当前位置:文档之家› 空调系统中_PAU、MAU、AHU、DCC、RCU、DDC、FCU_的区别(1)

空调系统中_PAU、MAU、AHU、DCC、RCU、DDC、FCU_的区别(1)

空调系统中_PAU、MAU、AHU、DCC、RCU、DDC、FCU_的区别(1)
空调系统中_PAU、MAU、AHU、DCC、RCU、DDC、FCU_的区别(1)

空调系统中 PAU、MAU、AHU、DCC、RCU、DDC、FCU 的区别

AHU(Air Handle Unit)组合式空调箱:主要是抽取室内空气(return air) 和部份新风以控制出风温度和风量来并维持室内温度。

PAU(Pre-Cooling Air Handling Unit)预冷空调箱: Primary Air Unit 对室外新风进行预处理,在送至风机盘管(FCU)。

RCU(Recycled airhandling unit)循环空调箱。

MAU(Make-up Air Unit)全新风机组: 是提供新鲜空气的一种空气调节设备。功能上按使用环境的要求可以达到恒温恒湿或者单纯提供新鲜空气。工作原理是在室外抽取新鲜的空气经过除尘、除湿(或加湿)、降温(或升温)等处理后通过风机送到室内,在进入室内空间时替换室内原有的空气。当然以上所提到的功能得根据使用环境的需求来定,功能越齐全造价越高。

DCC(Dry Cooling Coil) 干式冷却盘管(简称为干盘管或干冷盘管):是用来消除室内的显热的。

HEPA (High efficiency particulate air Filter),中文意思为高效过滤器,达到 HEPA 标准的过滤网,对于 0.1 微米和 0.3 微米的有效率达到 99.998%, HEPA 网的特点是空气可以通过,但细小的微粒却无法通过。它对直径为 0.3 微米(头发直径 1/200)以上的微粒去除效率可达到 99.7%以上,是烟雾、灰尘以及细菌等污染物最有效的过滤媒介。(抽烟产生的烟雾颗粒直径为 0.5 微米)它是国际上公认的高效过滤材料。经广泛运用于手术室、动物实验室、晶体实验和航空等高洁净场所。

FCU (File Control Unit)风机盘管:Fan Control Unit 风机盘管是空调系统的末端装置,其工作原理是机组内不断的再循环所在房间的空气,使空气通过冷水(热水)盘管后被冷却(加热),以保持房间温度的恒定。主要依靠风机的强制作用,使空气通过加热器表面时被加热,因而强化了散热器与空气间的对流换热器,能够迅速加热房间的空气。

变风量空调系统(VAV)控制原理:变风量控制器和房间温控器一起构成室内串级控制,采用室内温度为主控制量,空气流量为辅助控制量。变风量控制器按房间温度传感器检测到的实际温度,与设定温度比较差值,以此输出所需风量的调整信号,调节变风量末端的风阀,改变送风量,使室内温度保持在设定范围。同时,风道压力传感器检测风道内的压力变化,采用PI或者PID调节,通过变频器控制变风量空调机送风机的转速,消除压力波动的影响,维持送风量。

空调自动化控制原理.

空调自动化控制原理说明 自动化系统是智能建筑的一个重要组成部分。楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。空调机组内有大功率的风机,但它的能耗很大。在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。以下将从控制策略角度对与监控系统相关的问题作简要讨论。 2 空调系统的基本结构及工作原理 空调系统结构组成一般包括以下几部分[2] [3]:

(1) 新风部分 空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。 (2) 空气的净化部分 空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。 (3) 空气的热、湿处理部分 对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置

