当前位置:文档之家› 向量数量积的几何意义

向量数量积的几何意义

向量数量积的几何意义
向量数量积的几何意义

2.4.1平面向量的数量积的物理背景

及其含义

课前预习学案

一、预习目标:

预习平面向量的数量积及其几何意义;平面向量数量积的重要性质及运算律;

二、预习内容:

1.平面向量数量积(内积)的定义:

2.两个向量的数量积与向量同实数积有很大区别

3.“投影”的概念:作图

4.向量的数量积的几何意义:

5.两个向量的数量积的性质:

设、为两个非零向量,e是与同向的单位向量.

1?e?=e =

2?⊥??=

设、为两个非零向量,e是与同向的单位向量.

e?=?e =

3?当与同向时,?=当与反向时,?= 特别的

?= ||2或

4?cosθ =

5? |?| ≤||||

三、提出疑惑:

课内探究学案

一、学习目标

1说出平面向量的数量积及其几何意义;

2.学会用平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

学习重难点:。平面向量的数量积及其几何意义

二、学习过程

创设问题情景,引出新课

1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义

探究一:

数量积的概念

1、给出有关材料并提出问题3:

(1)如图所示,一物体在力F的作用下产生位移S,

那么力F所做的功:W=

(2)这个公式的有什么特点?请完成下列填空:

①W(功)是量,

②F(力)是量,

③S(位移)是量,

④α是。

(3)你能用文字语言表述“功的计算公式”吗?

2、明晰数量积的定义

(1)数量积的定义:

已知两个非零向量与,它们的夹角为,我们把数量︱︱·︱︱cos叫做

与的数量积(或内积),记作:·,即:·=︱︱·︱︱cos

(2)定义说明:

①记法“·”中间的“·”不可以省略,也不可以用“”代替。

②“规定”:零向量与任何向量的数量积为零。

(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?

(4)学生讨论,并完成下表:

的范围=90°<

·的符号

例1 :已知||=3,||=6,当①∥,②⊥,③与的夹角

是60°时,分别求·.

解:

变式:

. 对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角.

探究二:研究数量积的意义

1.给出向量投影的概念:

如图,我们把││cos(││cos)

叫做向量在方向上(在方向上)的投影,

记做:OB1=︱││︱cos

2.提出问题5:数量积的几何意义是什么?

3. 研究数量积的物理意义

请同学们用一句话来概括功的数学本质:

探究三:探究数量积的运算性质

1、提出问题6:比较︱·︱与︱︱×︱︱的大小,你有什么结论?

2、明晰:数量积的性质

3.数量积的运算律

(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也用?(2)、明晰:数量积的运算律:

例2、(师生共同完成)已知︱︱=6,︱︱=4, 与的夹角为60°,求

(+2 )·(-3

),并思考此运算过程类似于实数哪种运算?

解:

变式:(1)(+)2=

2

+2·+

2

(2)(+ )·(-)=

2

—2

(三)反思总结 (四)当堂检测

1 .已知||=5, ||=4, 与

的夹角θ=120o ,求·.

2. 已知||=6, ||=4,与

的夹角为60o 求(+2)·(-3) .

3 .已知||=3, ||=4, 且与不共线,k 为何值时,向量

+k 与-k

互相垂直.

4.已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分

别求·.

5.已知||=1,||=

,(1)若∥

,求

·;(2)若、的夹角为60°,求|+|;(3)若-与垂直,求与的夹角.

6.设m 、n 是两个单位向量,其夹角为60°,求向量=2m +n 与=2n -3m 的夹角.

课后练习与提高

1.已知||=1,||=

,且(-)与

垂直,则与的夹角是( )

A.60° B .30° C.135° D.45°

2.已知||=2,||=1,与之间的夹角为,那么向量m =-4的模为( )

A.2 B .2

C.6

D.12

3.已知、是非零向量,则||=||是(+)与(-)垂直的()

A.充分但不必要条件

B.必要但不充分条件

C.充要条件

D.既不充分也不必要条件

4.已知向量、的夹角为,||=2,||=1,则|+|·|-|= .

5.已知+=2i-8j,-=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么·= .

6.已知⊥、c与、的夹角均为60°,且||=1,||=2,|c|=3,则(+2-c)2=______.

