当前位置:文档之家› 分式经典题型分类例题及练习题

分式经典题型分类例题及练习题

分式经典题型分类例题及练习题
分式经典题型分类例题及练习题

分式的运算

(一)、分式定义及有关题型

题型一:考查分式的定义

【例1】下列代数式中:y x y

x y x y x b

a b a y x x -++-+--1

,

,,21,2

2

π,是分式的 有:

.

题型二:考查分式有意义的条件

【例2】当x 有何值时,下列分式有意义

(1)

44+-x x (2)232+x x (3)122-x (4)3||6--x x

(5)x

x 11-

题型三:考查分式的值为0的条件

【例3】当x 取何值时,下列分式的值为0.

(1)

3

1

+-x x (2)

4

2||2

--x x (3)

6

5322

2----x x x x

题型四:考查分式的值为正、负的条件

【例4】(1)当x 为何值时,分式

x -84

为正; (2)当x 为何值时,分式2)1(35-+-x x

为负;

(3)当x 为何值时,分式3

2

+-x x 为非负数.

练习:

1.当x 取何值时,下列分式有意义:

(1)

3

||61

-x

(2)

1

)1(32++-x x (3)

x

111+

2.当x 为何值时,下列分式的值为零:

(1)4

|

1|5+--x x

(2)

5

62522+--x x x

3.解下列不等式 (1)01

2

||≤+-x x (2)

03

252

>+++x x x

(二)分式的基本性质及有关题型

1.分式的基本性质:

M B M

A M

B M A B A ÷÷=

??= 2.分式的变号法则:b

a

b a b a b a =--=+--=--

题型一:化分数系数、小数系数为整数系数

【例1】不改变分式的值,把分子、分母的系数化为整数.

(1)y x y

x 4

1313221+- (2)

b

a b

a +-04.003.02.0

题型二:分数的系数变号

【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.

(1)

y

x y

x --+- (2)b

a a

---

(3)b

a ---

题型三:化简求值题

【例3】已知:511=+y x ,求

y

xy x y

xy x +++-2232的值.

【例4】已知:21=-x

x ,求2

21x

x +的值.

【例5】若0)32(|1|2=-++-x y x ,求y

x 241

-的值.

练习:

1.不改变分式的值,把下列分式的分子、分母的系数化为整数.

(1)y

x y x 5.008.02.003.0+-

(2)b a b

a 10

141534.0-+

2.已知:31

=+x x ,求1

242++x x x 的值.

3.已知:311=-b a ,求a

ab b b

ab a ---+232的值.

4.若0106222=+-++b b a a ,求b

a b

a 532+-的值.

5.如果21<

x x x |

||1|1+

---.

(三)分式的运算

1.确定最简公分母的方法:

①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.

2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;

②取分子、分母相同的字母因式的最低次幂.

题型一:通分

【例1】将下列各式分别通分.

(1)c

b a

c a b ab c 225,

3,2--; (2)a b b b a a 22,--; (3)

2

2

,

21,

1

222--+--x x x x x

x x ; (4)a

a -+21

,

2

题型二:约分

【例2】约分:

(1)

3

22016xy y x -; (2)n m m n --2

2; (3)6

222---+x x x x .

题型三:分式的混合运算

【例3】计算:

(1)4

2232)()()(a

bc ab c c b a ÷-?-;

(2)2

2233)()()3(

x

y x y y x y x a +-÷-?+;

(3)m

n m

n m n m n n m ---+-+22;

(4)11

2

---a a a ;

(5)

8

7

4321814121111x x x x x x x x +-+-+-+--;

(6))

5)(3(1

)3)(1(1)1)(1(1+++

++++-x x x x x x ;

(7))12()214

44

(22

2+-?--+--x x x x x x x

题型四:化简求值题

【例4】先化简后求值

(1)已知:1-=x ,求分子)]1

21()144[(4

8

122x x x x -÷-+--的值;

(2)已知:432z

y x ==,求2

22

32z

y x xz yz xy ++-+的值;

(3)已知:0132=+-a a ,试求)1

)(1

(22a a a

a --的值.

