当前位置:文档之家› LCD原理

LCD原理

LCD原理
LCD原理

S3C2440裸机学习[2] - LCD驱动原理及代码分析[一] (转载)

S3C2410 LCD控制器

一块LCD屏显示图像,不但需要LCD驱动器,还需要有相应的LCD控制器。通常LCD驱动器会以COF/COG的形式与LCD 玻璃基板制做在一起,而LCD控制器则有外部电路来实现。而S3C2410内部已经集成了LCD控制器,因此可以很方便地去控制各种类型的LCD屏,例如:STN和TFT屏。由于TFT 屏将是今后应用的主流,因此接下来,重点围绕TFT屏的控制来进行。

S3C2410 LCD控制器的特性:

STN屏

-支持3种扫描方式:4bit单扫、4位双扫和8位单扫

-支持单色、4级灰度和16级灰度屏

-支持256色和4096色彩色STN屏(CSTN)

-支持分辩率为640*480、320*240、160*160以及其它规格的多种LCD TFT屏

-支持单色、4级灰度、256色的调色板显示模式

-支持64K和16M色非调色板显示模式

-支持分辩率为640*480,320*240及其它多种规格的LCD

对于控制TFT屏来说,除了要给它送视频资料(VD[23:0])以外,还有以下一些信号是必不可少的,分别是:

VSYNC(VFRAME) :帧同步信号

HSYNC(VLINE) :行同步信号

VCLK :像数时钟信号

VDEN(VM) :数据有效标志信号

图3-3是S3C2410内部的LCD控制器的逻辑示意图:

图3-3

REGBANK 是LCD控制器的寄存器组,用来对LCD控制器的各项参数进行设置。而 LCDCDMA 则是LCD控制器专用的DMA信道,负责将视频资料从系统总线(System Bus)上取来,通过 VIDPRCS 从VD[23:0]发送给LCD

屏。同时 TIMEGEN 和 LPC3600 负责产生 LCD屏所需要的控制时序,例如VSYNC、HSYNC、VCLK、VDEN,然后从 VIDEO MUX 送给LCD屏。 TFT屏时序分析

图3-4是TFT屏的典型时序。其中VSYNC是帧同步信号,VSYNC每发出1个脉冲,都意味着新的1屏视频资料开始发送。而HSYNC为行同步信号,每个HSYNC脉冲都表明新的1行视频资料开始发送。而VDEN则用来标明视频资料的有效,VCLK是用来锁存视频资料的像数时钟。

并且在帧同步以及行同步的头尾都必须留有回扫时间,例如对于VSYNC来说前回扫时间就是(VSPW+1)+(VBPD+1),后回扫时间就是(VFPD+1);HSYNC亦类同。这样的时序要求是当初CRT显示器由于电子枪偏转需要时间,但后来成了实际上的工业标准,乃至于后来出现的TFT屏为了在时序上于CRT 兼容,也采用了这样的控制时序。

图3-4

YFARM9-EDU-1采用的是Samsung公司的1款3.5寸TFT真彩LCD屏,分辩率为240*320,下图为该屏的时序要求。

图3-5

通过对比图3-4和图3-5,我们不难看出:

VSPW+1=2 -> VSPW=1

VBPD+1=2 -> VBPD=1

LINVAL+1=320-> LINVAL=319

VFPD+1=3 -> VFPD=2

HSPW+1=4 -> HSPW=3

HBPD+1=7 -> HBPW=6

HOZVAL+1=240-> HOZVAL=239

HFPD+1=31 -> HFPD=30

以上各参数,除了LINVAL和HOZVAL直接和屏的分辩率有关,其它的参

数在实际操作过程中应以上面的为参考,不应偏差太多。

LCD控制器主要寄存器功能详解

(1)LCDCON1

LINECNT :当前行扫描计数器值,标明当前扫描到了多少行

CLKVAL :决定VCLK的分频比。LCD控制器输出的VCLK是直接由系统总线(AHB)的工作频率HCLK直接分频得到的。做为240*320的TFT屏,应保证得出的VCLK在5~10MHz之间

MMODE :VM信号的触发模式(仅对STN屏有效,对TFT屏无意义)

PNRMODE :选择当前的显示模式,对于TFT屏而言,应选择[11],即TFT LCD panel

BPPMODE :选择色彩模式,对于真彩显示而言,选择16bpp(64K色)即可满足要求

ENVID :使能LCD信号输出

VBPD , LINEVAL , VFPD , VSPW 的各项含义已经在前面的时序图中得到体现,这里不再赘述。

HBPD ,HOZVAL ,HFPD 的各项含义已经在前面的时序图中得到体现,这里不再赘述。

HSPW 的含义已经在前面的时序图中得到体现,这里不再赘述。

MVAL 只对 STN屏有效,对TFT屏无意义。

1. LCD工作的硬件需求:

要使一块LCD正常的显示文字或图像,不仅需要LCD驱动器,而且还需要相应的LCD控制器。在通常情况下,生产厂商把LCD驱动器会以COF/COG的 形式与LCD玻璃基板制作在一起,而LCD控制器则是由外部的电路来实现,现在很多的MCU内部都集成了LCD控制器,如S3C2410/2440等。通 过LCD控制器就可以产生LCD驱动器所需要的控制信号来控制STN/TFT屏了。

2. S3C2440内部LCD控制器结构图:

我们根据数据手册来描述一下这个集成在S3C2440内部的LCD控制器:

a:LCD控制器由REGBANK、LCDCDMA、TIMEGEN、VIDPRCS寄存器组成;b:REGBANK由17个可编程的寄存器组和一块256*16的调色板内存组成,它们用来配置LCD控制器的;

c:LCDCDMA是一个专用的DMA,它能自动地把在侦内存中的视频数据传送到LCD驱动器,通过使用这个DMA通道,视频数据在不需要CPU的干预的情况下显示在LCD屏上;

d:VIDPRCS接收来自LCDCDMA的数据,将数据转换为合适的数据格式,比如说4/8位单扫,4位双扫显示模式,然后通过数据端口VD[23:0]传送视频数据到LCD驱动器;

e:TIMEGEN由可编程的逻辑组成,他生成LCD驱动器需要的控制信号,比如VSYNC、HSYNC、VCLK和LEND等等,而这些控制 信号又与REGBANK寄

存器组中的LCDCON1/2/3/4/5的配置密切相关,通过不同的配置,TIMEGEN 就能产生这些信号的不同形态,从而支 持不同的LCD驱动器(即不同的

STN/TFT屏)。

3. 常见TFT屏工作时序分析:

LCD提供的外部接口信号:

VSYNC/VFRAME/STV:垂直同步信号(TFT)/帧同步信号(STN)/SEC TFT

信号;

HSYNC/VLINE/CPV:水平同步信号(TFT)/行同步脉冲信号(STN)/SEC TFT信号;

