当前位置:文档之家› 计算机组成原理微程序计数器实验报告

计算机组成原理微程序计数器实验报告

计算机组成原理微程序计数器实验报告
计算机组成原理微程序计数器实验报告

洛阳理工学院实验报告

班级学号姓名

系别计算机与信

息工程学院

课程名称计算机组成与系统结构实验日期2016

实验名称实验七微程序计数器成绩

实验条件:

1、DJ-CPTH超强型组成原理实验箱

2、PC机一台

实验要求:

利用CPTH实验仪上的K16..K23 开关做为DBUS的数据,其它开关做为控制信号,实现微程序计数器uPC的写入和加1功能。

实验目的:

掌握模型机中微程序计数器结构、工作原理及其控制方法。

实验步骤:

(1)按照下表连接线。

(2) uPC 加1。

置控制信号为:

按一次STEP脉冲键,CK产生一个上升沿,数据uPC 被加1。

(3)uPC 打入。

二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据28H:

K23K22K21K20 K19K18K17K16

00 1 0 1 0 0 0 置控制信号为:

当EMWR,EMEN=0时,数据总线(DBUS)上的数据被送到指令总线(IBUS)上。

按住STEP脉冲键,CK由高变低,这时寄存器uPC的黄色预置指示灯亮,表明uPC被预置。放开STEP键,CK由低变高,产生一个上升沿,数据28H被写入uPC寄存器。

实验总结:

通过这次实验,我们更好的掌握了微程序计数器uPC的结构,工作原理和控制方法。

集成计数器及寄存器的运用 实验报告

电子通信与软件工程 系2013-2014学年第2学期 《数字电路与逻辑设计实验》实验报告 --------------------------------------------------------------------------------------------------------------------- 班级: 姓名: 学号: 成绩: 同组成员: 姓名: 学号: --------------------------------------------------------------------------------------------------------------------- 一、 实验名称:集成计数器及寄存器的运用 二、实验目的: 1、熟悉集成计数器逻辑功能与各控制端作用。 2、掌握计数器使用方法。 三、 实验内容及步骤: 1、集成计数器74LS90功能测试。74LS90就是二一五一十进制异步计数器。逻辑简图为图8、1所示。 四、 五、 图8、1 六、 74LS90具有下述功能: ·直接置0(1)0(2)0(.1)R R ,直接置9(S9(1,·S,.:,=1) ·二进制计数(CP 、输入QA 输出) ·五进制计数(CP 2输入Q D Q C Q B 箱出) ·十进制计数(两种接法如图8.2A 、B 所示) ·按芯片引脚图分别测试上述功能,并填入表 8、1、表8、2、表8、3中。

图8、2 十进制计数器 2、计数器级连 分别用2片74LS90计数器级连成二一五混合进制、十进制计数器。 3、任意进制计数器设计方法 采用脉冲反馈法(称复位法或置位法)。可用74LS90组成任意模(M)计数器。图8、3就是用74LS90实现模7计数器的两种方案,图(A)采用复位法。即计数计到M异步清0。图(B)采用置位法,即计数计到M一1异步置0。 图8、3 74LS90 实现七进进制计数方法 (1)按图8、3接线,进行验证。 (2)设计一个九进制计数器并接线验证。 (3)记录上述实验的同步波形图。 四、实验结果:

微程序控制器设计与调试实验报告

济宁医学院信息工程学院 微程序控制器模型计算机的设计与调试 09级计本2班 200907010211 李秋生

一台模型计算机的设计 一、教学目的、任务与实验设备 1.教学目的 (1)融会贯通本课程各章节的内容,通过知识的综合运用,加深对计算机系统各模块的工作原理及相互联系的认识,加深计算机工作中“时间—空间”概念的理解,从而清晰地建立计算机的整机概念。 (2)学习设计和调试计算机的基本步骤和方法,提高使用软件仿真工具和集成电路的基本技能。 (3)培养科学研究的独立工作能力,取得工程设计与组装调试的实践和经验。 2.设计与调试任务 (1)按给定的数据格式和指令系统,在所提供的器件范围内,设计一台微程序控制的模型计算机。 (2)根据设计图纸,在MAX+PLUS 平台上进行仿真,并下载到EL教学实验箱上进行调试成功。 (3)在调试成功的基础上,整理出设计图纸和其他文件。包括:①总框图(数据通路图);②微程序控制器逻辑图;②微程序流程图;④微程序代码表;⑤元件排列图(或VHD程序清单);⑥设计说明书;⑦调试小结。 2.实验设备 (1) PC机一台 (2) EL教学实验箱 (3) MAX+PLUS Ⅱ配套软件 二、数据格式和指令系统 本模型机是一个8位定点二进制计算机,具有四个通用寄存器:R 0~R 3 ,能 执行11条指令,主存容量为256KB。 1.数据格式 数据按规定采用定点补码表示法,字长为8位,其中最高位(第7位)为符 数值相对于十进制数的表示范围为: -1≤X≤1―2―7 三、总体设计 总体设计的主要任务是 (1) 选定CPU中所使用的产要器件; (2) 根据指令系统、选用的器件和设计指标,设计指令流的数据通路; (3) 根据指令系统、选用的器件和设计指标,设计数据流的数据通路。 计算机的工作过程,实质上是不同的数据流在控制信号作用下在限定的数据通路中进行传送。数据通路不同,指令所经过的操作过程也不同,机器的结构也