题型五:求待定字母的值

【例5】若1

11

312-+

+=

--x N

x M x x ,试求N M ,的值.

练习:

1.计算

(1))

1(23

2)1(21)1(252+-+

+--++a a a a a a ;

(2)a

b ab

b b a a ---

-222;

(3)b

a c c

b a

c b c b a c b a c b a ---+

+-+---++-232; (4)b

a b b a ++-2

2;

(5))4)(4(b

a ab

b a b a ab b a +-+-+-; (6)

2

12

1111x x x ++

++-;

(7)

)

2)(1(1

)3)(1(2)3)(2(1--+

-----x x x x x x .

2.先化简后求值

(1)1

1

12421222-÷+--?+-a a a a a a ,其中a 满足02=-a a .

(2)已知3:2:=y x ,求2322])()[()(

y

x

x y x y x xy y x ÷-?+÷-的值.

3.已知:1

21)12)(1(45--

-=---x B

x A x x x ,试求A 、B 的值.

4.当a 为何整数时,代数式2

805

399++a a 的值是整数,并求出这个整数值.

(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算

【例1】计算:(1)3132)()(---?bc a (2)2322123)5()3(z xy z y x ---?

(3)24

2

53])

()

()()([b a b a b a b a +--+-- (4)6223)(])()[(--+?-?+y x y x y x

题型二:化简求值题

【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.

题型三:科学记数法的计算

【例3】计算:(1)223)102.8()103(--???;(2)3223)102()104(--?÷?.

练习:

1.计算:(1)20082007024)25.0()31(|3

1|)51()5131(?-+-+-÷?--

(2)322231)()3(-----?n m n m (3) (4)

2

1

222)]

()(2[])()(4[----++-y x y x y x y x

2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.

第二讲 分式方程

(一)分式方程题型分析(提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.) 题型一:用常规方法解分式方程

【例1】解下列分式方程

(1)x x 311=-; (2)01

32=--x

x ; (3)

11

4

112=---+x x x ; (4)

x x x x -+=++4535

题型二:特殊方法解分式方程

【例2】解下列方程

(1)

4441=+++x x x x ; (2)5

6

9108967+++

++=+++++x x x x x x x x

【例3】解下列方程组

??????

???=+=+=+)

3(4

111)2(3111)1(2111x z z y y x

题型三:求待定字母的值

【例4】若关于x 的分式方程3

132--

=-x m

x 有增根,求m 的值.

【例5】若分式方程

12

2-=-+x a

x 的解是正数,求a 的取值范围.

题型四:解含有字母系数的方程

【例6】解关于x 的方程

)0(≠+=--d c d

c

x b a x

题型五:列分式方程解应用题

练习:

1.解下列方程:

(1)021211=-++-x

x

x x ; (2)

3

4

23-=

--x x x ;

(3)

22

3

22=--+x x x ; (4)

1

7137222

2--+

=--

+x x x x x

x

(5)2

1

23524245--+=--x x x x (6)

4

1215111+++=+++x x x x

(7)

6

8

11792--+

-+=--+-x x x x x x x x

2.解关于x 的方程: (1)b x a 211+=)2(a b ≠; (2))(11b a x

b

b x a a ≠+=+.

3.如果解关于x 的方程2

22-=

+-x x

x k 会产生增根,求k 的值.

4.当k 为何值时,关于x 的方程1)

2)(1(23++-=++x x k

x x 的解为非负数.

5.已知关于x 的分式方程a x a =++1

1

2无解,试求a 的值.