VCLK/LCD_HCLK:象素时钟信号(TFT/STN)/SEC TFT信号;

VD[23:0]:LCD像素数据输出端口(TFT/STN/SEC TFT);

VDEN/VM/TP:数据使能信号(TFT)/LCD驱动交流偏置信号(STN)/SEC TFT 信号;

LEND/STH:行结束信号(TFT)/SEC TFT信号;

LCD_LPCOE:SEC TFT OE信号;

LCD_LPCREV:SEC TFT REV信号;

LCD_LPCREVB:SEC TFT REVB信号。

所有显示器显示图像的原理都是从上到下,从左到右的。这是什么意思呢?这么说吧,一副图像可以看做是一个矩形,由很多排列整齐的点一行一行组成,这些点称之为像素。那么这幅图在LCD上的显示原理就是:

A:显示指针从矩形左上角的第一行第一个点开始,一个点一个点的在LCD

上显示,在上面的时序图上用时间线表示就为VCLK,我们称之为像素时钟

信号;

B:当显示指针一直显示到矩形的右边就结束这一行,那么这一行的动作在

上面的时序图中就称之为1 Line;

C:接下来显示指针又回到矩形的左边从第二行开始显示,注意,显示指针

在从第一行的右边回到第二行的左边是需要一定的时间的,我们称之为行

切换;

D:如此类推,显示指针就这样一行一行的显示至矩形的右下角才把一副

图显示完成。因此,这一行一行的显示在时间线上看,就是时序图上的HSYNC;

E:然 而,LCD的显示并不是对一副图像快速的显示一下,为了持续和稳

定的在LCD上显示,就需要切换到另一幅图上(另一幅图可以和上一副图

一样或者不一样,目 的只是为了将图像持续的显示在LCD上)。那么这一

副一副的图像就称之为帧,在时序图上就表示为1 Frame,因此从时序图

上可以看出1 Line只是1 Frame中的一行;

F:同样的,在帧与帧切换之间也是需要一定的时间的,我们称之为帧切换,那么LCD整个显示的过程在时间线上看,就可表示为时序图上的VSYNC。

上面时序图上各时钟延时参数的含义如下:(这些参数的值,LCD产生厂商会提供相应的数据手册)

VBPD(vertical back porch):表示在一帧图像开始时,垂直同步信号以

后的无效的行数,对应驱动中的upper_margin;

VFBD(vertical front porch):表示在一帧图像结束后,垂直同步信号以

前的无效的行数,对应驱动中的lower_margin;

VSPW(vertical sync pulse width):表示垂直同步脉冲的宽度,用行数

计算,对应驱动中的vsync_len;

HBPD(horizontal back porch):表示从水平同步信号开始到一行的有效

数据开始之间的VCLK的个数,对应驱动中的left_margin;

HFPD(horizontal front porth):表示一行的有效数据结束到下一个水平

同步信号开始之间的VCLK的个数,对应驱动中的right_margin;

HSPW(horizontal sync pulse width):表示水平同步信号的宽度,用VCLK计算,对应驱动中的hsync_len;

对于以上这些参数的值将分别保存到REGBANK寄存器组中的

LCDCON1/2/3/4/5寄存器中:(对寄存器的操作请查看S3c2440数据手册LCD 部分)

LCDCON1:17 - 8位CLKVAL

6 - 5位扫描模式(对于STN屏:4位单/双扫、8位单扫)

4 - 1位色位模式(1BPP、8BPP、16BPP等)

LCDCON2:31 - 24位VBPD

23 - 14位LINEVAL

13 - 6位VFPD

5 - 0位VSPW

LCDCON3:25 - 19位HBPD

18 - 8位HOZVAL

7 - 0位HFPD

LCDCON4: 7 - 0位HSPW

LCDCON5:

4. 帧缓冲(FrameBuffer):

帧缓冲是Linux为显示设备提供的一个接口,它把一些显示设备描述成一个缓冲区,允许应用程序通过 FrameBuffer定义好的接口访问这些图形设备,从而不用去关心具体的硬件细节。对于帧缓冲设备而言,只要在显示缓冲区与显示点对应的区域写入颜色 值,对应的颜色就会自动的在屏幕上显示。下面来看一下在不同色位模式下缓冲区与显示点的对应关系:

上面是摘自https://www.doczj.com/doc/d38080696.html,/u3/101649/showart_2188364.html 简单描述了TFT LCD的工作原理

下面看看2440test里面的lcd.c文件

static void PutPixel(U32 x,U32 y,U16 c)

{

if(x

LCD_BUFFER[(y)][(x)] = c;

}

很容易发现TFT LCD上显示单个像素的函数实际上很简洁

看来似乎只需要LCD_BUFFER[(y)][(x)] = c这一句话

下面就来分析下,是如何通过这一句话来实现在LCD上显示单个像素的 先分析下LCD_Init()即LCD初始化函数

rLCDCON1 = (LCD_PIXCLOCK << 8) | (3 << 5) | (12 << 1); LCDCON1 0x4d000000

#define LCD_WIDTH 240

#define LCD_HEIGHT 320

#define LCD_PIXCLOCK 4

#define LCD_RIGHT_MARGIN 36

#define LCD_LEFT_MARGIN 19

#define LCD_HSYNC_LEN 5

#define LCD_UPPER_MARGIN 1

#define LCD_LOWER_MARGIN 5

#define LCD_VSYNC_LEN 1

CLKVAL[17:8] = 4

TFT: VCLK = HCLK / [(CLKVAL+1) * 2] ( CLKVAL>=0 )

MMODE[7] = 0

PNRMODE[6:5] = 11TFT LCD panel

BPPMODE[4:1] = 110016bpp for TFT

ENVID[0] = 0 Disable

rLCDCON2 = (LCD_UPPER_MARGIN << 24) | ((LCD_HEIGHT - 1) << 14) | (LCD_LOWER_MARGIN << 6) | (LCD_VSYNC_LEN << 0);

LCDCON2 0x4d000004

VBPD = 1

VBPD(vertical back porch):表示在一帧图像开始时,垂直同步信号以后的无效的行数,对应驱动中的upper_margin

LINVAL = 240 – 1

LINVAL:LCD屏的垂直大小

VFPD = 5

VFPD(vertical front porch):表示在一帧图像结束后,垂直同步信号以前的无效的行数,对应驱动中的lower_margin

VSPW = 1

VSPW(vertical sync pulse width):表示垂直同步脉冲的宽度,用行数计算,对应驱动中的vsync_len

rLCDCON3 = (LCD_RIGHT_MARGIN << 19) | ((LCD_WIDTH - 1) << 8) | (LCD_LEFT_MARGIN << 0);