空调工作原理及电路控制详解

空调工作原理及电路控制详解 近年来,我国空调器产业的发展十分迅猛,2000年我国空调行业的生产规模便已经发展到1800万台左右,2003年度我国家用空调器行业的总生产能力已超过4000万台,2004年度这一数据已经扩大到了5500万台。目前,中国的空调器产量已占世界总产量的3/5左右,中国已成为名副其实的空调器制造大国,也正在逐渐成为全球空调器生产基地。在过去的五年中,中国空调器行业的工业总产值和销售收入都经历了持续的增长,其中2001年度、2003年度和2004年度的增长尤为显著。 此外,近年来,百户城市居民家庭的空调器拥有量每年都有显著提高。空调拥有量在各地区差异较大。随着国内市场的扩大, 中国的空调器出口也在连年迅速增长,空调器出口额占家电产品出口总额的份额也在不断提高。2002年度、2003年度和2004年度我国空调产品的出口保持了十分强劲的增长势头,其中2003年度国内空调企业的出口额首次突破千万台大关,超过了1400台。2004年度国内空调器企业的出口量更是超过了2300万台,与国内销量形成了齐头并进的格局。这篇文章的主要目的是希望能够大力推动SPMC65系列芯片的应用,并根据国家标准验证其性能,走进国内各家电生产厂家。 1 空调工作原理 (1)制冷原理 图 1-1空调制冷原理 空调制冷原理如图 1?1所示,空调工作时,制冷系统内的低压、低温制冷剂蒸汽被压缩机吸入,经压缩为高压、高温的过热蒸汽后排至冷凝器;同时室外侧风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压、高温的制冷剂蒸汽凝结为高压液体。高压液体经过节流毛细管降压降温流入蒸发器,并在相应的低压下蒸发,吸取周围热量;同时室内侧风扇使室内空气不断进入蒸发器的肋片间进行热交换,并将放热后的变冷的气体送向室内。如此,室内外空气不断循环流动,达到降低温度的目的。(2)制热原理

暖通空调系统介绍

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 暖通空调系统介绍 好的工作环境,要求室内温度适宜,湿度恰当,空气洁净。暖通空调系统 就是为了营造良好的工作环境,并对大厦大量暖通空调设备进行全面管理 而实施的监控。暖通空调系统的监控内容如下:空调系统的监控 1)新风机组的监控新风机组中空气水换热器,夏季通入冷水对新风降温 除湿,冬季通入热水对空气加热,干蒸汽加湿器用于冬季对新风加湿。对 新风机组进行监控的要求如下: (1)检测功能:监视风机电机的运行/停止状态;监测风机出口空气温、 湿度参数;监测新风过滤器两侧压差,以了解过滤器是否需要更换;监视 新风阀打开/关闭状态; (2)控制功能:控制风机启动/停止;控制空气热水换热器水侧调节阀, 使风机出口温度达到设定值;控制干蒸汽加湿器阀门,使冬季风机出口空 气湿度达到设定值。 (3)保护功能:冬季当某种原因造成热水温度降低或热水停供时,应停止风机,并关闭新风阀门,以防机组内温度过低冻裂空气水换热器;当热水 恢复正常供热时,应能启动风机,打开新风阀,恢复机组正常工作。 (4)集中管理功能:智能大楼各机组附近的DDC控制装置通过现场总线与相应的中央管理机相连,于是可以显示各机组启/停状态,送风温、湿度、各阀门状态值;发出任一机组的启/停控制信号,修改送风参数设定值;任一新风机组工作出现异常时,发出报警信号。 2)空调机组的监控空调机组的调节对象是相应区域的温、湿度,因此送入装置的输入信号还包括被调区域内的温湿度信号。当被调区域较大时,应 安装几组温、湿度测点,以各点测量信号的平均值或重要位置的测量只值 作为反馈信号;若被调区域与空调机组DDC 装置安装现场距离较远时,可

空调原理及系统组成

空调原理及系统组成传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5?天前上传 下载附件 (25.41 KB) 如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。 一般空调构成及循环

5?天前上传 下载附件 (26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量; 蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。 5?天前上传 下载附件 (44.75 KB) 空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。 空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。 5?天前上传 下载附件 (25.14 KB) 空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外

机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5?天前上传 下载附件 (29.81 KB) 空调的第三个部件压缩机,压缩机起到的作用如下: 来自蒸发器的低温低压的冷媒气体被压缩机压缩成高温高压的气体进入冷凝器。 冷媒向空气放热,由气态转化为液态,这一过程,实际需要做功,做功这一过程由压缩机来完成。 这一过程中压缩机压缩和输送制冷剂蒸汽(工作过程),通过做功后冷凝器再将热量带到室外。 5?天前上传 下载附件 (38.94 KB) 空调的第四个部件膨胀阀 膨胀阀---对制冷剂节流降压,并调节进入蒸发器的制冷剂流量,高温高压的液体变为低温低压液体膨胀阀通过感应器感应蒸发器出口温度,如果出口过热度偏高,表示蒸发器热负荷偏大,则膨胀阀阀门调节开启变大,制冷剂流量按比例增加。反之,蒸发器出口温度偏低,膨胀阀会逆向关小减少制冷剂流向蒸发器的流量,从而实现减小制冷量。通过膨胀阀的控制,实现空调制冷的动态平衡。 5?天前上传

