.korshinskyi甘肃4.166.8云南甘草G.yunnanensis云南2.52未作粗毛甘草G.aspera 新疆0.72未作以上表中几种甘草用重量法和分光光度法分别测了甜素和次酸的含量,测定结果,甜素的含量均高于次酸的含量,是符合实际情况的。 [注] 分析方法:(1)定性方法:取定量用的氯仿提取液一份,浓缩至10m1,用毛细管点于硅胶石膏薄层板上,于板上同时点上甘草次酸标准品的氯仿溶液作对照。(2)定量分析方法:精密称取甘草粉末0.1g,加20ml12N硫酸,在水浴上回流1小时后,加入70m1水,50m1氯仿,回流15分钟,洽却,将此液移至250m1的分液漏斗中,振摇数分钟,将氯仿层分至另一分液漏斗中,硫酸液再用氯仿两次每次25m1振摇,合并氯仿液,用100ml2%碳酸氢钠液振摇,分去碳酸氢钠液,再将氯仿层通过装有25g无水硫酸钠柱子,收集氯仿液100m1。吸取氯仿提取液2.5m1至带塞的10m1刻度试管中,在水浴上蒸发至干,加入5ml80%硫酸,置沸水中5分钟,后在冰中冷却,再加95%乙醇5ml,1%香草醛水溶液0.5ml,冷却后,将试管塞上摇匀,放至室温,用72型分光光度计在波长545nm测定其光密度。然后由回归方程式Ye =0.3404×-0.004977计算出甘草次酸的含量(mg)。式中Ye为甘草次酸在5ml比色杯中的mg 数,x为光密度(比色杯长为1公分)。再换算出100g甘草样品中的百分含量。样品中甘草次酸的%含量=光密度×(0.3404—0.004977)×100/样品重。 2、黄酮类化合物:镇痉作用是甘草的药效之一,已经注意到它依存于甘草中的黄酮类。其中首先发现了黄酮甙之一的甘草甙(Liquiritin),甘草甙元(Liquiritigenin),异甘草甙(Iso-liquiritin),异甘草甘元(Iso-liquititigenin),新甘草甙(Neo-li-quiritin,dl-liquiritigenin-7-β-D-glucopyranoside),新异甘草甙(Neoisoliqui-titin,trans-isoliquiritigenin-4-β-D-glucopyranoside),异甘草呋喃糖甙(Licu-razid,trans-isoliquiritigenin-4-β-D-glucopyranosyl-2-β-D-apiodic-orifur-anoside),鼠李糖异甘草甙(Rhamnoisoliquiritin)等。从光果甘草(G.blabra)的根和根茎中分离出以上黄酮化合物之外,尚分离出光果甘草甙(Liguirito-side),光果甘草甙元(Liquiritogenine),异光果甘草甙(Isoliquiritoside),异光果甘草甙元(Isoli-quiritogenin),甘草黄酮A(Licoflavone A),甘草查耳酮(Licochal-cone)A及B等。

中药有效成分的提取方法包括

中药有效成分的提取方法包括: 1.溶剂提取法:选择一个适当的溶剂将中药里面的有效成分提取出来。 (1)常用提取溶剂:石油醚、正己烷、环己烷、苯、氯仿、乙酸乙酯、正丁醇、丙酮、乙醇、甲醇、水。(极性小→极性大) (2)提取溶剂的特殊性质:石油醚:是混合型的物质;氯仿:比重大于水;乙醚:沸点很低;正丁醇:沸点大于水。 ①亲脂型溶剂与亲水型溶剂:石油醚、正己烷、环己烷、苯、氯仿、乙酸乙酯、正丁醇与水混合之后会分层,称为亲脂型溶剂;丙酮、乙醇、甲醇与水混合之后不分层,称为亲水型溶剂。 ②不同溶剂的符号 (3)选择溶剂:不同成分因为分子结构的差异,所表现出的极性不一样,在提取不同级性成分的时候,对溶剂的要求也不一样。 1)物质极性大小原则: ①含C越多,极性越小;含O越多,极性越大。 ②在含O的化合物中,极性的大小与含O的官能团有关:含O官能团所表现出的极性越大,此化合物的极性越大。 ③与存在状态有关:游离型极性小;解离型(结合型)极性大。 2)选择溶剂原则:相似相溶医学教|育网搜集整理。 (4)提取方法: 1)浸渍法:不用加热,适用于热不稳定化学成分,或含有大量淀粉、树胶、果胶、黏液质的成分提取。缺点:效率低、时间长。 2)渗漉法:不用加热,缺点:溶剂消耗量大、时间长 3)煎煮法:使用溶剂为水,适用于热稳定的药材的提取。缺点:不是用于含有挥发性或淀粉较多的成分的提取;不能使用有机溶剂提取。 4)回流提取法与连续回流提取法:使用溶剂为有机溶剂。 回流提取法有机溶剂消耗量大;连续回流提取法溶剂消耗量少,节省了溶剂,缺点:加热时间长,对热不稳定的成分在使用此法时要十分小心。 5)超声波提取法:提取效率高;对有效成分结构破坏比较小。 6)超临界流体萃取法:CO2萃取。特点: ①不残留有机溶剂,萃取速度快、收率高,工艺流程简单、操作方便。 ②无传统溶剂法提取的易燃易爆危险;减少环境污染,无公害;产品是纯天然的。 ③因萃取温度低,适用于对热不稳定物质的提取。 ④萃取介质的溶解特性容易改变,在一定温度下只需改变其压力。 ⑤可加入夹带剂,改变萃取介质的极性来提取极性物质。 ⑥适于极性较大和分子量较大物质的萃取。 ⑦萃取介质可以循环利用,成本低。 ⑧可与其他色谱技术连用及IR、MS联用,高效快速的分析中药及其制剂中的有效成分。 2.非溶剂提取法 (1)水蒸气提取法:适用于具有挥发性的、能随水蒸气蒸馏而不被破坏,且难溶或不溶于水的成分的提取。 (2)升华法:具有升华性质的成分提取。 提取方法:溶剂法、水蒸气蒸馏法、升华法。溶剂法最为常用。