LCDCON3 0x4d000008

HBPD = 36

HBPD(horizontal back porch):表示从水平同步信号开始到一行的有效数据开始之间的VCLK的个数,对应驱动中的left_margin

HOZVAL = 320 – 1

HOZVAL:LCD屏的水平大小

HFPD = 19

HFPD(horizontal front porth):表示一行的有效数据结束到下一个水平同步信号开始之间的VCLK的个数,对应驱动中的right_margin

rLCDCON4 = (13 << 8) | (LCD_HSYNC_LEN << 0);

LCDCON4 0x4d00000c

MVAL = 13

HSPW = 5

HSPW(horizontal sync pulse width):表示水平同步信号的宽度,用VCLK计算,对应驱动中的hsync_len

# define LCD_CON5 ((1<<11) | (1 << 9) | (1 << 8) | (1 << 3) | (1 << 0)) rLCDCON5 = LCD_CON5;

LCDCON5 0x4d000010

HWSWP = 1Swap Enable

PWREN = 1Enable PWREN signal

INVVFRAME = 1VFRAME/VSYNC pulse polarity Inverted 选择负极性脉冲

INVVLINE = 1 VLINE/HSYNC pulse polarity Inverted 选择负极性脉冲

FRM565 = 15:6:5 Format

rLCDINTMSK |= 3;

INT_FrSyn = 1LCD frame synchronized interrupt Masked

INT_FiCnt = 1LCD FIFO interrupt Masked

rTCONSEL &= (~7);

rTCONSEL &= ~((1<<4) | 1);

MODE_SEL = 0Sync mode

RES_SEL = 0 320 x 240

LPC_EN = 0LPC3600 Disable

rTPAL = 0x0;

Temporary palette register enable bit Disable

volatile static unsigned short LCD_BUFFER[SCR_YSIZE][SCR_XSIZE];

#define LCD_ADDR ((U32)LCD_BUFFER)

#define M5D(n) ((n)&0x1fffff)

rLCDSADDR1 = ((LCD_ADDR >> 22) << 21) | ((M5D(LCD_ADDR >> 1)) << 0);

rLCDSADDR2 = M5D((LCD_ADDR + LCD_WIDTH * LCD_HEIGHT * 2) >> 1);

rLCDSADDR3 = LCD_WIDTH;

LCDSADDR1 0x4d000014 帧缓冲起始寄存器1

LCDBANK[29:21] = (U32)LCD_BUFFER >> 22

These bits indicate A[30:22] of the bank location for the video buffer in the system memory. LCDBANK value cannot be changed even when moving the view port. LCD frame buffer should be within aligned 4MB region, which ensures that LCDBANK value will not be changed when

TFT-LCD液晶显示器的工作原理

TFT-LCD液晶显示器的工作原理 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程,只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

单片机之LCD显示原理

5.自制单片机之五LCD1602的驱动 LCD1602已很普遍了,具体介绍我就不多说了,市面上字符液晶绝大多数是基于HD44780液晶芯片的,控制原理是完全相同的,因此HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。字符型LCD通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样,定义如下表所示: 字符型LCD的引脚定义 HD44780内置了DDRAM、CGROM和CGRAM。 DDRAM就是显示数据RAM,用来寄存待显示的字符代码。共80个字节,其地址和屏幕的对应关系如下表: 也就是说想要在LCD1602屏幕的第一行第一列显示一个"A"字,就要向DDRAM的00H地址写入“A”字的代码就行了。但具体的写入是要按LCD模块的指令格式来进行的,后面我会说到的。那么一行可有40个地址呀?是的,在1602中我们就用前16个就行了。第二行也一样用前16个地址。对应如下: DDRAM地址与显示位置的对应关系 我们知道文本文件中每一个字符都是用一个字节的代码记录的。一个汉字是用两个字节的代码记录。在PC上我们只要打开文本文件就能在屏幕上看到对应的字符是因为在操作系统里和BIOS里都固化有字符字模。什么是字模?就代表了是在点阵屏幕上点亮和熄灭的信息数据。例如“A” 字的字模: 01110 ○■■■○ 10001 ■○○○■ 10001 ■○○○■ 10001 ■○○○■ 11111 ■■■■■ 10001 ■○○○■

10001 ■○○○■ 上图左边的数据就是字模数据,右边就是将左边数据用“○”代表0,用“■”代表1。看出是个“A”字了吗?在文本文件中“A”字的代码是41H,PC收到41H的代码后就去字模文件中将代表A字的这一组数据送到显卡去点亮屏幕上相应的点,你就看到“A”这个字了。 刚才我说了想要在LCD1602屏幕的第一行第一列显示一个"A"字,就要向DDRAM的00H地址写入“A”字的代码41H就行了,可41H这一个字节的代码如何才能让LCD模块在屏幕的阵点上显示“A”字呢?同样,在LCD模块上也固化了字模存储器,这就是CGROM和CGRAM。 HD44780内置了192个常用字符的字模,存于字符产生器CGROM(Character Generator ROM)中,另外还有8个允许用户自定义的字符产生RAM,称为CGRAM(Character Generator RAM)。下图说明了CGROM和CGRAM与字符的对应关系。 从上图可以看出,“A”字的对应上面高位代码为0100,对应左边低位代码为0001,合起来就是01000001,也就是41H。可见它的代码与我们PC中的字符代码是基本一致的。因此我们在向DDRAM写C51字符代码程序时甚至可以直接用P1='A'这样的方法。PC在编译时就把“A”先转为41H代码了。 字符代码0x00~0x0F为用户自定义的字符图形RAM(对于5X8点阵的字符,可以存放8组,5X10点阵的字符,存放4组),就是CGRAM了。后面我会详细说的。 0x20~0x7F为标准的ASCII码,0xA0~0xFF为日文字符和希腊文字符,其余字符码(0x10~0x1F及0x80~0x9F)没有定义。 那么如何对DDRAM的内容和地址进行具体操作呢,下面先说说HD44780的指令集及其设置说明,请浏览该指令集,并找出对DDRAM的内容和地址进行操作的指令。 共11条指令: 1.清屏指令 功能:<1> 清除液晶显示器,即将DDRAM的内容全部填入"空白"的ASCII码20H; <2> 光标归位,即将光标撤回液晶显示屏的左上方; <3> 将地址计数器(AC)的值设为0。 2.光标归位指令 功能:<1> 把光标撤回到显示器的左上方; <2> 把地址计数器(AC)的值设置为0; <3> 保持DDRAM的内容不变。

TFT LCD显示原理详解

TFT LCD显示原理详解 <什么是液晶> 我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一): 图(一) a:背景 两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。 图(六) b:TFT LCD显示原理 液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七) b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。下层的偏光板与上层偏光板, 角度也是恰好差异90度。所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。效果如图(七)中前两个图所示。 b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。 c:TFT-LCD驱动电路。 为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。最后,将驱动电路装配在TAB (自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。 d:TFT-LCD工作原理 首先介绍显示原理。液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。通过液晶层的光,则被逐渐扭曲。当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。这样,光线通过下偏振片形成亮场。加上电压以后,液晶在电场作用下取向,扭曲消失。这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。这就是TFT-LCD的简单工作原理