空调工作原理及电路控制详解

空调工作原理及电路控 制详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

空调工作原理及电路控制详解 近年来,我国空调器产业的发展十分迅猛,2000年我国空调行业的生产规模便已经发展到1800万台左右,2003年度我国家用空调器行业的总生产能力已超过4000万台,2004年度这一数据已经扩大到了5500万台。目前,中国的空调器产量已占世界总产量的3/5左右,中国已成为名副其实的空调器制造大国,也正在逐渐成为全球空调器生产基地。在过去的五年中,中国空调器行业的工业总产值和销售收入都经历了持续的增长,其中2001年度、2003年度和2004年度的增长尤为显着。 此外,近年来,百户城市居民家庭的空调器拥有量每年都有显着提高。空调拥有量在各地区差异较大。随着国内市场的扩大, 中国的空调器出口也在连年迅速增长,空调器出口额占家电产品出口总额的份额也在不断提高。2002年度、2003年度和2004年度我国空调产品的出口保持了十分强劲的增长势头,其中2003年度国内空调企业的出口额首次突破千万台大关,超过了1400台。2004年度国内空调器企业的出口量更是超过了2300万台,与国内销量形成了齐头并进的格局。这篇文章的主要目的是希望能够大力推动SPMC65系列芯片的应用,并根据国家标准验证其性能,走进国内各家电生产厂家。 1 空调工作原理 (1)制冷原理 图 1-1空调制冷原理 空调制冷原理如图 1?1所示,空调工作时,制冷系统内的低压、低温制冷剂蒸汽被压缩机吸入,经压缩为高压、高温的过热蒸汽后排至冷凝器;同时室外侧风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压、高温的制冷剂蒸汽凝结为高压液体。高压液体经过节流毛细管降压降温流入蒸发器,并在相应的低压下蒸发,吸取周围热量;同时室内侧风扇使室内空气不断进入蒸发器的肋片间进行热交换,并将放热后的变冷的气体送向室内。如此,室内外空气不断循环流动,达到降低温度的目的。 (2)制热原理

中央空调系统组织结构

中央空调系统组成 一、前言 我国是一个人均能源相对贫乏的国家,人均能源占有量不足世界水平的一半,随着我国经济的快速发展,我国已成为世界第二耗能大国,但能源使用效率普通偏低, 造成电能浪费现象十分严重。尽管我国电网总装机容量和发电量快速扩容,但仍赶不上用电量增加的速度,供电形势严峻, 节能节电已迫在眉睫。 中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。 随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能目的提供了可靠的技术条件。 二、问题的提出 1、原系统简介 中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵和冷却水泵各有3台,型号均为TS-200-150315,扬程32米,配用功率37KW。均采用两用一备的方式运行。冷却塔3台,风扇电机7.5KW,并联运行。 2、原系统的运行及存在问题 由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y—△起动方式,电机的起动电流均为其额定电流的3—4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量和备件费用。 另外,由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常遇到各种想不到的问题造成不少人力资源的浪费。本人提出:“利用变频器、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能。” 三、节能改造的可行性分析 改造方案主要有:方案一是通过关小水阀门来控制流量,经测试达不到节能效果。且控制不好会引起冷冻水未端压力偏低,造成高层用户温度过高,也常引起冷却水流量偏小,造成冷却水散热不够,温度偏高;方案二是根据制冷主机负载较轻时实行间歇停机,但再次起动主机时,主机负荷较大,实际上并不省电,且易造成空调时冷时热,令人产生不适感;方案三是采用变频器调速,由人工根据负荷轻重调整变频器的频率,这种方法人为因素较大,虽然投资较小,但达不到最大节能效果;方案四是通过变频器、PLC、数模转换模块、温度模块和温度传感器等构成温差闭环自动控