平面向量数量积教学反思

平面向量数量积教学反思 平面向量数量积教学反思 一、本节课的设想与基本流程:本节课主要是研究向量与向量的内积的问题,也就是向量的数量积。因为之前刚学习了向量的线性运算,所以我就直接从向量的线性运算引入了数量积这一概念,请同学来回答数量积的概念,在此过程中特别强调了夹角的概念,强调要共起点。这是学生容易出问题的地方,因此后面安排的例题就特意考察了这一问题;另外还强调了两个向量的数量积不是一个向量,而是一个数量,这也是它与之前的线性运算的区别;接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。 二、我的体会:通过本节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。 (2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。 (3)注重学生数学思维的培养本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。我感觉不足的有:(1)教师应该如何准确的提出问题在教学中,教师提出的问题要具体、准确,而不应该模棱两可。(2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。(3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。(4)课堂语言还需要进一步提炼。在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。 以上就是本人的教学反思,只有不断地反思,不断地总结才能在今后的教学中取得更好的教学效果,尽快地提高自身的教学水平。 1 / 1

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

高中数学人教A版必修四第二章 6平面向量数量积的坐标表示 Word练习题含答案

§6 平面向量数量积的坐标表示 , ) 1.问题导航 (1)向量数量积的坐标公式适用于任何两个向量吗? (2)向量有几种表示方法?由于表示方法的不同,计算数量积的方法有什么不同? (3)由向量夹角余弦值的计算公式可知,两个向量的数量积和两个向量夹角的余弦值有什么关系? 2.例题导读 P 96例1.通过本例学习,学会利用平面向量数量积的坐标表示计算两向量夹角的余弦值. 试一试:教材P 99练习T 1你会吗? P 98例2,P 99例3.通过此二例学习,体会向量在解析几何中的应用,学会利用平面向量的数量积求曲线的方程. 试一试:教材P 100习题2-6B 组T 6你会吗? P 99例4.通过本例学习,学会利用向量的夹角公式求两条直线的夹角. 试一试:教材P 100习题2-6A 组T 6你会吗? 1.向量数量积的坐标表示 向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,即两个向量的数量积等于相应坐标乘积的和.简记为“对应相乘计算和”. 2.两个向量垂直的坐标表示 向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?a ·b =0?x 1x 2+y 1y 2=0. 给定斜率为k 的直线l ,则向量m =(1,k )与直线l 共线,把与直线l 共线的非零向量m 称为直线l 的方向向量. 1.判断正误.(正确的打“√”,错误的打“×”) (1)直线x +2y -1=0的方向向量为(1,2).( ) (2)若a =(x 1,y 1),b =(x 2,y 2),则向量a ,b 的夹角θ满足cos θ=x 1x 2+y 1y 2 x 21+y 21x 22+y 2 2 .( ) (3)若A (1,0),B (0,-1),则|AB → |= 2.( ) 解析:(1)错误.直线x +2y -1=0的方向向量为(1,-1 2 ).

向量数量积的概念

第八章 向量的数量积与三角恒等变换 8.1 向量的数量积 8.1.1 向量数量积的概念 【课程标准】 了解向量数量积的概念,了解与数量积有关的投影,夹角,模的几何意义并能进行简单运算。 【核心素养】 逻辑推理,数学运算。 【导学流程】 一、基础感知 1.两个向量的夹角 给定两个非零向量,a b r r ,在平面内任选一点O ,作,OA a OB b ==u u u r r u u u r r ,则称[0,] π内的AOB ∠为向量a r 与向量b r 的 ,记作 。如图8-1-2,向量a r 与b r 的夹角为4 π ,即,a b <>=r r ;向量a r 与c r 的夹角为2 π ,则,a c <>=r r ;向量a r 与d u r 的夹角为 ,即,a d <>=r u r ;向量a r 与e r 的 夹角为 ,即,a e <>=r r . 练一练:已知等边三角形ABC ,D 为BC 的中点,求: ,,,,,,,AB AC BC AC BC CA DA BC <><><><>u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 根据向量夹角的定义可知: ,a b ≤<>≤r r . ,a b <>=r r . 当,2 a b π <>=r r 时,称向量a r 与向量b r ,记作 . 规定:零向量与任意向量垂直.