甘草酸实验报告

甘草酸的提取、纯化、测定及残渣中甘草多糖的提取分离测定 实验报告 学院:生物科学与工程学院 班级: 姓名: 学号: 组别:第七组 组员:

目录 一、实验目的 (3) 二、实验器材 (2) 三、实验原理 (2) 1.甘草简介 (2) 2. 甘草酸的提取方法 (3) 2.1 水提法 (3) 2.2 稀氨水提取法 (4) 2.3超声波提取法 (5) 3 甘草酸的分离与纯化 (5) 3.1 超滤法 (5) 3.2 结晶法 (6) 3.3 树脂法 (6) 4.多糖提取方法 (7) 5.多糖含量测定 (7) 四、实验内容及步骤 (8) 1.甘草酸的提取(稀氨水提取法) (8) 1.1 (8) 1.2 (8) 1.3 (8)

2. 甘草酸的纯化(大孔树脂吸附法) (9) 3.残渣中甘草多糖的提取分离(溶剂提取法) (9) 五、实验数据及处理 (11) 1.甘草酸标准曲线 (11) 2.测定样品甘草酸浓度,计算甘草提取率 (11) 3.甘草酸粗品质量 (12) 4.洗脱液中甘草酸的含量测定 (12) 5.纯化后甘草酸的质量2.132g (12) 六、实验结论及误差分析 (13) 实验结论: (13) 误差分析: (14) 一、实验目的 1.掌握甘草酸提取、纯化的原理和方法,了解甘草酸定量测定方法。 2.掌握多糖类的提取及测定方法。 3.熟悉皂甙的性质。 4.进一步熟悉物质提取与纯化的技术,掌握相关原理。

生物科学与工程学院10级生物技术2班第七组 二、实验器材 1.试剂:70%的乙醇、0.6%的稀氨水、3.5mol/l的浓硫酸、XAD9型树脂、6%盐酸、50%乙醇、95%乙醇、苯酚、铝片、碳酸氢钠、葡萄糖、标准甘草酸等。 2.器材:紫外分光光度计、石英比色皿、旋转蒸发仪、真空抽滤机、恒温水浴锅、1000ml量筒、玻璃棒、烧杯、纱布、玻璃漏斗、滤纸、烧杯等。 三、实验原理 1.甘草简介 甘草是蝶形花科(Fabaceae)、甘草属(Glycyrrhiza)植物,甘草地下部分是名贵中药材,地上部分是多年生牧草。甘草具有抗寒、耐热、耐旱、抗盐碱等优良特性,适生性和抗逆性强,生命力旺盛,为干旱、半干旱地区重要的植物资源之一。早甘草味甘、性平,有补脾益气、止咳祛痰、清热解毒的功能,用于脾胃虚弱、中气不足、咳嗽气喘、解毒等病症。现代研究表明,甘草还有肾上腺皮质激素样的作用,可治慢性肾上腺皮质机能低下症和胃、十二指肠溃疡,近年来又发现甘草可抗癌和防治艾滋病,又是预防和治疗SARS的复方组份之一。 甘草的主要有效成分为甘草酸(glycyrrhizic acid)及甘草次酸(glycyrrhetinic