数字钟设计报告——数字电路实验报告

数字钟设计实验报告 专业:通信工程 姓名:王婧 班级:111041B 学号:111041226

数字钟的设计 目录 一、前言 (3) 二、设计目的 (3) 三、设计任务 (3) 四、设计方案 (3) 五、数字钟电路设计原理 (4) (一)设计步骤 (4) (二)数字钟的构成 (4) (三)数字钟的工作原理 (5) 六、总结 (9) 1

一、前言 此次实验是第一次做EDA实验,在学习使用软硬件的过程中,自然遇到很多不懂的问题,在老师的指导和同学们的相互帮助下,我终于解决了实验过程遇到的很多难题,成功的完成了实验,实验结果和预期的结果也是一致的,在这次实验中,我学会了如何使用Quartus II软件,如何分层设计点路,如何对实验程序进行编译和仿真和对程序进行硬件测试。明白了一定要学会看开发板资料以清楚如何给程序的输入输出信号配置管脚。这次实验为我今后对 EDA的进一步学习奠定了更好的理论基础和应用基础。 通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。 2

二、设计目的 1.掌握数字钟的设计方法。 2熟悉集成电路的使用方法。 3通过实训学会数字系统的设计方法; 4通过实训学习元器件的选择及集成电路手册查询方法; 5通过实训掌握电子电路调试及故障排除方法; 6熟悉数字实验箱的使用方法。 三、设计任务 设计一个可以显示星期、时、分、秒的数字钟。 要求: 1、24小时为一个计数周期; 2、具有整点报时功能; 3、定时闹铃(未完成) 四、设计方案 一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。干电路系统由秒信号发生 3

计算机组成原理微程序控制单元实验报告

姓名 学号 班级 ******************年级 指导教师 《计算机组成原理》实验报告 实验名称微程序控制单元实验、指令部件模块实验、时序与启停实验 实验室实验日期 实验七微程序控制单元实验 一、实验目的 ⒈ 掌握时序产生器的组成方式。 ⒉ 熟悉微程序控制器的原理。 ⒊ 掌握微程序编制及微指令格式。 二、实验原理 图 7- 7- 1

图 7-7-4 微地址控制原理图 微程序控制单元实验原理就是人为的给出一条微指令的地址,人为的去打开测试开关,观察机器怎么运行,打个比方就是我要你执行我下的某条命令,我先告诉你命令写在哪页纸上, 你找到纸后,分析命令是什么之后再去执行。 观察机器微程序控制器的组成见图7-1-1 ,微地址的打入操作就是由操作者给出一条微指令 的地址(同上面的例子就是仅仅告诉你我让你跑的这条命令写在哪页纸上,而没有告诉你 命令的具体内容),不需要做测试去判断这是什么指令,所以由图7-7-1 ,其中微命令寄存器 32 位,用三片 8D 触发器 (273) 和一片 4D(175) 触发器组成。它们的清零端由CLR来控制微控制器的清零。它们的触发端CK接 T2,不做测试时 T2 发出时钟信号,将微程序的内容 打入微控制寄存器(含下一条微指令地址)。打入了微指令的地址(即告诉你命令在哪页纸上,此时你需要先找到这页纸并判断命令是叫你做什么,然后执行),进行测试,T4 发出时钟信号,转移逻辑满足条件后输出的负脉冲通过置位端将某一触发器输出端置为“1”状态,按图 7-7-4 所示,微地址锁存器的置位端R 受 SE5~SE0控制,当测试信号 SE5~SE0输出负脉冲时,通过锁存器置位端R将某一锁存器的输出端强行置“1”,实现微地址的修改与转移,此时的地址指的是指令的操作码的地址(即你已经知道命令是跑,此时做的是跑的行为)。再由数据开关置入微地址的值,再做测试,再跳到指令的操作码的地址准备开始执行 指令,这就是微程序控制单元实验的原理。