2.向量数量积的定义 一般地,当a r 与b r 都是非零向量时,称||||cos ,a b a b <>r r r r 为向量a r 与b r 的 .(也称为 ),记作 ,即 .由定义可 知,两个非零向量a r 与b r 的数量积是一个 . 两个非零向量的数量积即可以是 ,也可以是 ,还可以是 . 向量的数量积有如下性质: (1) (2) 当a r 与b r 至少有一个是零向量时,称它们的数量积为 ,即 . a r 与 b r 垂直的充要条件是 ,即 . 练一练:(1)已知5,4,,120a b a b ===?r r r r ,求a b ?r r ; (2)已知3,2,3a b a b ==?=r r r r ,求,a b <>r r . 由(2)可看出,如果,a b r r 都是非零向量,则cos ,a b <>=r r . 3.向量的投影与向量数量积的几何意义. 如图8-1-4所示,设非零向量AB a =u u u r r ,过,A B 分别作直线l 的垂线,垂 足分别为,A B '',则称向量A B ''u u u u r 为向量a r 在直线l 上的 或 .给 定平面上的一个非零向量b r ,设b r 所在的直线为l ,则a r 在直线l 上的投影称为a r 在向量b r 上的 .如图8-1-5中,向量a r 在b r 上的投影为 .

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角; 2.平面向量数量积的运算 1第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度与相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义与性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A.-72 B.-12 C 、32 D 、52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°、点E 与F 分别在线段BC 与DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16 u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(- 1+2m )-4(-2-m )=0,则m =-12,所以b =? ?????-121,所以a ·b =-1×????-12+2×1=52、 (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =????23 u u u r BC -u u u r BA ·????-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA · u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918、 [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系就是相等还就是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 就是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正 确的就是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0 C.3 D 、152 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D 、 (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0、∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

向量减法及其几何意义

§2.2.2 向量的减法运算及其几何意义 教学目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间 可以相互转化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 授课类型:新授课 教学思路: 一、 复习:向量加法的法则:三角形法则与平行四边形法则向量加法的运算 定律: 例:在四边形中,=++BA BA CB . 解:CD AD BA CB BA BA CB =++=++ 二、 提出课题:向量的减法 1.用“相反向量”定义向量的减法 (1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = a 作法:在平面内取一点O , 作= a , = b 则= a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1?表示a - b .强调:差向量“箭头”指向被减数 2?用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图 较繁,但最后作图可统一. O A B a B’ b -b b a + (- b ) a b A B D C O a b B a b a -b

向量的加减法运算及其几何意义

课题 向量的加减法运算及其几何意义 知识点一:向量的基本概念: (一)向量的概念:我们把既有大小又有方向的量叫向量 (二)探究学习 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行, 要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

2018年一轮复习《平面向量的数量积及应用》教学教案

平面向量的数量积及应用 知识梳理: 平面向量的夹角及表示: (1).平面向量的夹角的定义 (2).范围: 表示方法: 当夹角为0或错误!未找到引用源。时,则称a与b ,记作: ; 当夹角为9错误!未找到引用源。时,则称a与b ,记作: ; 2.向量的数量积定义: 3.数量积几何意义与投影的概念: 4.数量积的性质:设a与b是非零向量,e是单位向量,错误!未找到引用源。是a与e的夹角, 则 ①错误!未找到引用源。= ;②a错误!未找到引用源。b时,a错误!未找到引用源。b错误!未找到引用源。③错误!未找到引用源。同向量,错误!未找到引用源。 ④错误!未找到引用源。反向量,错误!未找到引用源。⑤错误!未找到引用源。|错误!未找到引用源。=错误!未找到引用源。 特别地:错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。+2a错误!未找到引用源。b 错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。-2a 错误!未找到引用源。b (a+b)错误!未找到引用源。(a-b)=错误!未找到引用源。-错误!未找到引用源。 ⑥数量积的运算律: 交换律:;结合律:;分配律: ⑦数量积的坐标运算:; ⑧两向量垂直叛定:;

⑨两向量夹角公式: ; ⑩向量的模及两点间的距离: ; 二、题型探究 探究一:平面向量的数量积运算 例1:已知|a |=5,|b |=4,a 与b 的夹角为12错误!未找到引用源。,求: ○1错误!未找到引用源。 ○2错误!未找到引用源。 ○3错误!未找到引用源。-错误!未找到引用源。 ; ○4(2a-b )错误!未找到引用源。(a+3b ) (答案:-10;21;9;-48) 探究二、数量积的综合应用 例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a ?-)2(= 例3:已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a -⊥c ; (2)若1||>++c b a k )(R k ∈,求k 的取值范围. 解:(1)∵ 1||||||===c b a ,且a 、b 、c 之间的夹角均为120°,