(二)分式方程的特殊解法

解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法

例1.解方程:2

3

1+=

x x

二、化归法

例2.解方程:01

2112=---x x

三、左边通分法

例3:解方程:871

78=----x

x x

四、分子对等法

例4.解方程:)(11b a x

b b x a a ≠+

=+

五、观察比较法

例5.解方程:4

17

425254=-+-x x x x

六、分离常数法

例6.解方程:8

7

329821+++

++=+++++x x x x x x x x

七、分组通分法

例7.解方程:

4

1

315121++

+=+++x x x x

(三)分式方程求待定字母值的方法

例1.若分式方程x

m

x x -=--221无解,求m 的值。

例2.若关于x 的方程1

1122+=-+-x x x k x x 不会产生增根,求k 的值。

例3.若关于x 分式方程4

3

2212

-=++-x x k x 有增根,求k 的值。

例4.若关于x 的方程

1

1512

2

1

--=

+-+

-x k x

x k x

x 有增根1=x ,求k 的值。

分式经典题型分类练习题49496

第一讲 分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 ) 1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型

1.分式的基本性质:M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例3】已知:511=+y x ,求y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 1 1+. 【例4】已知:21=- x x ,求2 21 x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求 y x 241 -的值. 练习: 1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1) y x y x 5.008.02.003.0+- (2)b a b a 10 141534.0-+ 2.已知:31=+x x ,求1 242 ++x x x 的值. 3.已知: 311=-b a ,求a ab b b ab a ---+232的值. 4.若0106222=+-++b b a a ,求b a b a 532+-的值. 5.如果21<

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

八年级数学经典练习题(分式及分式方程)汇总

一、选择题 1. (广东珠海)若分式 b a a +2的a 、b 的值同时扩大到原来的10倍,则此分式的值 ( ) A .是原来的20倍 B .是原来的10倍 C . 是原来的10 1 倍 D .不变 2. 计算-22+(-2)2-(- 12)-1的正确结果是( ) A 、2 B 、-2 C 、6 D 、10 3. (四川遂宁)下列分式是最简分式的( ) A. a 22 B . a 2 C . 2 2b a + D . 2 22ab a - 5.(丽江)计算10 ()(12 -+= . 6. (江苏徐州)0132--= . 7. (江苏镇江常州)计算:-(- 12)= ;︱-12︱= ; 01()2-= ;11 ()2 --= . 8. (云南保山)计算101 ()(12 -+= . 9. (北京)计算:?-++?--)2(2730cos 2)2 1(1π. 10. 计算:|-3|+20110×2-1. 11. (重庆江津区)下列式子是分式的是( ) A 、 2 x B 、 1x x + C 、2x y + D 、x π 12. (四川眉山)化简m m n m n -÷-2)(的结果是( ) A .﹣m ﹣1 B .﹣m+1 C .﹣mn+m D .﹣mn ﹣n 13.(南充)若分式1 2 x x -+的值为零,则x 的值是( ) A 、0 B 、1 C 、﹣1 D 、﹣2

14. (四川遂宁)下列分式是最简分式的( ) A. b a a 232 B . a a a 32- C . 2 2b a b a ++ D . 2 22b a ab a -- 15. (浙江丽水)计算111 a a a - --的结果为( ) A 、 1 1 a a +- B 、1 a a - C 、﹣1 D 、2 17. (天津)若分式21 1 x x -+的值为0,则x 的值等于 . 18. (郴州)当x= 时,分式 的值为0. 20. (北京)若分式 x 的值为0,则x 的值等于 . 21. (福建省漳州市)分式方程 2 11 x =+的解是( ) A 、﹣1 B 、0 C 、1 D 、3 2 22. (黑龙江省黑河)分式方程 11x x --= ()() 12m x x -+有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 23. (新疆建设兵团)方程2x +1 1-x =4的解为 . 24. (天水)如图,点A 、B 在数轴上,它们所对应的数分别是﹣4与 22 35 x x +-,且点A 、B 到原点的距离相等.则x = . 25. (海南)方程 2 +x x =3的解是 . (2)解分式方程一定注意要验根. 26. (湖北潜江、天门、仙桃、江汉油田)化简)2()24 2( 2+÷-+-m m m m 的结果是 A .0 B .1 C .—1 D .(m +2)2

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

分式的典型练习题(打印版)