冷梁空调系统简介汇总

冷梁空调系统
主动型冷梁空调系统 巴科尔主动型冷梁系统是一种集制冷、供热和通风功能为一体的空调系统,它能够提供良好的室内气候 环境及单独区域的控制。一次风主要用来对消除室内湿负荷,同时也可以供热、供冷和保证新风;末端 换热盘管用来进行室内热/冷负荷的处理。图 1 为主动型冷梁空调系统示意图。冷梁系统集高舒适度、低 噪音、节能和低维护的优点于一体。主要包括标准主动型冷梁、多功能组合式冷梁、玄关吊顶式安装的 水平诱导单元、地板式诱导单元等几种型式,以满足不同建筑美观及功能的需求。 图 2 为主动型冷梁末端工作原理图。从中央空气处理机组(AHU)送到主动型冷梁末端的空气被称之 为一次风。一次风以恒定风量和相对较低的静压条件被送至冷梁末端。一次风通过末端单元内的一排喷 嘴(可调节)送入混合腔体内,通过喷嘴的高速气流在混合腔内产生负压区域,从而诱导室内空气经过 换热盘管后与一次风混合,然后经出风口送入房间内。
图 1 主动型冷梁空调系统示意图
图 2 主动型冷梁末端工作原理图
系统能得到实实在在的能源节约,因为在换热盘管中使用相对较高温度的冷水,这可以在初投资和 冷水主机的运行成本上得到很大的节约。同时它能保证末端换热盘管在干工况下工作,避免出现和其它 系统一样因为冷凝水而带来的维护和卫生方面的问题,譬如风机盘管系统的冷凝水问题。输送的风量大 大减少从而节省了风机能量,因为该系统不依靠空气来弥补显热负荷,这可以使得一次风的需求量可以 减少到仅用来进行通风、湿度控制和诱导室内回风气流。因为它节能的特点,这个系统在欧洲变得越来 越普及。 同时还因为它气流需求量很低, 所以能使用 100%的新风作为一次送风来源, 可以提高空气品质, 因此该系统很适合用于医院或者医疗场所等需要减少空气流通而交叉感染的场所。 巴科尔有全系列的主动型冷梁, 它们的名义标准宽度为 300mm 和 600mm, 长度为 1200~3000mm, 能与市场大多数的吊顶天花配置互相匹配。巴科尔的冷梁使用特殊喷嘴组合技术来使得每个冷梁的制冷 能力可以单独改变。

中央空调系统的构成及工作原理

中央空调系统的构成及工作原理 中央空调系统的组成如图1所示。 它主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。 各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 图1 中央空调系统的组成 注:T为环境温度,即室外温度,四季不同,夏天可达35℃。 中央空调工作原理 户式中央空调--工作原理一户式中央空调的分类 ☆风管机 一台定频室外机,一台定频室内机,通过风管把冷热风送至每个房间,可方便将室外新风引入;对空气进行加湿等集中处理也较容易,是廉价的机器,设计合理每个房间的噪声仅增加1~3分贝,卧室不必吊顶,每个房间在可高于主温控器设定的温度以上,对温度进行控制;可以有一定比例的能量转移,达到节能及加快空调冷热速度的效果。 室内机局部噪声较大,根据现场不同的安装条件,实测在42~52分贝之间,对设计及安装

要求很专业。 ☆一拖多机组 (1)定频多联机 把分体空调集中到一个室外机中,最多一拖三里面有三台压缩机,冷媒系统各自独立;把明装壁挂室内机改变成暗藏式;引进新风困难,是分体空调的一种变形,卧室内风机噪音由低到高要增加7~14分贝,最高达50分贝。每个卧室需增加长1.2m以上,宽0.6m,高0.3 m的吊顶,另需设检修孔;每个内机都需有冷凝水排放的管路。 冷媒系统独立,但电路部分的有共用点;如发生外风机,外机温度探头、压力保护或电器局部短路等故障时,整套机器将无法运行。 (2)定、变频一拖多 其中有1~2台变频压缩机或另加1台定频压缩机,电路上有射频干扰,对电脑有影响。检修孔新风引入吊顶与冷凝水与多联机相同;对氟管的分支器要求设计合理;对上,下层共用1台机器,管路要求更高;较易在全开启时出现末端内机效果太差的情况。 ☆冷热水机 定频冷热水机或变频冷热水机 大型中央空调的缩小,冷凝器由水冷变成风冷;用水泵将冷热水送至风机盘管。引入新风、检修孔、吊顶冷凝水排放、噪声指标与多联机相同。但又增加了冷热水管;由于温度差很大,密封问题突出,出现漏水对装潢的破坏较大。另外大型中央空调蒸发器都定时清理和酸洗;家用冷热水机对此还无良策,长期使用冷热交换器的效率将大打折扣。如能与中央水处理系统相结合,可克服上述难点。 单独房间使用空调,其它房间风机盘管有冷热水管流过,也会产生能耗;现较流行采用电磁水阀来关闭水路;除去造价上的因素外;还会使局部水流速过高,产生噪声的问题。 二. 户式中央空调的工作原理 1.冷(热)水机组的基本工作过程是:室外的制冷机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。