微程序控制器实验2

实 验 项 目 微程序控制器实验实验时间2015年10月31日 实验目的(1) 掌握微程序控制器的组成原理。 (2) 掌握微程序的编制、写入,观察微程序的运行过程。 实 验 设 备 PC机一台,TD-CMA实验系统一套 实验原理 微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图3-2-1 所示。 控制器是严格按照系统时序来工作的,因而时序控制对于控制器的设计是非常重要的,从前面的实验可以很清楚地了解时序电路的工作原理,本实验所用的时序由时序单元来提供,分为四拍TS1、TS2、TS3、TS4,时序单元的介绍见附录2。 微程序控制器的组成见图3-2-2,其中控制存储器采用3 片2816 的E2PROM,具有掉电保 护功能,微命令寄存器18 位,用两片8D 触发器(273)和一片4D(175)触发器组成。微地址寄存器6 位,用三片正沿触发的双D 触发器(74)组成,它们带有清“0”端和预置端。在不判别测试的情况下,T2 时刻打入微地址寄存器的内容即为下一条微指令地址。当T4 时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。

在实验平台中设有一组编程控制开关KK3、KK4、KK5(位于时序与操作台单元),可实现对存储器(包括存储器和控制存储器)的三种操作:编程、校验、运行。考虑到对于存储器(包括存储器和控制存储器)的操作大多集中在一个地址连续的存储空间中,实验平台提供了便利 的手动操作方式。以向00H 单元中写入332211 为例,对于控制存储器进行编辑的具体操作步骤如下:首先将KK1 拨至‘停止’档、KK3 拨至‘编程’档、KK4 拨至‘控存’档、KK5 拨至 ‘置数’档,由CON 单元的SD05——SD00 开关给出需要编辑的控存单元首地址(000000),IN 单元开关给出该控存单元数据的低8 位(00010001),连续两次按动时序与操作台单元的开关ST(第一次按动后MC 单元低8 位显示该单元以前存储的数据,第二次按动后显示当前改动的数据),此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M7——M0 显示当前数据(00010001)。然后将KK5 拨至‘加1’档,IN 单元开关给出该控存单元数据的中8 位(00100010),连续两次按动开关ST,完成对该控存单元中8 位数据的修改,此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M15——M8 显示当前数据(00100010);再由IN 单元开关给出该控存单元数据的高8 位(00110011),连续两次按动开关ST,完成对该控存单元高8 位数据的修改此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M23——M16 显示当前数据(00110011)。此时被编辑的控存单元地址会自动加1(01H),由IN 单元开关依次给出该控存单元数据的低8 位、中8 位和高8 位配合每次开关ST 的两次按动,即可完成对后续单元的编辑。

24小时制时、分、秒计时器设计报告

时钟仿真实验报告 一、任务及要求 用51单片机设计时、分、秒计时器,具体要求如下。 1、具有时、分、秒计时功能和8位数码管显示功能,显示格式为:“时-分-秒”; 2、用Proteus设计仿真电路进行结果仿真; 3、4人组成设计小组完成,小组成员有明确分工,1人负责总体方案设计及报告撰写,2人负责功能模块函数设计,1人负责仿真电路设计及调试。 4、完成程序设计、仿真电路设计、结果仿真,完成报告并上传空间课程栏目中的课程设计报告子栏目中。 二、设计方案: 1、总体方案构思:通过使用定时计数器以及中断溢出,50ms中断溢出一次,溢出20次为1S。所以当定时溢出计数变量temp自加20次时计数变量miao自加1,直到加到第60次时miao(秒)清零,并且计数变量fen自加1,直到fen加到第60次时,fen(分)清零且shi(时)

自加1,直到shi加到第24次时,shi(小时)清零。最后经译码后,通过扫描显示模块程序将得到的时钟结果以动态显示的方式显示在8位一体共阳数码管上。 2、程序功能模块说明:此时钟程序包括时钟中断计时、延时函数、显示函数等模块 3、仿真电路构成:此次时钟程序的仿真电路的设计较简单,硬件部分主要有AT89C52单片机芯片一块、八位一体LED共阳数码管一块、8个普通电阻以及8个逻辑非门。其中8个普通电阻用作P0口上拉电阻。另外,由于数码管是共阳的,而实际程序中的位码是以低电平有效的,所以八个逻辑非门用来取反单片机输出的位码。 4、时钟计时程序设计思想分析:采用定时计数器T0,工作方式1,定时50ms,再对定时溢出中断次数计数,若溢出了20次则时间为1秒! 5、函数模块程序流程图:

实验五--时序逻辑电路实验报告

实验五时序逻辑电路(计数器和寄存器)-实验报告 一、实验目的 1.掌握同步计数器设计方法与测试方法。 2.掌握常用中规模集成计数器的逻辑功能和使用方法。 二、实验设备 设备:THHD-2型数字电子计数实验箱、示波器、信号源 器件:74LS163、74LS00、74LS20等。 三、实验原理和实验电路 1.计数器 计数器不仅可用来计数,也可用于分频、定时和数字运算。在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。 2.(1) 四位二进制(十六进制)计数器74LS161(74LS163) 74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。 74LSl63是同步置数、同步清零的4位二进制加法计数器。除清零为同步外,其他功能与74LSl61相同。二者的外部引脚图也相同,如图5.1所示。 表5.1 74LSl61(74LS163)的功能表 清零预置使能时钟预置数据输入输出 工作模式R D LD EP ET CP A B C D Q A Q B Q C Q D 0 ××××()××××0 0 0 0 异步清零 1 0 ××D A D B D C D D D A D B D C D D同步置数 1 1 0 ××××××保持数据保持 1 1 ×0 ×××××保持数据保持 1 1 1 1 ××××计数加1计数3.集成计数器的应用——实现任意M进制计数器 一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。第二类是由集成二进制计数器构成计数器。第三类是由移位寄存器构成的移位寄存型计数器。第一类,可利用时序逻辑电路的设计方法步骤进行设计。第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。两种实现方法:反馈置数法和反馈清零法。第三类,是由移位寄存器构成的移位寄存型计数器。 4.实验电路: 十进制计数器 同步清零法 同步置数法

微程序控制器实验

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成原理 项目名称微程序控制器实验 班级

学号 姓名 同组人员 实验日期 一、实验目的与要求 实验目的 (1)掌握微程序控制器的组成原理 (2)掌握微程序控制器的编制、写入,观察微程序的运行过程 实验要求 (1)实验之前,应认真准备,写出实验步骤和具体设计内容,否则实验效率会很低,一次实验时间根本无法完成实验任务,即使基本做对了,也很难说懂得了些什么重要教学内容; (2)应在实验前掌握所有控制信号的作用,写出实验预习报告并带入实验室; (3)实验过程中,应认真进行实验操作,既不要因为粗心造成短路等事故而损坏设备,又要仔细思考实验有关内容,把自己想不明白的问题通过实验理解清楚; (4)实验之后,应认真思考总结,写出实验报告,包括实验步骤和具体实验结果,遇到的问题和分析与解决思路。还应写出自己的心得体会,也可以对教学实验提出新的建议等。实验报告要交给教师评阅后并给出实验成绩; 二、实验逻辑原理图与分析 画实验逻辑原理图

逻辑原理图分析 微程序控制器的基本任务是完成当前指令的翻译个执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。 它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示成为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,称为控制存储器。 三、数据通路图及分析(画出数据通路图并作出分析) (1)连接实验线路,检查无误后接通电源。如果有警报声响起,说明有总线竞争现象,应关闭电源,检查连线,直至错误排除。 (2)对微控制器进行读写操作,分两种情况:手动读写和联机读写。 1、手动读写

数字电路实验报告计数器的逻辑功能及应用word精品

数字电路实验报告 计数器逻辑功能及其应用 实验目的: 1. 熟悉中等规模集成电路计数器 74LS160的逻辑功能,使用方法及应用。 2. 掌握构成任意进制计数器的方法。 实验设备及器件: 1. 数字逻辑电路实验板 1片 2. 74HC160同步加法二进制计数器 2片 3. 74HC00二输入四与非门 1片 三、实验原理: 计数器是一个用以实现计数功能的时序部件, 它不仅可用来计脉冲数,还常用作数字系 统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分, 有同步计 数器和异步计数器。 根据计数制的不同, 分为二进制计数器,十进制计数器和任意进制计数 器。根据计数的增减趋势,又分为加法、 减法和可逆计数器。还有可预置数和可编程序功能 计数器等等。目前,无论是 TTL 还是CMOS 集成电路,都有品种较齐全的中规模集成计 数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列, 就能正确 地运用这些器件。 集成计数器74HC160是二-五-十进制计数器,其管脚排列如图。 四、实验内容 1.构成摸10计数器 实验原理图 c T 叱Tc % s c r Qa

实验结果:数码管显示为从 0到5之间变化。 3、组成模100计数器 实验结果:个位数码管随时间显示 0、1、2、3、4、5、6、7、& 9,十位数码管显示个位 进位计数结果,按 0、1、2、3、4、5、6、7、8、9变化。 五、实验心得: 本次实验,通过对计数器工作过程的探索,基本上了解了数码计数器的工作原理, 以及 74HC160 的数字特点,让我更进一步掌握了如何做好数字电子数字实验,也让我认识 到自身理论知识的不 > CL 160 实验结果:数码管显示为从 2、组成模6计数器 实验原理 图 OC LI) 0到9之间变化。

数字钟设计报告——数字电路实验报告

. 数字钟设计实验报告 专业:通信工程 :王婧 班级:111041B 学号:111041226 .