分式的典型练习题 1、若分式4 242--x x 的值为零,则x 等于 。若分式961|2|2+---x x x 的值为0,则x = 。 2、若分式231-+x x 的值为负数,则x 的取值范围是 ;分式5 12++x x 的值为负,则x 应满足 。 3、分式方程3-x x +1=3-x m 有增根,则m= ; 4、若关于x 的分式方程3232 -=--x m x x 无解,则m 的值为 。 5、已知a=25,25-=+b ,求2++b a a b 得值为_________。 6、若将分式a+b ab (a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的2倍,则分式的值为( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .缩小为原来的14 7、把分式0.122 0.30.25x x -+的x 系数化为整数,那么0.122 0.30.25x x -+= . 8、不改变分式的值,使231 72x x x -+-+-的分子和分母中x 的最高次项的系数都是正数, 应该是( ) A. 231 72x x x ++- B. 231 72x x x --- C. 23172x x x +-+ D. 231 72x x x --+ 9、若分式212()() x x x +--的值为0,则x 的取值范围为 ( ) (A) 21x x =-=或 (B) 1x = (C) 2x ≠± (D) 2x ≠ 10、▲不论x 取何值,分式m x x +-21 2总有意义,求m 的取值范围。 11、(1)已知0132=+-x x ,求① 221x x +的值。 ② 求441 x x +的值 (2)已知31 =+x x ,求1242 ++x x x 的值。 12、▲若112323,2x xy y x y x xy y +--=--则分式=___ 13、已知21)2)(1(43-+-=---x B x A x x x 是恒等式,求A 和B 的值。

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式及分式方程精典练习题分析

分式及分式方程精典练习题 一、填空题: ⒈当x 时,分式1 223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、ac b 25的最简公分母是 ; ⒊化简:2 42--x x = . ⒋当x 、y 满足关系式________时, )(2)(5y x x y --=-25 ⒌化简=-+-a b b b a a . ⒍分式方程3 13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3 1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务 9、已知关于x 的方程32 2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题: ⒈下列约分正确的是( ) A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、2 14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= ⒊下列分式中,计算正确的是( ) A 、32)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22 -=+-b a b a D 、x y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( ) A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+-

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

《分式》典型练习题

分式知识点和典型习题 (一)、分式定义及有关题型 题型一:考查分式的定义 1、下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 2、下列分式中,最简分式有( ) 32222 2222222 212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个 3、下列各式: 2b a -,x x 3+,πy +5,() 14 32 +x ,b a b a -+,)(1y x m -中,是分式的共有( ) A.1个 B.2个 C.3个 D.4个 题型二:考查分式有意义的条件 1、当x 有何值时,下列分式有意义 (1) 4 4+-x x (2) 2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 1、当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x

题型四:考查分式的值为正、负的条件 1、(1)当x 为何值时,分式x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2+-x x 为非负数. (二)分式的基本性质及有关题型 1.分式的基本性质:M B M A M B M A B A ÷÷= ??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 1、不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 13132 21+- (2) b a b a +-04.003.02.0 (3)b a b a 10 141534.0-+ 题型二:分数的系数变号 2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a ---

培优专题分式方程培优提高经典例题

分式方程专题 例1:去分母法解分式方程 1、 ()()113116=---+x x x 2、2 2416222-+=--+-x x x x x 3、22412212362x x x x x x x -+++=++--- 4、64534275--+--=--+--x x x x x x x x 例2:整体换元与倒数型换元: 1、用换元法解分式方程:(1) 6151=+++x x x x (2)12221--=+--x x x x 变式练习: (11上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= 例3:分式方程的(增)根的意义 1、 若分式方程: 024122=+-+-x x a 有增根,求a 的值。 2、关于x 的分式方程131=---x x a x 无解,则a=_________。 变式练习:当m 为 时,分式方程 ()01163=-+--+x x m x x x 有根。

例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t . 问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍; ⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算) 课堂总练习 1关于x 的分式方程 1131=-+-x x m 的解为正数,则m 的取值范围是 2.关于x 的方程 223242mx x x x +=--+会产生增根,则m 为____________ 3.若关于x 的方程 2111 x m x x ++=--产生增根,则 m =____________; 4.k 取何值时,方程x x k x x x x +=+-+211 2会产生增根? 5.当a 为何值时,关于x 的方程223242 ax x x x +=--+无解?