中央空调系统工作原理

中央空调系统工作原理 中央空调系统 中央空调系统由冷热源系统和空气调节系统组成。有主机和末段系统。按负担室内热湿负荷所用的介质可分为全空气系统、全水系统、空气-水系统、冷剂系统。按空气处理设备的集中程度可分为集中式和半集中式。按被处理空气的来源可分为封闭式、直流式、混合式(一次回风二次回风)。主要组成设备有空调主机(冷热源) 风柜风机盘管等等.制冷系统为空气调节系统提供所需冷量,用以抵消室内环境的冷负荷;制热系统为空气调节系统提供用以抵消室内环境热负荷的热量。制冷系统是中央空调系统至关重要的部分,其采用种类、运行方式、结构形式等直接影响了中央空调系统在运行中的经济性、高效性、合理性。 中央空调系统优点 经济节能:主机由微电脑控制,每个区间末端风机盘管可自行调节温度,区间无人时可关闭,系统根据实际负荷做自动化运行,开机计费,不开机不计费,有效节约能源和运行费用。 环保:主机采用水源热泵型机组,电制冷,没有燃烧过程,避免了排污;整个系统为密闭式管路系统,可避免霉菌灰尘等杂质对系统的污染,使环境清新优美,特别适于高档别墅、高级公寓与写字楼的使用。 节约空间:主机体积小巧,不设机房,无需占用设备层,减少公用设施和土建投资,室内末端暗藏在吊顶内,极易配合屋内装修。 个性化:中央空调系统以区间为单元,满足用户不同区间需求,室内末端安装采用暗藏方式,不影响室内的审美观,不占据室内空间,适应用户的个性化需求。 简化管理:于采用不同区间单独控制系统为用户所有,产权关系明确,可简化空调设施管理。 提升档次:中央空调主机可以避免破坏楼体的整体外观,使用户充分享受高档综合环境的同时,提升产品质量及量贩档次。 投资方便:可根据量贩发展情况,分期分批投资添置空调系统,同时量贩档次提升,因此资金周转快,有效地利用资金更进一步开发。 中央空调系统工作原理 中央空调系统一般主要由制冷压缩机系统、冷媒(冷冻和冷热)循环水系统、冷却循环水系统、盘管风机系统、冷却塔风机系统等组成。制冷压缩机组通过压缩机将空调制冷剂(冷媒介质如R134a、R22等)压缩成液态后送蒸发器中,冷冻循环水系统通过冷冻水泵将常温水泵入蒸发器盘管中与冷媒进行间接热交换,这样原来的常温水就变成了低温冷冻水,冷冻水被送到各风机风口的冷却盘管中吸收盘管周围的空气热量,产生的低温空气由盘管风机吹送到各个房间,从而达到降温的目的。冷媒在蒸发器中被充分压缩并伴随热量吸收过程完成后,再被送到冷凝器中去恢复常压状态,以便冷媒在冷凝器中释放热量,其释放的热量正是通过循环冷却水系统的冷却水带走。冷却循环水系统将常温水通过冷却水泵泵入冷凝器热交换盘管后,再将这已变热的冷却水送到冷却塔上,由冷却塔对其进行自然冷却或通过冷却塔风机对其进行喷淋式强迫风冷,与大气之间进行充分热交换,使冷却水变回常温,以便再循环使用。在冬季需要制热时,中央空调系统仅需要通过冷热水泵(在夏季称为冷冻水泵)将常温水泵入蒸汽热交换器的盘管,通过与蒸汽的充分热交换后再将热水送到各楼层的风机盘管中,即可实现向用户提供供暖热风。 一、制冷基本原理 液体汽化制冷是利用液体汽化时的吸热、冷凝时的放热效应来实现制冷的。液体汽化形成蒸汽。当液体(制冷工质)处在密闭的容器中时,此容器中除了液体及液体本身所产生的蒸汽外,不存在其他任何气体,液