12864液晶显示图片原理(完整版)

51单片机综合学习 12864液晶原理分析1 辛勤学习了好几天,终于对12864液晶有了些初步了解~没有视频教程学起来真有些累,基本上内部程序写入顺序都是根据程序自我变动,然后逆向反推出原理…… 芯片:YM12864R P-1 控制芯片:ST7920A带中文字库 初步小结: 1、控制芯片不同,寄存器定义会不同 2、显示方式有并行和串行,程序不同 3、含字库芯片显示字符时不必对字符取模了 4、对芯片的结构地址一定要理解清楚

5、显示汉字时液晶芯片写入数据的顺序(即显示的顺序)要清楚 6、显示图片时液晶芯片写入数据的顺序(即显示的顺序)要清楚 7、显示汉字时的二级单元(一级为八位数据写入单元)要清楚 8、显示图片时的二级单元(一级为八位数据写入单元)要清楚 12864点阵液晶显示模块(LCM)就是由128*64个液晶显示点组成的一个128列*64行的阵列。每个显示点对应一位二进制数,1表示亮,0表示灭。存储这些点阵信息的RAM称为显示数据存储器。要显示某个图形或汉字就是将相应的点阵信息写入

到相应的存储单元中。图形或汉字的点阵信息由自己设计,问题的关键就是显示点在液晶屏上的位置(行和列)与其在存储器中的地址之间的关系。由于多数液晶显示模块的驱动电路是由一片行驱动器和两片列驱动器构成,所以12864液晶屏实际上是由左右两块独立的64*64液晶屏拼接而成,每半屏有一个512*8 bits显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1和CS2选择。显示点在64*64液晶屏上的位置由行号(line,0~63)与列号(column,0~63)确定。512*8 bits RAM中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8个液晶点的显示信息。

液晶屏原理

液晶屏原理 1.液晶显示器(LCD)目前科技信息产品都朝着轻、薄、短、小的目标发展,在计算机周边中拥有悠久历史的显示器产品当然也不例外。在便于携带与搬运为前题之下,传统的显示方式如CRT映像管显示器及LED显示板等等,皆受制于体积过大或耗电量甚巨等因素,无法达成使用者的实际需求。而液晶显示技术的发展正好切合目前信息产品的潮流,无论是直角显示、低耗电量、体积小、还是零辐射等优点,都能让使用者享受最佳的视觉环境。 2.液晶的诞生要追溯液晶显示器的来源,必须先从「液晶」的诞生开始讲起。在公元1888年,一位奥地利的植物学家,菲德烈.莱尼泽(Friedrich Reinitzer)发现了一种特殊的物质。他从植物中提炼出一种称为螺旋性甲苯酸盐的化合物,在为这种化合物做加热实验时,意外的发现此种化合物具有两个不同温度的熔点。而它的状态介于我们一般所熟知的液态与固态物质之间,有点类似肥皂水的胶状溶液,但它在某一温度范围内却具有液体和结晶双方性质的物质,也由于其独特的状态,后来便把它命名为「Liquid Crystal」,就是液态结晶物质的意思。不过,虽然液晶早在1888年就被发现,但是真正实用在生活周遭的用品时,却是在80年后的事情了。公元1968年,在美国RCA公司(收音机与电视的发明公司)的沙诺夫研发中心,工程师们发现液晶分子会受到电压的影响,改变其分子的排列状态,并且可以让射入的光线产生偏转的现象。利用此一原理,RCA公司发明

了世界第一台使用液晶显示的屏幕。尔后,液晶显示技术被广泛的用在一般的电子产品中,举凡计算器、电子表、手机屏幕、医院所使用的仪器(因为有辐射计量的考虑)或是数字相机上面的屏幕等等。令人玩味的是,液晶的发现比真空管或是阴极射线管还早,但世人了解此一现象的并不多,直到1962年才有第一本,由RCA研究小组的化学家乔.卡司特雷诺(Joe Castellano)先生所出版的书籍来描述。而与映像管相同的,这两项技术虽然都是由美国的RCA公司所发明的,却分别被日本的新力(Sony)与夏普(Sharp)两家公司发扬光大。 3.什么是液晶液晶显示器是以液晶材料为基本组件,由于液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以已经可以说是一个中间相。而要了解液晶的所产生的光电效应,我们必须来解释液晶的物理特性,包括它的黏性(visco-sity)与弹性(elasticity)和其极化性(polarizalility)。液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量不同的方向,应该有不同的效果。就好像是将一把短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,这表示着次黏性最低的流动方式,也是流动自由能最低的一个物理模型。此外,液晶除了有黏性的反应外,还具有弹性的反应,它们都是对于外加的力量,呈现了方向性的效果。也因此光线射入液晶物质中,必然会按照

TN型液晶显示器原理

?液晶的入门知识 ?LCD显示器概述 ?液晶显示器原理 ?HTPS LCD面板技术综观 ?薄膜晶体管液晶显示器技术 ?液晶显示器面板的分级 ?主流液晶面板的类型 ?液晶的多种应用途径探讨 ?LCD技术图文解说 ?LCD技术详细介绍 ?液晶的几种模式的工作原理 ?TFT-LCD液晶显示器的工作原理 ?LCM显示类型 ?液晶显示器鲜为人知的技术细节 ?关注液晶色彩技术指标 液晶的入门知识 2006-5-31 -------------------------------------------------------------------------------- 液晶的组成: LCD使用的液晶,一般是指混和液晶,由多种液晶单体及手性剂混和而成。 液晶的特性: TN液晶一般分子链较短,特性参数调整较困难,所以特性差别比较明显。STN液晶是通过STN显示数据模型,计算出所需的液晶分子长度,及其光学电学性能参数,然后化工合成多种分子链接构类似的具有不同极性分子基团的单体,互相调配成一个特性相似的系列液晶。不同系列的STN液晶往往具有完全不同的分子链,因此,不同系列的STN液晶除非制造商说明可以互相调配外,不能互相调配。 液晶分子中有带极性基团的和不带极性基团的,带极性基团分子的液晶单体主要决定混和液晶的阀值电压参数,不带极性基团分子的液晶单体主要决定混和液晶的折射率和清亮点。液晶中带极性基团的单体与不带极性基团的单体在静置条件下会出现同性异构体层析现象。 为了增加机器本身的待机时间和增强液晶显示器的驱动能力,液晶厂商开发了能满足低电压和低频率条件下使用的低阀值电压液晶。它具有以下特性: 低阀值电压液晶中带极性基团的单体与不带极性基团的单体在静置条件下出现同性异构体层析现象的时间更短。 更多的带极性基团的单体组份,也意味着液晶更容易结合水分子以及其它带极性的游离离子,从而降低了液晶的容抗电阻,从而引起漏电流和功耗的增大。 当极性液晶单体的分子链在紫外线激化后,极性分子基团容易互相缠绕形成中性分子团,变成非层列错向状态,因而造成阀值电压升高,对导向层的锚定作用不敏感,失去低电压驱动能力。