数字钟的设计 目录 一、前言 (3) 二、设计目的 (3) 三、设计任务 (3) 四、设计方案 (3) 五、数字钟电路设计原理 (4) (一)设计步骤 (4) (二)数字钟的构成 (4) (三)数字钟的工作原理 (5) 六、总结 (9) 1

一、前言 此次实验是第一次做EDA实验,在学习使用软硬件的过程中,自然遇到很多不懂的问题,在老师的指导和同学们的相互帮助下,我终于解决了实验过程遇到的很多难题,成功的完成了实验,实验结果和预期的结果也是一致的,在这次实验中,我学会了如何使用Quartus II软件,如何分层设计点路,如何对实验程序进行编译和仿真和对程序进行硬件测试。明白了一定要学会看开发板资料以清楚如何给程序的输入输出信号配置管脚。这次实验为我今后对 EDA的进一步学习奠定了更好的理论基础和应用基础。 通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。 2

二、设计目的 1.掌握数字钟的设计方法。 2熟悉集成电路的使用方法。 3通过实训学会数字系统的设计方法; 4通过实训学习元器件的选择及集成电路手册查询方法; 5通过实训掌握电子电路调试及故障排除方法; 6熟悉数字实验箱的使用方法。 三、设计任务 设计一个可以显示星期、时、分、秒的数字钟。 要求: 1、24小时为一个计数周期; 2、具有整点报时功能; 3、定时闹铃(未完成) 四、设计方案 一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。干电路系统由秒信号发生器、“时、 3

微程序控制器的设计与实现

微程序控制器的设计与实现 一、设计目的 1、巩固和深刻理解“计算机组成原理”课程所讲解的原理, 加深对计算机各模块协同工作的认识。 2、掌握微程序设计的思想和具体流程、操作方法。 3、培养学生独立工作和创新思维的能力,取得设计与调试的 实践经验。 4、尝试利用编程实现微程序指令的识别和解释的工作流程。 二、设计内容 按照要求设计一指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、立即数寻址等五种寻址方式。 三、设计具体要求 1、仔细复习所学过的理论知识,掌握微程序设计的思想,并根、 据掌握的理论写出要设计的指令系统的微程序流程。指令系统至少要包括六条指令,具有上述功能和寻址方式。 2、根据微操作流程及给定的微指令格式写出相应的微程序 3、将所设计的微程序在虚拟环境中运行调试程序,并给出测试思 路和具体程序段 4、撰写课程设计报告。

四、设计环境 1、伟福COP2000型组成原理实验仪,COP2000虚拟软件。 2、VC开发环境或者Java开发环境。 五、设计方案 (1)设计思想 编写一个指令系统,根据所编写的指令的功能来设计相应的微程序。首先利用MOV传送指令来给寄存器和累加器传送立即数,实现立即数寻址;利用寄存器寻址方式,用ADDC指令对两者进行相加运算;利用寄存器间接寻址方式,用SUB指令实现减运算;利用累加器寻址方式,用CPL指令实现对累加器寻址;利用存储器寻址方式,用JMP 指令实现程序的无条件跳转。这样,所要设计的指令系统的功能就全部实现了。 (2)微指令格式 采用水平微指令格式的设计,一次能定义并执行多个并行操作微命令的微指令,叫做水平型微指令。其一般格式如下: 按照控制字段的编码方法不同,水平型微指令又分为三种:全水平型(不译法)微指令,字段译码法水平型微指令,以及直接和译码相混合的水平型微指令。 (3)24个微指令的意义 COP2000 模型机包括了一个标准CPU 所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右

微程序控制器实验报告记录

微程序控制器实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成与结构 项目名称微程序控制器实验 班级 学号 姓名 同组人员无 实验日期 2015-11-11

一、实验目的 1.掌握微程序控制器的组成原理; 2.掌握微程序的编制、写入、观察微程序的运行情况。 二、实验逻辑原理图与分析 2.1 实验逻辑原理图及分析 微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输和各种处理操作。它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,该存储器称为控制存储器,如图所示: 微程序控制器组成原理框图 控制器是严格按照系统时序来工作的,因而时序控制对于控制器的设计是非常重要的,从前面的实验可以很清楚地了解时序电路的工作原理。本实验所用的时序单元来提供,分为四拍TS1、TS2、TS3、TS4。 在微程序控制器的组成中,控制器采用3片2816的E^2PROM,具有掉电保护功能,微命令寄存器18位,用两片8D触发器(273)和一片4D(175)触发器组成。为地址寄存器6位,用三篇正沿触发的双D触发器(74)组成,他们带有清“0”端和预置端。在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为吓一条微指令地址。当T4时刻惊醒测试判别式,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。

计数器的设计实验报告

计数器的设计实验报告 篇一:计数器实验报告 实验4 计数器及其应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是

CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 1、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。 图5- 9-1 CC40192引脚排列及逻辑符号 图中LD—置数端CPU—加计数端CPD —减计数端CO—非同步进位输出端BO—非同步借位输出端 D0、D1、D2、D3 —计数器输入端 Q0、Q1、Q2、Q3 —数据输出端CR—清除端 CC40192的功能如表5-9-1,说明如下:表5-9-1 当清除端CR为高电平“1”时,计数