向量减法运算及其几何意义教学设计.doc

向量减法运算及其几何意义教学设计 教学课题简介 学科数学教学题目向量减法运算及其几何意义教材普通高中课程标准实验教科书(必修4) 一、教学目标 1、知识与技能知道相反向量的定义;理解记住向量减法法则及其几何意义;能够用向量减法法 则及其几何意义求两向量的差. 2、过程与方法通过回顾向量运算与实数运算之间的联系分析归纳相反向量的的定义和向量的减 法运算;通过联系向量加法的作图方法观察并归纳向量减法的作图方法和要点, 体会向量减法的几何意义. 3、情感态度与 价值观通过阐述向量减法与数量减法的联系,培养学生类比的数学思想方法;由向量减法向加法的转化,让学生懂得从已知到未知这一转化思想;由作图了解向量减法的几何意义,培养学生作图能力,并从中体会数形结合的数学思想. 二、教学重点和难点 1.重点:向量减法法则及其几何意义. 2.难点:向量减法法则及其作图方法;向量减法几何意义的应用. 三、教学方法:互动探究式授课 通过引导让学生自主探究,合作交流,体验学习过程中涉及的转化和数形结合的数学思想,类比、观察、分析、归纳等数学方法. 四、教学使用工具 多媒体教学 五、课堂教学过程设计 (一)内容引入 类比数量加法的意义,我们联系实际了解了向量加法,并学习了向量加法法则和作图方法,那么你能否同样与数量减法相比较得到向量减法法则和其几何意义呢?这就是本节课将要探讨和学 习的主要内容. (二)、师生交流温故知新 1 回顾、类比、得新知——相反向量 问题1你是否还记得刚进初中时学习有理数减法时的减法法则?你能否由此联系思考向量减法的减法法则呢? 我们知道,在数量中,减去一个数等于加上这个数的相反数,如果向量减法可以相应的也转化为向量的的加法,那么向量减法对于我们而言就不再是问题了!向量的减法法则,类比一下,可以

平面向量的数量积及其应用定稿1

平面向量的数量积及其应用 【考试要点】 1.考查平面向量数量积的运算. 2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】 本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系. 【教学过程】 活动一心动入境

(5)(a+b)2=a2+2a·b+b2. (6)(a-b)2=a2-2a·b+b2. 课前活动二[归纳反思] (1)若a·b>0,能否说明a和b的夹角为锐角? (2)若a·b<0,能否说明a和b的夹角为钝角? (3) 若向量a,b,c满足a·b=a·c(a≠0),是否能有b=c? (4)若向量a,b,c满足(a·b)c≠a(b·c),是否有(a·b)c=a(b·c)? (5) 正三角形ABC中,与的夹角应为多少度? 热身训练1.平面向量a与b的夹角为45°,a=(1,1),|b|=2,则|3a+b|等于() A.13+6 2 B.25 C.30 D.34 2.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________. 3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________. 4.已知e1,e2是互相垂直的单位向量,若3e1-e2与e1+λe2的夹角为60°,则实数λ的值是________. 考点一平面向量的数量积及在平面几何中的应用 探究实践1 【例1】如图,在△ABC中,AB=3,AC=5,∠BAC =60°,D,E分别是AB,AC的中点,连接CD,BE 交于点F,连接AF,取CF的中点G,连接BG,则AF → ·BG → =________. (2)在直角梯形ABCD中,∠A=90°,AD∥BC,BC

《平面向量的数量积》的课后反思

《平面向量的数量积》的课后反思 简单回顾《平面向量的数量积》这节课,首先我通过力对物体所做的功的物理模型引入数量积这一概念的,之后剖析概念,通过小组讨论,让学生分析定义应注意的问题,特别强调数量积的结果不是一个向量,而是一个数量。通过练习,进一步熟悉巩固向量的数量积的定义,这个小题目的是提醒学生要注意,两个非零向量的夹角问题要通过平移使这两个向量共起点。接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识,而且为后面证明平面向量的数量积的分配律铺垫。数量积的运算律是数量积概念的延伸,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。为了让学生完成这个探究活动,我引导学生从平面向量的数量积的几何意义入手问题,师生共同完成证明过程。 通过这节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程 高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的

愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式 (2)鼓励学生自主探索、自主学习 教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径 (3)用教材教,而不是教教材 向量的数量积这一节新课标规定在2课时内完成2.3“平面向量的数量积”3小节的教学内容,为了贯彻新课标的精神,体现新课程理念,我们做了如下的调整:把“两个向量的夹角”这个概念放到2.1.1“向量的概念”中讲,把向量在轴上的正射影这个概念放到2.2 “向量的分解与向量的坐标运算”,平面向量的数量积的定义及平面向量的数量积的运算律到第一课时,把平面向量的数量积的性质及平面向量的数量积坐标运算与度量公式放到第二课时。

《向量加法运算及其几何意义》教学设计

《向量加法运算及其几何意义》教学设计 一、教材分析 《普高中课程标准数学教科书数学(必修(4))》(人教(版))。第二章2.2平面向量的线性运算的第一节“向量加法运算及其几何意义”(89--94页)。《向量》这一章是前一轮教材中新增的内容。高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标

向量的数量积及其应用教案

平面向量的数量积及其应用 讲师:王光明 一、复习目标 深刻理解平面向量数量积的定义及其几何意义。能应用向量数量积解决有关向量垂直问题,向量的长度、夹角的问题,能将其它章节某些问题转化为可用向量数量积解决的问题,培养学生的创新精神和应用能力。 二、基础知识知识点回顾 1、两个向量的夹角是如何规定的?两个向量的夹角的取值范围是什么? 如下图,已知两个非零向量和作=,=,则∠AOB =θ(0°≤θ≤180°)叫做向量与的夹角,记作〈,〉. 2、平面向量数量积的定义是什么?其几何意义是什么? 如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ 叫做a 与b 的数量积(或内积或点积),记作:a ?b ,即a ?b =a b cos q 。规定:零向量与任一向量的数量积是0. 注意数量积是一个实数,不再是一个向量 a ? b 的几何意义:数量积a ?b 等于a 的模||a 与b 在a 上的投影的积。b 在a 上的投影为||cos b θ =b a a ,它是一个实数,但不一定大于0 3、平面向量数量积有哪些性质? 设e 是单位向量,〈a ,e 〉=θ. (1)e ·a =a ·e =|a |cos θ. (2)当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |, 特别地,a ·a =|a |2 ,或|a (3)a ⊥b ?a ·b =0.(a 、b 都是非零向量) 注意:零向量的方向是任意的,因此可以和任意向量平行,但却不可以与任何向量垂直

(4)cos θ= ×a b |a ||b | . (5)|a ·b |≤|a ||b |. 4. 平面向量数量积运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c 思考讨论 ()()a b c a b c 与是否相等? 5.向量数量积的坐标运算: 设a =(x 1,y 1),b =(x 2,y 2),则 (1)a ·b =x 1x 2+y 1y 2; (2)|a (3)cos 〈a ,b 〉 (4)a ⊥b Ta ·b =0Tx 1x 2+y 1y 2=0. 三、双基训练 1.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |等于 A.7 B.10 C.13 D.4 解析:|a +3b |= 960cos 1161+????+=13. 答案:C 2.已知a =(λ,2),b =(3,—6),且a 与b 的夹角为钝角,则λ的取值范围是 解析:a 与b 的夹角为钝角,cos < 0且cos≠-1, 又cos =()(),11,4λ∈-∞-?- 3.已知,,为非零的平面向量. 甲:, :,a b a c b c ?=?= 乙则 ( )

(完整版)2.2.2向量的减法运算及其几何意义教案

2.2.2向量的减法运算及其几何意义 教学目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物间可以相互转 化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 教学思路: 一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律: 例:在四边形中,=++AD BA CB . 解: =+=++ 二、 提出课题:向量的减法 1. 用“相反向量”定义向量的减法 (1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量与它的相反向量的和是零向量.a + (-a) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量a - b ∵(a -b) + b = a + (-b) + b = a + 0 = a 作法:在平面内取一点O , 作= a , = b 则= a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1?表示a - b. 强调:差向量“箭头”指向被减数 2?用“相反向量”定义法作差向量,a - b = a + (-b) O A a B’ b -b b B a + (- b ) a b O a b B a b a -b

向量加法运算及其几何意义(教学设计)(精选、)