液晶显示原理

液晶显示原理 平板电视维修技术TFT液晶显示屏原理(5) 2010-03-29 12:45 液晶屏时序控制电路(T-CON)原理分析及维修 液晶屏时序控制电路(T-CON板) 一、概述 电视机已经诞生了近70年,在电视研制发明的过程中,发明了显示图像的显像管也就是我们常说的CRT,在这近70年中一直采用CRT作为电视机的图像 显示器件。电视信号的标准、组合、编码方式也是围绕CRT的显示方式进行。 在CRT上利用扫描按照一定的时间顺序逐行、逐点排列像素点,利用显示 屏上荧光粉的余晖最后形成我们眼睛能看到的图像。电视图像信号的像素信息 的传送也是按照RCT显示要求,按时间的顺序逐个传送的,也就是说,目前电 视传送的图像(像素)信号是一个按时间先后排列的串行的信号(后面文中提到的"串行信号"和"并行信号"是指像素信号的排列方式,并非数字信号bit位串行、并行的概念),在CRT电视机中,经过解调还原的图像信号直接加到CRT的阴极上就可以了,如图1所示。 图1 现在的液晶电视;是一种平板电视;采用了液晶显示屏作为图像的显示器件。和CRT显示屏不同的是:液晶显示屏是属于被动发光显示器件,屏幕本身 的像素点并不能主动发光,它只能作为光的开关,控制通过光通量的大小,液 晶屏的作用类似于电影胶片的作用,在重放图像时;图像信号在液晶屏上产生 类似电影胶片的图像;还必须有背光源才能有明亮的图像显现,图2所示。液 晶屏上的图像也是和CRT一样是由像素组合而成,而这种把CRT显示的信号转 换为液晶屏显示的信号电路就是本文要介绍的:时序控制电路(T-CON)。

图2 液晶屏上的图像虽然也是把像素点进行组合排列以形成图像,但是其排列 组合的方式完全不同于CRT的扫描成像方式了。它是一种矩阵的显示方式,图 3所示。结构特点是;在显示屏上;水平排列一排和垂直显示像素数相同的行 电极;垂直排列一排和水平显示像素相同的列电极。行电极线和列电极线相互 垂直;其交叉点就是一个像素点的位置(现在的16:9高清显示屏;水平行电极线有1080根;垂直列电极线有1920根)那么;这一个像素点的"点亮"就必须在这个像素点的行电极线和列电极线同时加电压,该点才会发光。另外和CRT还 不同的是;一行信号的像素排列;CRT是由左至右扫描按照时间顺序逐个排列;液晶是把一行信号的像素点同时出现在屏幕上;没有时间的先后,也就是对于 一行像素信号来说;CRT显示的是串行像素信号;液晶显示的是并行像素信号,如图3所示; 图3 由于CRT和液晶的显示方式不同,激励信号像素排列方式也不同,现在的 电视信号是为CRT扫描显示制定的标准,所以把现在的信号直接加到液晶屏上 显示图像肯定是不行的。就必须把原来供CRT显示使用的串行的图像信号转变 为并行的信号才能由液晶屏正常的显示图像;所以目前的采用液晶屏作为显示 器电视信号的电视机都有一个把串行像素信号转变为并行像素信号的专用电路;叫"时序控制电路";英语称为timing control缩语为T-CON所以我们简称为:"提康"板(外来语)。这个"时序控制电路"的位置在电视机图像输出和液晶屏之间,类似于原来CRT管尾的视放板的位置。对于这块"时序控制电路"前期的液 晶屏均安装在液晶屏的内部;和液晶屏、背光管及屏周边驱动电路制作为一个 整体,工艺水平比较高;屏不易拆开,这块"时序控制电路"板也不易损坏。所 以维修人员关注的不多。 现在国内的厂家,均把这一块"时序控制电路"移出在液晶屏外,和前端信 号处理板做在一起。我们在进行电路分析和维修也必须对这块电路进行分析和 判断。 二、时序控制器(T-CON)电路的组成

LCD显示原理

LCD Driver(液晶驱动器) 在单片机的应用中,人机界面占据相当重要的地位。人机界面主要包括事件输入和结果指示,事件输入包括键盘输入,通讯接口,事件中断等,结果指示包括LED/LCD显示、通讯接口、外围设备操作等。而在这些人机界面当中,LCD 显示技术由于其具有界面友好,成本较低等特点而在很多应用场合得以广泛应用。 我们在第一章SH6xxx单片机分类中就介绍过,LCD类单片机是SH6xxx单片机产品线的一个重要类别。 0.LCD的显示原理 在讲解LCD driver之前,我们先就LCD的显示原理作一简单的介绍。 LCD(Liquid Crystal Display)是利用液晶分子的物理结构和光学特性进行显示的一种技术。液晶分子的特性: 液晶分子是介于固体和液体之间的一种棒状结构的大分子物质; 在自然形态,具有光学各向异性的特点,在电(磁)场作用下,呈各向同性特点; 下面以直视型简单多路TN/STN LCD Panel(液晶显示面板)的基本结构介绍LCD 的基本显示原理,示意图如图1-1: 图1-1 LCD的基本显示原理