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

分式运算的几种技巧

分式运算的几种技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一、 整体通分法 例1 计算:2 11 ---a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】2222(1)(1)(1)(1)11(1)111111 +--+---=-+=-==------a a a a a a a a a a a a a a a a 二、 先约分后通分法 例2 计算2221 2324+-++-+x x x x x x 分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。 解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21 +x +2+x x =21++x x 三、 分组加减法 例3计算21-a +12 +a -12-a -21+a 分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。 解:原式=(21-a -21+a )+(12 +a -12-a ) =44 2-a +142--a =)1)(4(1222--a a 四、 分离整数法 例4 计算 3 x 4x 4x 5x 2x 3x 1x 2x -----+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 解:原式= (1)1(2)1(4)1(3)11243 ++++-----+-++--x x x x x x x x =1111(1)(1)(1)(1)1243 +-++---++--x x x x =11111243--+++--x x x x =。。。 五、 逐项通分法

分式方程典型例题

三人行教育陈老师教案——分式方程典型例题 题型一:解分式方程, 解分式方程时去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验. 例1.解方程(1) 2223-=---x x x (2) 11 4 112=---+x x x 专练一、解分式方程 (1)14-x =1; (2)3 5 13+=+x x ; (3) 30120021200=--x x (4)255 522-++x x x =1 (5) 2124111x x x +=+--. (6) 222746 1x x x x x +=+-- (7)11322x x x -+=--- (8)512552x x x =--- 题型二:关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并越去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根. 例2、 若方程x x x --=+-34 731有增根,则增根为 . 例3.若关于x 的方程3 1 3292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少? 专练习二: 1.若方程 33 23-+=-x x x 有增根,则增根为 . 2.当m 为何值时,解方程115122-=-++x m x x 会产生增根?

题型三:分式方程无解①转化成整式方程来解,产生了增根;②转化的整式方程无解. 例4、 若方程x m x x -=--223无解,求m 的值. 思考:已知关于x 的方程 m x m x =-+3 无解,求m 的值. 题型四:解含有字母的分式方程时,注意字母的限制. 例5、.若关于x 的方程 81=+x ax 的解为41 =x ,则a = 例6、.关于x 的方程 12 -=-+x m x 的解大于零, 求m 的取值范围. 注:解的正负情况:先化为整式方程,求整式方程的解 ①若解为正???>去掉增根正的解0x ;②若解为负? ??<去掉增根负的解0 x 解: 专练三: 1.若分式方程 5 2 )1()(2-=--x a a x 的解为3=x ,则a = . 3.已知关于x 的方程3 23-=--x m x x 解为正数,求m 的取值范围. 4.若方程k x x +=+233有负数根,求k 的取值范围. .

初二数学分式典型例题复习和考点总结

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义 2、当分子为零且分母不为零时,分式值为零。 【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)4 2||2--x x

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? ( 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 】 知识点睛中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±±=±= , 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 ) 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111 a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 222 1(1)()4111(1)a a a a a a a a a ---+÷ ?=-=--++- 【答案】4- 【例3】 ! 【例4】 先化简,再求值: 22144 (1)1a a a a a -+-÷ --,其中1a =- 【考点】分式的化简求值 例题精讲

分式经典题型分类练习题

分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 1- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 | 1|5+--x x (2) 5 62522+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质:M B M A M B M A B A ÷÷= ??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0

分式加减法经典习题

分式的加减法 分式的加减法: (1)23+34=34?+ 34 ?= (2)ab ab 610-= (3)1a +1b =ab +ab = (4)b a 21+21ab = 因为最简公分母是___________,所以 b a 21+2 1ab = =_____________________ =_____________________ =_____________________-. 提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂 的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab ,它们的最简公分母是 (5)y x -1+y x +1 因为最简公分母是___________,所以 y x -1+y x +1 = (6)1()x x y -+y x +1 因为最简公分母是___________,所以 1()x x y -+y x +1 = 练习A : (1) a a 21+= (2) b c a c -= (3)a c b a c b ++- (4)b a b b a a +++=