器直接清零;CR置低电平则执行其它功能。当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3 置入计数器。 当CR为低电平,LD为高电平时,执行计数功能。执行加计数时,减计数端CPD 接高电平,计数脉冲由CPU 输入;在计数脉冲上升沿进行8421 码十进制加法计数。执行减计数时,加计数端CPU接高电平,计数脉冲由减计数端CPD 输入,表5-9-2为8421 码十进制加、减计数器的状态转换表。加法计数表5-9- 减计数 2、计数器的级联使用 一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。 同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。 图5-9-2是由CC40192利用进位

计算机组成原理实验3-微程序控制器实验

经济管理学院信息管理与信息系统专业班 __组学号 姓名协作者教师评定_____________ 实验题目_ 微程序控制器实验_________________ 1.实验目的与要求: 实验目的:1.理解时序产生器的原理,了解时钟和时序信号的波形; 2.掌握微程序控制器的功能、组成知识; 3掌握微指令格式和各字段功能; 4.掌握微程序的编制、写入、观察微程序的运行,学习基 本指令的执行流程。 实验要求:按练习一要求完成测量波形的操作,画出TS1、TS2、TS3、TS4的波形,并测出所有的脉冲Φ的周期。按练习二的要 求输入微指令的二进制代码表,并单步运行五条机器指 令。 2.实验方案: 1.用联机软件的逻辑示波器观测时序信号: 测量Φ、TS1、TS2、TS3、TS4信号的方法: (1)按图接线,接一根即可; (2)把探笔的探头端按颜色分别插到试验仪左上角的CH1、CH2,黑探头插CH1,红探头插CH2,将黑探笔的探头插在Φ接线的上孔,将红探笔的探针夹在TS1两针之间; (3)将实验仪的STOP开关置为RUN、STEP开关置为EXEC,“SWITCH UNIT”中CLR开关置为1状态,按动START按键; (4)启动“组成原理联机软件”,点击“调试”菜单下的“显示逻辑示波器窗口”,点击示波器开关,即可在屏幕上看到波形。使用“步数”或“速度”调整波形,波形调整好后,不要用同步通道来稳定波形,应该单击示波器开关,这样整个波形都停下来;(5)鼠标停留在波形线上,会有时间提示,两者相减可以算出波形周期; (6)测完Φ和TS1后,接着测量TS1和TS2,把黑红探针分别夹在TS1两根针之间和TS2两根针之间,相互比较,可以测量TS1 和TS2之间相位关系。同理通过测量TS2、TS3可以测量出TS2

实验四、 计数器的设计 电子版实验报告

实验四:计数器的设计 实验室:信息楼247 实验台号: 4 日期: 专业班级:机械1205 姓名:陈朝浪学号: 20122947 一、实验目的 1. 通过实验了解二进制加法计数器的工作原理。 2. 掌握任意进制计数器的设计方法。 二、实验内容 (一)用D触发器设计4位异步二进制加法计数器 由D触发器组成计数器。触发器具有0和1两种状态,因此用一个触发器 就可以表示1位二进制数。如果把n个触发器串起来,就可以表示N位二进制 数。(用两个74LS74设计实现) (二)利用74LS161设计实现任意进制的计数器 设计要求:学生以实验台号的个位数作为所设计的任意进制计数器。 先熟悉用1位74LS161设计十进制计数器的方法。 ①利用置位端实现十进制计数器。 ②利用复位端实现十进制计数器。 提示:设计任意计数器可利用芯片74LS161和与非门设计,74LS00为2输 入与非门,74LS30为8输入与非门。 74LS161为4位二进制加法计数器,其引脚图及功能表如下。

三、实验原理图 1.由4个D触发器改成的4位异步二进制加法计数器 2.由74LS161构成的十进制计数器

四、实验结果及数据处理 1.4位异步二进制加法计数器实验数据记录表 2. 画出你所设计的任意进制计数器的线路图,并说明设计思路。

设计思路:四进制为四个输出Q3Q2Q1Q0=0000,0001,0010,0011循环,第一个无效状态为0100 1,置位法设计四进制计数器:当检测到输入为0011时,先输出显示3,然后再将D 置于低电位,计数器输出Q3Q2Q1Q0复位。 2,复位法设计四进制计数器:当检测到第一个无效状态0100时,通过与非门的反馈计数器的Cr首先置于低电平使计数器复位为0000。 五、思考题 1. 由D触发器和JK触发器组成的计数器的区别? 答:D触发器是cp上升沿触发,JK触发器是下降沿触发。 2. 74LS161是同步还是异步,加法还是减法计数器? 答:同步。加法计数器。 3. 设计十进制计数器时将如何去掉后6个计数状态的? 答:加一个与非门形成负反馈。当计数到第一个无效状态Q3Q2Q1Q0==1010时,Q3和Q1全为1,Q1,Q3接与非门,输出作为复位信号,使所有触发器复位,从而去掉了后6个状态。