整个LCD Panel 由上下玻璃基板和偏振片组成,在上下玻璃之间,按照螺旋结构将液晶分子有规律的进行涂层。液晶面板的电极是通过一种ITO 的金属化合物蚀刻在上下玻璃基板上。如图所示,液晶分子的排列为螺旋结构,对光线具有旋旋旋光性,上下偏振片的偏振角度相互垂直。在上下基板间的电压为0时,自然光通过偏振片后,只有与偏振片方向相同的光线得以进入液晶分子的螺旋结构的涂层中,由于螺旋结构的的旋旋旋光性,将入射光线的方向旋转90度后照射到另一端的偏振片上,由于上下偏振片的偏振角度相互垂直,这样入射光线通过另一端的偏振片完全的射出,光线完全进入观察者的眼中,看到的效果就为白色。而在上下基板间的电压为一交流电压时,液晶分子的螺旋结构在电(磁)场的作用下,变成了同向排列结构,对光线的方向没有作任何旋转,而上下偏振片的偏振角度相互垂直,这样入射光线就无法通过另一端的偏振片射出,光线无法进入观察者的眼中,看到的效果就为黑色。这样通过在上下玻璃基板电极间施加不同的交流电压,即可实现液晶显示的两种基本状态亮(On)和暗(Off)。 在实际的液晶模以驱动电压中,有几个参数非常关键: 交流电压,液晶分子是需要交流信号来驱动的,长时间的直流电压加在液晶分子两端,会影响液晶分子的电气化学特性,引起显示模糊,寿命的减少,其破坏性为不可恢复; 扫描频率,直接驱动液晶分子的交流电压的频率一般在60~100Hz 之间,具体是依据LCD Panel 的面积和设计而定,频率过高,会导致驱动功耗的增加,频率过低,会导致显示闪烁,同时如果扫描频率同光源的频率之间有倍数关系,则显示也会有闪烁现象出现。 1-2 帧频(Frame)示意图 液晶分子是一种电压积分型材料,它的扭曲程度(透光性)仅仅和极板间电压的有效值有关,和充电波形无关。电压的有效值用COM/SEG 之间的电压差值的均方根VRMS 表示: []dt t V T RMS V T 2 )(1 )(∫= LCD 显示黑白(透光和不透光)的电压有效值的分界电压称为开启电压Vth,当电压有效值超过Vth,螺旋结构的旋光角度加大,透光率急剧变化,透明度急剧上升。反之,则透明度急剧下降。光线的透射率与交流电压的有效值的关系如图1-3:

LCD 原理及显示程序

在日常生活中,我们对液晶显示器并不陌生。液晶显示模块已作为很多电子产品的通过器件,如在计算器、万用表、电子表及很多家用电子产品中都可以看到,显示的主要是数字、专用符号和图形。在单片机的人机交流界面中,一般的输出方式有以下几种:发光管、LED数码管、液晶显示器。发光管和LED数码管比较常用,软硬件都比较简单,在前面章节已经介绍过,在此不作介绍,本章重点介绍字符型液晶显示器的应用。 在单片机系统中应用晶液显示器作为输出器件有以下几个优点: 显示质量高 由于液晶显示器每一个点在收到信号后就一直保持那种色彩和亮度,恒定发光,而不像阴极射线管显示器(CRT)那样需要不断刷新新亮点。因此,液晶显示器画质高且不会闪烁。 数字式接口 液晶显示器都是数字式的,和单片机系统的接口更加简单可靠,操作更加方便。体积小、重量轻 液晶显示器通过显示屏上的电极控制液晶分子状态来达到显示的目的,在重量上比相同显示面积的传统显示器要轻得多。 功耗低 相对而言,液晶显示器的功耗主要消耗在其内部的电极和驱动IC上,因而耗电量比其它显示器要少得多。 10.8.1 液晶显示简介 ①液晶显示原理 液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,有电

就有显示,这样即可以显示出图形。液晶显示器具有厚度薄、适用于大规模集成电路直接驱动、易于实现全彩色显示的特点,目前已经被广泛应用在便携式电脑、数字摄像机、PDA移动通信工具等众多领域。 ②液晶显示器的分类 液晶显示的分类方法有很多种,通常可按其显示方式分为段式、字符式、点阵式等。除了黑白显示外,液晶显示器还有多灰度有彩色显示等。如果根据驱动方式来分,可以分为静态驱动(Static)、单纯矩阵驱动(Simple Matrix)和主动矩阵驱动(Active Matrix)三种。 ③液晶显示器各种图形的显示原理: 线段的显示 点阵图形式液晶由M×N个显示单元组成,假设LCD显示屏有64行,每行有128列,每8列对应1字节的8位,即每行由16字节,共16×8=128个点组成,屏上64×16个显示单元与显示RAM区1024字节相对应,每一字节的内容和显示屏上相应位置的亮暗对应。例如屏的第一行的亮暗由RAM区的000H——00FH的16字节的内容决定,当(000H)=FFH时,则屏幕的左上角显示一条短亮线,长度为8个点;当(3FFH)=FFH时,则屏幕的右下角显示一条短亮线;当(000H)=FFH,(001H)=00H,(002H)=00H,……(00EH)=00H,(00FH)=00H时,则在屏幕的顶部显示一条由8段亮线和8条暗线组成的虚线。这就是LCD显示的基本原理。字符的显示 用LCD显示一个字符时比较复杂,因为一个字符由6×8或8×8点阵组成,既要找到和显示屏幕上某几个位置对应的显示RAM区的8字节,还要使每字节的不同位为“1”,其它的为“0”,为“1”的点亮,为“0”的不亮。这样一来就组成

点阵LCD的显示原理(12864)

点阵LCD的显示原理 在数字电路中,所有的数据都是以0和1保存的,对LCD控制器进行不同的数据操作,可以得到不同的结果。对于显示英文操作,由于英文字母种类很少,只需要8位(一字节)即可。而对于中文,常用却有6000以上,于是我们的DOS前辈想了一个办法,就是将ASCII表的高128个很少用到的数值以两个为一组来表示汉字,即汉字的内码。而剩下的低128位则留给英文字符使用,即英文的内码。 那么,得到了汉字的内码后,还仅是一组数字,那又如何在屏幕上去显示呢?这就涉及到文字的字模,字模虽然也是一组数字,但它的意义却与数字的意义有了根本的变化,它是用数字的各位信息来记载英文或汉字的形状,如英文的'A'在字模的记载方式如图1所示: 图1 “A”字模图 而中文的“你”在字模中的记载却如图2所示: 图2 “你”字模图 12864点阵型LCD简介

12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128×64全点阵液晶显示器组成。可完成图形显示,也可以显示8×4个(16×16点阵)汉字。 管脚号管脚名称LEVER 管脚功能描述 1 VSS 0 电源地 2 VDD +5.0V 电源电压 3 V0 - 液晶显示器驱动电压 4 D/I(RS) H/L D/I=“H”,表示DB7∽DB0为显示数据 D/I=“L”,表示DB7∽DB0为显示指令数据 5 R/W H/L R/W=“H”,E=“H”数据被读到DB7∽DB0 R/W=“L”,E=“H→L”数据被写到IR或DR 6 E H/L R/W=“L”,E信号下降沿锁存DB7∽DB0 R/W=“H”,E=“H”DDRAM数据读到DB7∽DB0 7 DB0 H/L 数据线 8 DB1 H/L 数据线 9 DB2 H/L 数据线 10 DB3 H/L 数据线 11 DB4 H/L 数据线 12 DB5 H/L 数据线 13 DB6 H/L 数据线 14 DB7 H/L 数据线 15 CS1 H/L H:选择芯片(右半屏)信号 16 CS2 H/L H:选择芯片(左半屏)信号 17 RET H/L 复位信号,低电平复位 18 VOUT -10V LCD驱动负电压 19 LED+ - LED背光板电源 20 LED- - LED背光板电源 表1:12864LCD的引脚说明 在使用12864LCD前先必须了解以下功能器件才能进行编程。12864内部功能器件及相关功能如下:1. 指令寄存器(IR) IR是用于寄存指令码,与数据寄存器数据相对应。当D/I=0时,在E信号下降沿的作用下,指令码写入IR。 2.数据寄存器(DR) DR是用于寄存数据的,与指令寄存器寄存指令相对应。当D/I=1时,在下降沿作用下,图形显示数据写入DR,或在E信号高电平作用下由DR读到DB7∽DB0数据总线。DR和DDRAM之间的数据传输是模块内部自动执行的。