2.2.1向量加法运算及其几何意义(教学设计) [教学目标] 一、知识与能力: 1.掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量; 2.能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算; 二、过程与方法: 1.经历向量加法三角形法则和平行四边形法则的归纳过程; 2.体会数形结合的数学思想方法. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. [教学重点] 向量加法定义的理解;向量加法的运算律. [教学难点] 向量加法的意义 一、复习回顾,新课导入 1.物理学中,两次位移, OA AB的结果与位移OB是相同的。 2.物理学中,作用于物体同一点的两个不共线的合力如何求得? 3.引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。 二、师生互动,新课讲解 1.已知向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB BC AC += 求两个向量和的运算,叫做向量的加法. 这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。 以同一点O为起点的两个已知向量a,b为邻边作OABC,则以O为起点的对角线OC就是a与b的和。我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。

对于零向量与任一向量a,规定a+0=0+a=a 例1(课本P81例1)已知向量a,b,用两种方法(三角形和平行四边形法则)求作向量a+b。 作法一:在平面内任取一点O,作OA=a,AB=b,则OB=a+b. 作法二:在平面内任取一点O,做OA=a,OB=b,以OA、OB为邻边作OBCA,则OC=a+b。 变式训练1:当在数轴上表示两个共线向量时,它们的加法与数的加法有什么关系? 2.归纳: 1.两个向量的和仍是一个向量。 2.当a,b不共线时,a+b的方向与a、b都不同向,且|a+b|<|a|+|b|. 3.当a与b共线时, (1)若a与b同向,则a+b的方向与a、b同向,且|a+b|=|a|+|b|. (2)若a与b反向,当|a|>|b|时,a+b的方向与a相同,且|a+b|=|a|-|b|;当|a|<|b|时,a+b的方向与b相同,且|a+b|=|b|-|a|. 3. 向量加法的运算律 探究:数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c),任意向量a,b的加法是否也满足交换律和结合律? 要求学生画图进行探索. (1)如图作ABCD,使AB=a,AD=b,则BC=b,DC=a,

《平面向量的数量积》教学设计及反思教学提纲

《平面向量的数量积》教学设计及反思 交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。 一、总体设想: 本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。 二、教学目标: 1.了解向量的数量积的抽象根源。 2.了解平面的数量积的概念、向量的夹角 3.数量积与向量投影的关系及数量积的几何意义 4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算 三、重、难点: 【重点】1.平面向量数量积的概念和性质 2.平面向量数量积的运算律的探究和应用

【难点】平面向量数量积的应用 四、课时安排: 2课时 五、教学方案及其设计意图: 1.平面向量数量积的物理背景 平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ ? F,这里的θ是矢量F和s的夹角,也即是两个 =s cos ? 向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。 2.平面向量数量积(内积)的定义 已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a?b,即有a?b = |a||b|cosθ,(0≤θ≤π). 并规定0与任何向量的数量积为0. 零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a?b = |a||b|cosθ无法得到,因此另外进行了规定。 3. 两个非零向量夹角的概念 已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)

向量的减法及其几何意义

2.2.2 向量的减法运算及其几何意义 一、学习目标: 1. 通过实例,掌握向量减法的运算,并理解其几何意义; 2. 能运用向量减法的几何意义解决一些问题. 二、重难点 : 1. 重点:向量减法的三角形法则及其应用; 2. 难点:对向量的减法定义的理解. 三、知识回顾: 1、向量加法的法则: 。 2、向量加法的运算定律: 。 四、探究新知: 1.用“相反向量”定义向量的减法 (1)“相反向量”的定义: 。 (2) 规定:零向量的相反向量仍是 . --=a a ( ). 任一向量与它的相反向量的和是 +- =0a a () 如果a 、b 互为相反向量,则=-,=-,+0a b b a a b = (3)向量减法的定义: . 即: 求两个向量差的运算叫做向量的减法. (4).用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b x a +=,则x 叫做a 与b 的差,记作 。 2.向量的减法的三角形法则: 特点:共起点,连终点,方向指向被减向量. 五、典例分析:

例1、已知向量a 、b 、c 、d ,求作向量a b -、c d -. 练习:已知向量,求作向量。 例2.化简:(AB →-CD →)-(AC →-BD → ). ,a b a b -

练习:化简:(1)AB →-CB →-DC →+DE →+F A → ; 例3、平行四边形ABCD 中,=a ,=b ,用a 、b 表示向量、. 变式一:当a ,b 满足什么条件时,+a b 与a b -垂直? 变式二:当a ,b 满足什么条件时,|+a b | = |a b -|? 变式三:+a b 与a b -可能是相等向量吗?

相关主题
文本预览
相关文档 最新文档