(5)a b b b a a -+-= (6)x x -++1111 =

(7)231x +x 43; 因为最简公分母是_____,所以 231x +x 43 =2134x ?+34 x = + = (8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y ++1 x =+ (9)231x +xy 125; 因为最简公分母是___________ = (10) 24a b a b -;

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析 一、错用分式得基本性质 例1化简 错解:原式 分析:分式得基本性质就是“分式得分子与分母都乘以(或除以)同一个不等于零得整式,分式得值不变”,而此题分子乘以3,分母乘以2,违反了分式得基本性质. 正解:原式 二、错在颠倒运算顺序 例2计算 错解:原式 分析:乘除就是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误、 正解:原式 三、错在约分 例1 当为何值时,分式有意义? [错解]原式。 由得、 ∴时,分式有意义、 [解析]上述解法错在约分这一步,由于约去了分子、分母得公因式,扩大了未知数得取值范围,而导致错误。 [正解]由得且。 ∴当且,分式有意义、 四、错在以偏概全 例2 为何值时,分式有意义? [错解]当,得、 ∴当,原分式有意义. [解析]上述解法中只考虑得分母,没有注意整个分母,犯了以偏概全得错误。 [正解],得, 由,得. ∴当且时,原分式有意义、 五、错在计算去分母 例3 计算、 [错解]原式 =。 [解析]上述解法把分式通分与解方程混淆了,分式计算就是等值代换,不能去分母,、[正解]原式 。 六、错在只考虑分子没有顾及分母 例4 当为何值时,分式得值为零. [错解]由,得。 ∴当或时,原分式得值为零。 [解析]当时,分式得分母,分式无意义,谈不上有值存在,出错得原因就是忽视了分母不能为零得条件。

[正解]由由,得. 由,得且。 ∴当时,原分式得值为零. 典例分析 类型一:分式及其基本性质? 1、当x为任意实数时,下列分式一定有意义得就是()? A、B、C、D. 2。若分式得值等于零,则x=_______;3 ?、求分式得最简公分母。 【变式1】(1)已知分式得值就是零,那么x得值就是( ) A。-1B、0 C.1D、±1?(2)当x________时,分式没有意义、?【变式2】下列各式从左到右得变形正确得就是()? A、 B. C. D. 类型二:分式得运算技巧 (一) 通分约分 4、化简分式: 【变式1】顺次相加法计算: 【变式2】整体通分法计算: (二)裂项或拆项或分组运算?5。巧用裂项法 计算: 【变式1】分组通分法 计算: 【变式2】巧用拆项法计算: 类型三:条件分式求值得常用技巧 6.参数法已知,.?【变式1】整体代入法已知,求得值. 【变式2】倒数法:在求代数式得值时,有时出现条件或所求分式不易变形,但当分式得分子、分母颠倒后,变形就非常得容易,这样得问题适合通常采用倒数法.?已知:,求得值.?【变式3】主元法:当已知条件为两个三元一次方程,而所求得分式得分子与分母就是齐次式时,通常我们把三元瞧作两元,即把其中一元瞧作已知数来表示其它两元,代入分式求出分式得值、?已知:,求得值. 类型四:解分式方程得方法 解分式方程得基本思想就是去分母,课本介绍了在方程两边同乘以最简公分母得去分母得方法,现再介绍几种灵活去分母得技巧. (一)与异分母相关得分式方程7 ?、解方程=?【变式1】换元法解方程: 8。解方程 (二)与同分母相关得分式方程? 【变式1】解方程【变式2】解方程?类型五:分式(方程)得应用 9.甲、乙两个小商贩每次都去同一批发商场买进白糖。甲进货得策略就是:每次买1000元钱得糖;乙进货得策略就是每次买1000斤糖,最近她俩同去买进了两次价格不同得糖,问两人中谁得平均价格低一些? 【变式1】甲开汽车,乙骑自行车,从相距180千米得A地同时出发到B、若汽车得速度

相关主题
文本预览
相关文档 最新文档