甘草研究综述

甘草研究综述 中国药科大学 摘要:本文主要讲述甘草的化学成分及主要化学成分的分离、提取、纯化;甘草的药理学研究及临床应用;中成药使用情况;专利状况。 关键词:甘草、化学成分、药理学、临床研究、专利 1.概述 甘草为豆科(Leguminosae)乌拉尔甘草(Glycyrrhiza uralensisFisch.)、胀果甘草(G.inflataBat.)、光果甘草(G.glabraL.)的根及根茎。最初记载于《神农本草经》,列为上品。有调和诸药、解毒、补虚、止咳润肺等多种功能,为常用处方药,故又名国老,甘草在方剂中出现的频率最高,尤其因该药能调和诸药性而广泛配入复方,但由于甘草在方剂中多以从属地位出现,因而容易被医生忽略,妄加取舍,结果常影响临床疗效。在我国,甘草主产于内蒙古、甘肃。但近年来,我国甘草资源呈快速下降的趋势,据2001年草场资源调查统计,全地区甘草场面积为13.74万hm2,但到2007年,由于滥挖、滥采、滥开等原因,甘草面积减少到9.33万hm2,已减少的甘草面积占总甘草面积的47.62%。为了保护生态和资源,2002年,国家经济贸易委员会下达文件,规定甘草的采挖、运输、经营必须具有专业许可证,同时国家《野生药材资源保护管理条例》亦把甘草列为国家二级重点保护野生药材,以限制对甘草的过量应用,保护生态环境。 甘草性平,味甘,归十二经。有解毒、祛痰、止痛、解痉以至抗癌等药理作用。在中医上,甘草补脾益气,滋咳润肺,缓急解毒,调和百药。临床应用分“生用”与“蜜炙”之别。生用主治咽喉肿痛,痛疽疮疡,胃肠道溃疡以及解药毒、食物中毒等;蜜炙主治脾胃功能减退,大便溏薄,乏力发热以及咳嗽、心悸等。[1] 2.化学成分研究 2.1化学成分 大量的研究表明,甘草酸和黄酮类物质是甘草中最重要的生理活性物质,还有甘草多糖,主要存在于甘草根表皮以内部位上。甘草黄酮类物质包括甘草素(Liquiritigenin)、异甘草素(Isoliquiritigenin)、甘草苷(Liquiritin)、异甘草苷(Isoliquiritin)、新甘草苷(Neoliquiritin)、新异甘草苷(Neoisoliquiritin)、异甘草素-4-β-葡萄糖-β-洋芫妥糖苷(Licurazid)等。 2.2甘草酸 甘草酸异名甘草皂甙,甘草甜素为一种五环三萜皂苷。分子式C42H62O16,分子量822.92。由冰乙酸中结晶出的甘草酸为无色柱状结晶,mp约220℃(分解),[α]D27+ 46.2°(C2H5OH),易溶于热的稀乙醇,几乎不溶于无水乙醇或乙醚,其水溶液有微弱的起泡性及溶血性。甘草酸在甘草植物中常以钾盐、钙盐形式存在,是甘草甜味成分,其盐易溶于水,于水溶液中加稀酸即可析出游离的甘草酸。这种沉淀又极易溶于稀氨水中,故可用作为甘草酸的提制方法。甘草酸与5%稀H2SO4在加压下,110℃-120℃进行水解,生成2分子葡萄糖醛酸及1分子甘草次酸。甘草次酸(Glycyrrhetinic acid)是甘草甜素的皂苷配基,也是甘草甜素的有效活性成分之一。 2.3甘草次酸 甘草次酸是甘草酸的水解产物,分子式C30H46O4,分子量470.64,18-βH构型为针状结晶,mp256℃,[α]D20+86°(乙醇),易溶于乙醇或三氯甲烷;甘草酸单钾盐在酸性溶液中加热提取、过滤、干燥,可得白色甘草次酸粗品。 2.4甘草黄酮 甘草黄酮又名甘草甙,分子式C21H22O9,分子量418.39,水合物为无色针状结晶,mp:212℃-213℃。 2.5甘草多糖 为葡聚糖,GBW是从甘草中分离出的一种多糖,它是由单一葡萄糖残基组成,分子量4000,[α]D20+86°= +120°(c= 0.1,H2O),该多糖溶于水及二甲基亚砜,不溶于乙醇等有机溶剂。其水解产物经薄层色谱法(TLC)及其衍生物的气相色谱法(GC)分析,发现仅含单一葡萄糖,为α-D-葡聚糖。 2.6质量控制 照《高效液相色谱法检验标准操作程序》测定。本品按干燥品计算,含甘草苷(C21H22O9)不得少于

相关主题
文本预览
相关文档 最新文档