液晶显示基本原理

浅谈液晶显示基本原理 【作者单位】:桂林电子中等专业学校 【摘要】:我们通过电路控制液晶盒是否加电,就会引起出射光线的光强的变化,从而转化为人眼的视觉变化,达到显示的目的。LCD的彩色显示一般采用加 滤色片的办法实现,也就是在每个液晶像素单元中的液晶盒与前检偏器之 间加一块彩色滤光片。彩色滤光片具有红绿蓝三种颜色的彩色滤光,把邻 近的三个R、G、B显示的点当作一个像素的基本单位,通过空间相加混合, 这个像素就可以拥有不同的彩色变化。液晶本身不会发光,它需要背光来 照明,因此背光的亮度大小就决定了显示器的亮度。液晶求救的态度问题 可以通过从时间、空间、脉冲、幅度方面调制来实现。对于非标称分辨率 的信号,一般有两种处理方式:居中显示和扩展显示。将非标称分辨率的 信号变换为标称分辨率的信号,保证液晶屏能显示。 【关键词】:液晶盒、像素、光通量、背光、分辨率 一、液晶显示的机理 液晶盒不加电时透光

液晶盒加电时遮光 原理总结:我们通过电路控制液晶盒是否加电,就会引起出射光线的光强的变化,从而转化为人眼的视觉变化,达到显示的目的。 两个问题: LCD屏加电遮光、不加电透光有什么好处? LCD显示器不工作时,可以用黑屏作屏保吗? 二、液晶如何显示彩色 LCD的彩色显示,我们一般采用加滤色片的办法实现,也就是在每个液晶像素单元中的液晶盒与前检偏器之间加一块彩色滤光片。 彩色滤光片其实是一片很多电晶体的玻璃,具有红绿蓝三种颜色的彩色滤光,这R、G、B三种颜色分成独立的三个点,各自拥有不同的灰度变化,然后把邻近的三个R、G、B显示的点当作一个像素的基本单位,通过空间相加混合,这个像素就可以拥有不同的彩色变化。

LCD液晶屏显示原理

LCD液晶显示器的工作原理??? 一)液晶的物理特性 液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透。从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。 (二)单色液晶显示器的原理 LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。 LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。 LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。总之,加电将光线阻断,不加电则使光线射出。 然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。但由于计算机屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。 从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。背光板发出的光线在穿过第一层

点阵LCD的显示原理(仅供参考)

本资料仅供参考 点阵LCD的显示原理 在数字电路中,所有的数据都是以0和1保存的,对LCD控制器进行不同的数据操作,可以得到不同的结果。对于显示英文操作,由于英文字母种类很少,只需要8位(一字节)即可。而对于中文,常用却有6000以上,于是我们的DOS前辈想了一个办法,就是将ASCII表的高128个很少用到的数值以两个为一组来表示汉字,即汉字的内码。而剩下的低128位则留给英文字符使用,即英文的内码。 那么,得到了汉字的内码后,还仅是一组数字,那又如何在屏幕上去显示呢?这就涉及到文字的字模,字模虽然也是一组数字,但它的意义却与数字的意义有了根本的变化,它是用数字的各位信息来记载英文或汉字的形状,如英文的'A'在字模的记载方式如图1所示: 图1 “A”字模图 而中文的“你”在字模中的记载却如图2所示:

图2 “你”字模图 12864点阵型LCD简介 12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128×64全点阵液晶显示器组成。可完成图形显示,也可以显示8×4个(16×16点阵)汉字。 管脚号管脚名称LEVER 管脚功能描述 1 VSS 0 电源地 2 VDD +5.0V 电源电压 3 V0 - 液晶显示器驱动电压 4 D/I(RS) H/L D/I=“H”,表示DB7∽DB0为显示数据 D/I=“L”,表示DB7∽DB0为显示指令数据 5 R/W H/L R/W=“H”,E=“H”数据被读到DB7∽DB0 R/W=“L”,E=“H→L”数据被写到IR或DR 6 E H/L R/W=“L”,E信号下降沿锁存DB7∽DB0 R/W=“H”,E=“H”DDRAM数据读到DB7∽DB0 7 DB0 H/L 数据线 8 DB1 H/L 数据线 9 DB2 H/L 数据线 10 DB3 H/L 数据线 11 DB4 H/L 数据线 12 DB5 H/L 数据线 13 DB6 H/L 数据线 14 DB7 H/L 数据线 15 CS1 H/L H:选择芯片(右半屏)信号 16 CS2 H/L H:选择芯片(左半屏)信号 17 RET H/L 复位信号,低电平复位 18 VOUT -10V LCD驱动负电压 19 LED+ - LED背光板电源 20 LED- - LED背光板电源 表1:12864LCD的引脚说明在使用12864LCD前先必须了解以下功能器件才能进行编程。12864内部功能器件及相关功能如下: 1. 指令寄存器(IR) IR是用于寄存指令码,与数据寄存器数据相对应。当D/I=0时,在E信号下降沿的作用下,指令码写入IR。 2.数据寄存器(DR) DR是用于寄存数据的,与指令寄存器寄存指令相对应。当D/I=1时,在下降沿作用下,图形显示数据写入DR,或在E信号高电平作用下由DR读到DB7∽DB0数据总线。DR和DDRAM之间的数据传输是模块内部自动执行的。

液晶显示原理考试题

液晶显示原理考试题

选择题 1.液晶显示控制器的核心部件:(B ) A.接口部 B.控制部 C.指令集 D.驱动部 2.液晶分子受到外力作用时会发生三种基本畸变,下列选项不属于这三种畸变的是:(C ) A.展曲形变 B.弯曲形变 C.焦锥形变 D.扭曲形变 3.下列哪些选项不是正偏光显微镜下液晶的结构:( D ) A. 焦锥结构 B. 平面结构 C. 指纹结构 D. 螺旋结构 4.人的各种感觉器官从外界获取信息量最大的是:( C ) A. 味觉 B. 听觉 C. 视觉 D. 触觉 5.对于自然光其偏振度P是:(A ) A. 0 B. 1 C. D. 无法确定 6.对于完全偏正光其偏振度为:(B ) A. 0 B. 1 C. D. 无法确定 7.下列不是产生线性偏振光的方法() A. 反射和折射 B. 双折射 C. 二向色性 D.衍射