暖通自控系统控制原理

一、系统概述 HV AC (heating, ventilation, Air condition)控制系统的目的是通过控制锅炉、冷冻机、水泵、风机、空调机组等等来维护环境的舒适。 二、系统架构图 三、系统功能 3.1 空调新风机组系统控制 空调系统作为环境控制的重要组成部分,每台机组可由 独立控制器实现自动控制,使楼内的房间及公共区域的 温度保持在要求的范围内,同时达到管理方便、节省能 源、延长设备使用寿命的目的。 2.2 送排风系统节能控制 1)监测送排风机手/自动状态、运行状态及故障报警 2)定时(或预制时间表)控制 3)累计风机运行时间,提醒管理人员及时维护 4)根据室内空气质量探测器(如:CO、CO2、VOC) 联锁起停送排风机 2.3 给排水系统节能控制 1)监视水箱(集水池、污水坑)高低水位,超限报警 2)对水泵运行状态进行动态监视,并作运行记录 3)累计水泵运行时间,提醒管理人员及时维护 4)根据液位开关的动作,自动开启/停止水泵 5)根据水泵运行时间,自动切换主备泵,平衡各设备 运行时间 2.4 电梯监测

1)监视客梯、货梯、自动扶梯、消防电梯的运行状态2)电梯运行故障报警 2.5 照明系统 对照明实行监控不仅简化操作,还可以进行时间表控制,使被控灯具按时打开和熄灭,利于节约电能,便于管理。通过现场照明控制器opc网关接口完成对照明系统集成。 2.6 变配电系统 1)实时监测,集中显示变配电系统内各高压柜,低 压柜、变压器,备用电源等各种运行参数。具备配电系统运行分析报表,配电系统故障分析报表及报警提示,配电系统远程监控等功能。做到供电运行稳定安全,优化电源配置。 2)系统实时动态分析,在配电系统中监测参数有三 相电流,三相电压,有功功率,无功功率,电度量等。通过对电计量参数采样比较分析,使大楼内配电情况一目了然。 3)系统实时故障报警提示记录,监测各个回路运行 状态,达到系统实时跟踪,大大提高系统的安源运行系数及快速反应能力。 2.7冷热源系统 冷热源制冷监控系统是整个空调系统的核心。 系统监控对象:冷水机组、冷冻水泵、冷却水泵、冷却水塔、补水泵、膨胀水箱等及相关温度、压力、流量参数。

中央空调原理简介

中央空调原理简介 中央空调原理包括:一、中央空调制冷原理:有压缩式、吸收式等,这里不再细述;二、中央空调系统原理:有风系统工作原理、水系统工作原理、盘管系统工作原理等,简单介绍如下: 1、中央空调原理的新风系统工作: 室外的新鲜空气受到风处理机的吸引进入风柜,并经过过滤降温除湿后由风道送入每个房间,这时的新风不能满足室内的热湿负荷,仅能满足室内所需的新风量,随着室内风机盘管处理室内空气热湿负荷的同时,多余出来的空气通过回风机按阀门的开启比例一部分排出室外,一部分返回到进风口处以便再次循环利用。如图: 2、中央空调原理的盘管系统工作: 室内的风机盘管工作时吸入一部分由风柜处理后的新风,再吸入一部分室内未处理的空气经过工艺处理后,由风口送出能够吸收室内余热余湿的冷空气,使室内温度湿度达到所需要的标准,如此循环工作。如图: 3、中央空调原理的风管积尘原因:

