Developing Efficient Metaheuristics for Communication Network Problems by using Problem-spe
- 格式:pdf
- 大小:267.81 KB
- 文档页数:30
DevelopingEfficientMetaheuristicsforCommunication
NetworkProblemsbyusingProblem-specificKnowledge
FranzRothlaufandArminHeinzl
WorkingPaper9/2004
August2004
WorkingPapersinInformationSystemsDevelopingEfficientMetaheuristicsfor
CommunicationNetworkProblemsbyusing
Problem-specificKnowledge
FranzRothlauf
Dept.ofBusinessAdministrationandInformationSystems
UniversityofMannheim
D-68131Mannheim/Germany
rothlauf@uni-mannheim.de
ArminHeinzl
Dept.ofBusinessAdministrationandInformationSystems
UniversityofMannheim
D-68131Mannheim/Germany
heinzl@uni-mannheim.de
August24,2004
Abstract
Metaheuristics,suchasevolutionaryalgorithmsorsimulatedannealing,arewidelyapplicableheuristicoptimizationstrategiesthathaveshownencouragingresultsforalargenumberofdifficultoptimizationproblems.Toshowhighperformance,metaheuristicsneedtobeadaptedtothepropertiesoftheproblemathand.Thispaperillustrateshowefficientmetaheuristicscanbedevelopedforcommunicationnetworkproblemsbyutilizingproblem-specificknowledgeforthedesignofahigh-qualityprob-lemrepresentation.Theminimumcommunicationspanningtree(MCST)problemfindsacommunicationspanningtreethatconnectsallnodesandsatisfiestheircommunicationrequirementsforaminimumtotalcost.Aninvestigationintothepropertiesoftheproblemrevealsthatoptimumso-lutionsaresimilartotheminimumspanningtree(MST).Consequently,aproblem-specificrepresentation,thelinkbiased(LB)encoding,isdevel-oped,whichrepresentstreesasalistoffloats.TheLBencodingmakesuseoftheknowledgethatoptimumsolutionsaresimilartotheMST,andencodestreesthataresimilartotheMSTwithahigherprobability.Experimentalresultsfordifferenttypesofmetaheuristicsshowthatmeta-heuristicsusingtheLB-encodingefficientlysolveexistingMCSTprobleminstancesfromtheliterature,aswellasrandomlygeneratedMCSTprob-lemsofdifferentsizesandtypes.
1Introduction
Theproblemofdesigningacommunicationnetworkforagivensetofrequire-
mentsisrelevantforcommunicationproviders,aswellasforcompaniesand
1institutionswhowanttobuilduptheirowncommunicationinfrastructureby
renting,orbuying,communicationcapacitiesfromcommunicationproviders.
Theproblemconsideredinthispaperinvolvesselectingaspanningtreeforthe
networkonwhichallcommunicationwillbeperformed.Treestructuresare
especiallyimportantforthedesignofsmallernetworkslikecorporatenetworks,
accessnetworks,orlocalareanetworks.Theproblemofbuildingupcost-
minimalcommunicationspanningtreeswasformalizedbytheminimumcom-
municationspanningtree(MCST)problem.TheMCSTproblem(Hu,1974)
findsaspanningtreethatconnectsallgivennodesandsatisfiestheircommu-
nicationrequirementsforaminimumtotalcost.Thenumberandpositionsof
thenetworknodesaregivenaprioriandthecostofthenetworkisdetermined
bythecostofthelinks.Likeotherconstrainedspanningtreeproblems,the
OCSTproblemisNP-hard(Garey&Johnson,1979).
ThepurposeofthispaperistodemonstratehowtheMCSTproblemcan
efficientlybesolvedbyusingmetaheuristicswhenproblem-specificknowledge
isconsideredforthedesignofanappropriatetreerepresentation.Previous
work(Rothlaufetal.,2003)hasshownthatoptimalsolutionsforMCSTprob-
lemsareonaveragesimilartotheminimumspanningtree(MST)definedon
thedistanceweightsofthelinks.Thisproblem-specificknowledgeaboutthe
MCSTproblemcanbeutilizedbycombiningmetaheuristicslikeevolutionary
algorithms(EA),orsimulatedannealing,withthelink-biased(LB)encoding,
whichisarepresentationfortrees.TheLBencodingdoesnotrepresentall
possibletreeswiththesameprobability,butrandomlychosenLB-encodedso-
lutionsencodetreesthataresimilartotheMSTwithhigherprobabilitythan
randomlychosentrees.Performanceevaluationsarepresentedforacollection
ofexistingprobleminstancesfromtheliteratureaswellasrandomlygenerated
MCSTprobleminstances.Theexperimentalresultsshowthatduetotheover-
representationofMST-liketrees,metaheuristicsusingthelink-biasedencoding
showhigherperformancethanmetaheuristicsthatuserepresentationswhich
encodeallpossibletreesuniformly.Thepresentedworkisanexampleonhow
theefficiencyofmetaheuristicscanbeincreasedinasystematicwaybymak-
inguseofadditionalproblem-specificknowledgeregardingtheproblemtobe
solved.
Thepaperisstructuredasfollows:Thefollowingsectiongivesashortde-
scriptionoftheMCSTproblem,reviewsexistingapproximationalgorithms,
andgivesanoverviewofearlierworkwhichdemonstratesthatoptimalsolu-
tionsforMCSTproblemsaresimilartotheMST.Section3demonstrateshow
metaheuristicsandespeciallyEAscanbeadoptedforsolvingtheMCSTprob-
lem.ItdescribesthefunctionalityandrelevantdesignparametersofEAsand
introducestheLB-encoding,whichallowstorepresenttreessimilartotheMST
withahigherprobability.Section4presentsexperimentalresultsforexist-
ingprobleminstancesfromtheliteratureaswellasforrandomlycreatedtest
problems.Thepaperendswithconcludingremarks.
2