计算机组成原理课程设计(微程序)报告

微程序控制器的设计与实现第 1 页共22 页

目录 5 调试过程 (11) 6 心得体会 (12) 第 2 页共22 页

微程序控制器的设计与实现 一、设计目的 1)巩固和深刻理解“计算机组成原理”课程 所讲解的原理,加深对计算机各模块协同工 作的认识 2)掌握微程序设计的思想和具体流程、操 作方法。 3)培养学生独立工作和创新思维的能力, 取得设计与调试的实践经验。 4)尝试利用编程实现微程序指令的识别 和解释的工作流程 二、设计内容 按照要求设计一指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存 储器直接寻址、立即数寻址等五种寻址方式。 第 3 页共22 页

三、设计要求 1)仔细复习所学过的理论知识,掌握微程 序设计的思想,并根据掌握的理论写出要设 计的指令系统的微程序流程。指令系统至少 要包括六条指令,具有上述功能和寻址方式。 2)根据微操作流程及给定的微指令格式 写出相应的微程序 3)将所设计的微程序在虚拟环境中运行 调试程序,并给出测试思路和具体程序段 4)尝试用C或者Java语言实现所设计的 指令系统的加载、识别和解释功能。 5)撰写课程设计报告。 四、设计方案 1)设计思路 按照要求设计指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加 器寻址、寄存器寻址、寄存器间接寻址、存储器直接第 4 页共22 页

寻址、立即数寻址等五种寻址方式。从而可以想到如 下指令:24位控制位分别介绍如下: XRD :外部设备读信号,当给出了外设的地址后,输出此信号,从指定外 设读数据。 EMWR:程序存储器EM写信号。 EMRD:程序存储器EM读信号。 PCOE:将程序计数器PC的值送到地址总线ABUS上。 EMEN:将程序存储器EM与数据总线DBUS接通,由EMWR和EMRD 决定是将DBUS数据写到EM中,还是 从EM读出数据送到DBUS。 IREN:将程序存储器EM读出的数据打入指令寄存器IR和微指令计数器uPC。 EINT:中断返回时清除中断响应和中断请 求标志,便于下次中断。 第 5 页共22 页

数字时钟设计实验报告

电子课程设计题目:数字时钟

数字时钟设计实验报告 一、设计要求: 设计一个24小时制的数字时钟。 要求:计时、显示精度到秒;有校时功能。采用中小规模集成电路设计。 发挥:增加闹钟功能。 二、设计方案: 由秒时钟信号发生器、计时电路和校时电路构成电路。 秒时钟信号发生器可由振荡器和分频器构成。 计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。 三、电路框图: 图一数字时钟电路框图 四、电路原理图: (一)秒脉冲信号发生器 秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质

量。由振荡器与分频器组合产生秒脉冲信号。 振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz 脉冲。 分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能 扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz标准秒脉冲。其电路图如下: 图二秒脉冲信号发生器 (二)秒、分、时计时器电路设计 秒、分计数器为60进制计数器,小时计数器为24进制计数器。 60进制——秒计数器 秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。其电路图如下: 图三 60进制--秒计数电路 60进制——分计数电路 分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:来自秒计数电路的进位脉冲使分的个位加1,利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0

实验五计数器的设计实验报告

实验五计数器的设计——实验报告 邱兆丰 15331260 一、实验目的和要求 1.熟悉JK触发器的逻辑功能。 2.掌握用JK触发器设计同步计数器。 二、实验仪器及器件 1、实验箱、万用表、示波器、 2、74LS73,74LS00,74LS08,74LS20 三、实验原理 1.计数器的工作原理 递增计数器----每来一个CP,触发器的组成状态按二进制代码规律增加。递减计数器-----按二进制代码规律减少。 双向计数器-----可增可减,由控制端来决定。 2.集成J-K触发器74LS73 ⑴符号: 图1 J-K触发器符号

⑵功能: 表1 J-K触发器功能表 ⑶状态转换图: 图2 J-K触发器状态转换图

⑷特性方程: ⑸注意事项: ①在J-K触发器中,凡是要求接“1”的,一定要接高电平(例如5V),否则会出现错误的翻转。 ①触发器的两个输出负载不能过分悬殊,否则会出现误翻。 ② J-K触发器的清零输入端在工作时一定要接高电平或连接到实验箱的清零端子。3.时序电路的设计步骤 内容见实验预习。 四、实验内容 1.用JK触发器设计一个16进制异步计数器,用逻辑分析仪观察CP和各输出波形。2.用JK触发器设计一个16进制同步计数器,用逻辑分析仪观察CP和各输出波形。3.设计一个仿74LS194 4.用J-K触发器和门电路设计一个特殊的12进制计数器,其十进制的状态转换图为:5.考虑增加一个控制变量D,当D=0时,计数器按自定义内容运行,当D=1时,反方向运行 五、实验设计及数据与处理 实验一