8.对于线性偏正光加上41波片,出射光是() A. 线性偏振光 B. 圆偏振光 C.椭圆偏振光 D. 部分偏振光 9.下列表达式不是有序度的表达式:( D ) A.sol sol S ⊥⊥ --=χχχχ// // B.sol sol S ⊥ ⊥ --=αααα // // C.⊥ ⊥ +-=d d d d S 2//// D.1 2cot 23121-? ? ? ??-+-=βN N S 10.对于正性液晶,则o e n n >,则o 光对应的是快轴, 对于光矢量沿x 轴的振幅为0 E 的线性偏振光,光矢量归一化琼斯矢量为:(A ) A. ?? ? ???01 B. ?? ????10 C. ?? ????2222 D. ?? ????2321 11.对于左旋圆偏振光,归一化琼斯矢量为:(B ) A. ?? ????-i 121 ?? ?i 1 C. ?? ????112 1 D. ?? ????-112 1 12.对于线性偏振器件,透光轴与x 轴成G π θ=,则根 据表达式??? ? ??=θθθθ 2 2 12 12sin ) 2sin()2(sin cos G ,可得其琼斯矩阵为: ( )

LCD液晶显示屏工作原理

LCD 液晶显示屏工作原理 一、工作原理和概念术语 1、液晶显示屏的工作原理 液晶(Liquid Crystal ):是一种介于固态和液态之间的具有规则性分子排列,及晶体的光学各向异性的有机化合物,液晶在受热到一定温度的时候会呈现透明状的液体状态,而冷却则会出现结晶颗粒的混浊固体状态,因为物理上具有液体与晶体的特性,故称之为“液晶”。 液晶显示器LCD (Liquid Crystal Display ):是新型平板显示器件。显示器中的液晶体并不发光,而是控制外部光的通过量。当外部光线通过液晶分子时,液晶分子的排列扭曲状态不同,使光线通过的多少就不同,实现了亮暗变化,可重现图像。液晶分子扭曲的大小由加在液晶分子两边的电压差的大小决定。因而可以实现电到光的转换。即用电压的高低控制光的通过量,从而把电信号转换成光像。 (1)、液晶分子的电-光特性(如图2-1所示) (2)、液晶的电光控制特性(如图2-2所示) (a) (光 光控制电压010 9050%液晶显示器的电光特性(常暗模式) 101009050%b )液晶显示器的电光特性(常亮模式) 液晶显示器的电光控制特性 图中Uth —阈值电压(临界电压);Usat —饱和电压 透过率透过率控制电压 图2-1液晶的电-光特性图 图2-2 旋光性

(3)、 液晶分子排列状态的改变可实现对光的控制 液晶分子在偏光板间排列成多层,在不同层间, 液晶分子的长轴沿偏光板平行平面连续扭转90°,与偏光板的偏振光方向一致的偏振光,垂直射向无外加电场的液晶分子时,入射光将因其偏振方向随液晶分子轴的扭曲而旋转射出。故称为扭曲向列型液晶显示器。 当给液晶层施以某一电压差时,液晶分子会改变它的初始排列状态而不扭转,不改变光的极化方向,因此经过液晶的光会被第二层偏光片吸收而整个结构呈现不透光的状态。 2、概念和术语 (1)、光学的各向异性 液晶的特有性质,改变液晶两端电压,可改变液晶某一方向折射出的光的大小 (2)、偏振片(器) 只能在特定方向上透过光线的器件 (3)、像素、子像素、节距、分辨率(如图2-3所示) (4)、视角 当背光源的入射光通过偏极片、液晶后,输出光便具备了特定的方向特性,假如从一个非常斜的角度观看一个全白的画面,我们可能会看到黑色或是色彩失真。这个效应在某些场合有用,但在大部分的应用上是我们不希望要的。制造商们已经花了很多时间来试图改善液晶显示器的视角特性,有数种广视角技术被提出:IPS(IN-PLANE -SWITCHING 、MVA(MULTI-DOMAIN VERTICAL ALIGNMENT)、TN+FILM 。 这些技术都能把液晶显示器的视角增加到160度,甚至更多,就如同CRT 屏幕的视角特性一样。最大视角的定义是对比值至少能达到10:1的视角(通常有四个方向,上/下/左/右),如图2-4。 平板显示器的象素结构 绿、蓝三个组成一个像1024 列) 图2-3 平板显示器的像素结构 水平视角 显示器件的视角 图2-4 显示器件的视角

LCD显示功能原理

LCD显示功能原理 1 英文字母和字符显示的实现 1.1 LCD 模块显示一个点 1.2显示英文字母和字符 2 汉字显示的实现 2.1 汉字的点阵码 2.2中文文档的存储方式 2.3中文字库的作用 3 图像显示的实现 3.1 BMP文件的大致组成 3.2 读取BMP文件的思路 用户如要点亮 LCD 屏上的某一个点时,实际上就是对该点所对应的显示RAM 区中的某一个位进行置 1 操作;所以就要确定该点所处的行地址、列地址。 1 英文字母和字符显示的实现 1.1 LCD 模块显示一个点 点阵 LCD的特点就是以点的形式呈现用户想要显示的图形,故点阵 LCD 又有称之为图形点阵 LCD;通常在编写一个 LCD模块的驱动程序时,最基本的功能是绘制一个具体指定点,只有在这样的功能的基础之上,才能通过各个点的组合,呈现出点阵的图形。其实,绘制一个指定位置的点,也就是将显存当中的对应该点的数据位进行操作;在前面的LCD 显示RAM区映射介绍当中,可以得知显存当中的数据与LCD屏幕上的点的对应关系,这样就可以在程序当中通过简单的换算而有序的控制 LCD屏上的点的显示了。 1.2显示英文字母和字符 在实际应用中,通常用一个数组保存字母和字符点阵。以16×8点阵为例,用16×8个点阵表示一个字符,例如显示字符‘1’,象素需要显示的地方用*表示,否则为空白,这样,一个字符‘1’就显示出来。把这个点阵用十六进制的形式表示出来,字符1所对应的点阵是: 0x00,0x00,0x18,0x38,0x78,0x18,0x18,0x1, 0x18,0x18,0x18,0x7e,0x00,0x00,0x00,0x00, 在把字符送LCD缓冲区显示的时候,由于在缓冲区中是用一个字节表示一个象素,而字库中的一个位表示一个象素,即字库中一个字节对应缓冲区的八个字节,所以在送入缓冲区之前必须对字库进行必要的调整。具体方法是在显示一个象素之前,先把这个位右移到字节的最低位,然后屏蔽除此象素点的其它七位,再乘这个象素要显示的颜色,最后把调整后的数据送入对应的缓冲区。例如:假

相关主题
文本预览
相关文档 最新文档