16进制异步计数器 设计原理:除最低级外,每一级触发器用上一级触发器的输出作时钟输入,JK都接HIGH,使得低一级的触发器从1变0时高一级触发器恰好接收下降沿信号实现输出翻转。实验二 16进制同步计数器 设计原理:除最低级外,每一级的JK输入都为所有低级的输出的“与”运算结果实验三 仿74LS194 设计原理:前两个开关作选择端输入,下面四个开关模仿预置数输入,再下面两个开关模仿左移、右移的输入,最后一个开关模仿清零输入。四个触发器用同一时钟输入作CLK输入。用2个非门与三个与门做成了一个简单译码器。对于每一个触发器,JK输入总为一对相反值,即总是让输入值作为输出值输入。对于每一个输入,当模式“重置”输出为1时,其与预置值结果即触发器输入;当模式“右移”、“左移”输出为1时,其值为上一位或下一位对应值;当各模式输出均为0时各触发器输入为0,使输出为0。 实验四 设计原理: 在12进制同步计数器中,输出的状态只由前一周期的状态决定,而与外来输入无关,因此目标电路为Moore型。而数字电路只有0和1两种状态,因此目标电路要表达12种状态需

微程序控制器实验报告 (2)

组成原理No、4实验--- 微程序控制器实验 组员: 组号:21号 时间:周二5、6节?

【实验目的】 (1)掌握时序发生器的组成原理。 (2)掌握微程序控制器的组成原理。 (3)掌握微程序的编制、写入、观察微程序的运行情况 【实验设备】 TDN-CM++, 【实验原理】 微程序控制器的基本任务就是完成当前指令的翻译与执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输与各种处理操作。它的执行方法就就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,该存储器称为控制存储器。 实验所用的时序控制电路框图如图1 所示, 可产生四个等间隔的时序信号TS1~TS4。在 图1中,为时钟信号,由实验台左上方的 方波信号源提供,可产生频率及脉宽可调额 方波信号;STEP就是来自实验板上方中部的 一个二进制开关STEP的模拟信号;START 键就是来自实验板上方左部的一个微动开关 START的按键信号。当STEP开关为EXEC(0)时,一旦按下START启动键,时序信号TS1~TS4将周而复始地发送出去。当STEP为STEP(1)时,按下START启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机了。利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。另外,如果STEP开关置“STEP”,会使机器停机,CLR开关执行1→0→1操作可以使时序清零。时序状态图如下图所示。 ?由于时序电路的内部线路已经连好,因此只需将时序电路与方波信号源连接,即将时序电路的时钟脉冲输入端接至方波信号发生器输入端H23上,按动启动 键START后,就可产生时序信号TS1~TS4、时序电路的CLR已接至CLR 模拟开关上。 ?编程开关具有三种状态:PROM(编程)、READ(校验)与RUN(运行)。 微指令格式如 下: 【实验步骤】

FPGA_触发器与计数器实验报告

电力学院 FPGA应用开发实验报告 实验名称:触发器与计数器 专业:电子科学与技术 姓名: 班级: 学号:

1.触发器功能的模拟实现 实验目的: 1.掌握触发器功能的测试方法。 2.掌握基本RS触发器的组成及工作原理。 3.掌握集成JK触发器和D触发器的逻辑功能及触发方式。 4.掌握几种主要触发器之间相互转换的方法。 5.通过实验,体会EPLD芯片的高集成度和多I/O口。 实验说明: 将基本RS触发器,同步RS触发器,集成J-K触发器,D触发器同时集一个FPGA芯片中模拟其功能,并研究其相互转化的方法。 实验的具体实现要连线测试,实验原理如图所示:

2.计数器 在VHDL中,可以用Q<=Q+1简单地实现一个计数器,也可以用LPM来实现。下面分别对这两种方法进行介绍。 方法一: 第1步:新建一个Quartus项目。 第2步:建立一个VHDL文件,实现一个8位计数器。计数器从“00000000”开始计到“11111111”,计数器的模是256。计数器模块还需要包含一个时钟clock、一个使能信号en、一个异步清0信号aclr和一个同步数据加载信号sload。模块符号如下图所示: 第3步:VHDL代码如下: 第4步:将VHDL文件另存为counter_8bit.vhd,并将其设定为项目的最顶层文件,再进行语法检查。

第5步:语法检查通过以后,用KEY[0]表示clock,SW[7..0]表示data,SW[8~10]分别表示en、sload和aclr;LEDR[7..0]表示q。 第6步:引脚分配完成后,编译并下载。 第7步:修改上述代码,把计数器的模更改为100,应如何操作。 模为100的计数器,VHDL代码如下: 方法二:使用LPM实现8位计数器。 LPM是指参数化功能模块,用LPM可以非常方便快捷地实现一个计数器。 第1步:选择Tools->MegaWizard Plug-In Manager命令,打开如下图所示的对话框。

相关主题
文本预览
相关文档 最新文档