室外空气经中央空调处理时,由于大多数粗精效过滤网仅能过滤3um 以上的悬浮颗粒物,其微细颗粒物则随风直接进入风管,而风管内表面实际粗糙度远远高于微细颗粒物的大小,因此,这些微细的颗粒物随着空气与风管内壁相互碰撞摩擦产生静电吸附越积越多,从而导致风管内壁的粗糙度越来越大,灰尘粘附加速进行,如此长年累月形成较厚积尘。如图: 页次:1/1 1篇/页首页上一页下一页尾页合计1篇 风机盘管 我公司供应的变风量新风机组风机盘管外形美观,性能良好,已达到国内一流水平,可以取代进口同类产品。风机盘管空调器主要由风机、热交换器(盘管)、凝水盘、壳体及控制器组成。风机盘管品种齐全、性能优越,用途广泛。风机盘管用于要求噪声小,温度调节灵活的各种宾馆、公寓、饭店、医院、商业大楼等处。 电工中高级题库 五级工(两份,运行、电修各一份) 一、填空 1、对修理后的直流电机进行空载试验,其目的在于检查各机械运转部分是否正常,有无过热、声音、振动现象。 2、直流测速发电机接励磁方式可分为他励式永励与式。 3、整台电机一次更换半数以上的电刷之后,最好先以 1/4~1/2 的额定负载运行 12h 以上,使电刷有较好配合之后再满载运行。 4、同步电机的转速与交流电频率之间保持严格不变的关系,这是同步电机与异步电机的基本差别之一。 5、凸极式同步电动机的转子由转轴、磁轭和磁极组成。 6、对电焊变压器内电抗中的气隙进行调节,可以获得不同的焊接电流。当气隙增大时,电抗器的电抗减小,电焊工作电流增大,当气隙减小时,电器的电抗增大,电焊工作电流减小。 7、异步电动机做空载试验时,时间不小于 1min 。试验时应测量绕组是否过热或发热不均匀,并要检

空调系统介绍

HVAC系统介绍
Air Conditioning Clinic TRG-TRC018-EN

HVAC系统介绍
period one 第一部分
Dissecting HVAC Systems HVAC系统组成
Air Conditioning Clinic TRG-TRC018-EN

Comfort Requirements 舒适的必要条件
? ? ? ? ? ? ? ?
Temperature温度 Humidity湿度 Air movement气流运动 Fresh air新鲜空气 Clean air洁净空气 Noise levels噪音等级 Lighting灯光 Furniture and work surfaces 和工作面
设备
3
Insert Footer

The Five System Loops 五个系统回路
Airside空气侧 Chilled water冷水侧 Refrigeration制冷
Heat rejection放热 Controls控制
4
Insert Footer

Airside Loop空气侧回路
supply air送风 return air回风
sensible heat显热 Moisture湿气 (latent heat潜热)
5 Insert Footer
conditioned space空调区域

中央空调水循环系统简介

中央空调系统简介 随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。热水和冷冻水共用一套管道系统。1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。因此,对于冷冻水系统水处理 的重点是控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点

空调系统控制运行原理

一、HV AC-01------原设计 1.空调机组共设4种状态,正常运行、关机、值班、消毒。要求控制柜和上位机上均能实现模式转换,控制柜优先。 各种模式的实现均需保证系统处于正压结构。 2.空调箱配自动变频器,由设在送/排风总管上的风量传感器来调节变频器工作状态,使送风量达到设定值。 利用风量传感器监测瞬时风量,利用风量的自动恒定实现系统模式的变化。 3.正常运行时: a:风量控制:由设在送风总管上的风压传感器来调节变频器工作状态,使送风量达到设计值。不能采用送风管道压力作为风量的调节参数,管道风压增加存在风量变小的情况(如过滤网堵塞、防火阀关闭,在这些情况下风量是不会因为阻力调节而恒定风量的) 风压的波动很大,不能作为风量测量调节参数,应该已经实际风量来调节系统风量恒定,恒定风量可以克服系统阻力。 b:温湿度控制:调节冷冻水管路、热水管路和蒸汽加湿管路的阀门开度,实现夏季送风定露点温度,冬季回风定温湿度控制(温湿度参数可调); 控制温湿度是需要注意除湿对系统冷量的损失,不能简单的进行露点调节; 系统的开机时加热、加湿处理时一定要注意加热、加湿调节对系统高效过滤器及系统的损害;要防止管道中凝结水; c:电动风阀控制:ED105-1打开到设定位置。 ED105-1是新风量调节装置,对整个系统至关重要,新风量是系统正压的保证。新风量与排风量的联动调解防止系统出现风压二次污染。 e:风险控制房间根据房间的压差传感器所采集的压差值,PLC自动控制房间的回风变风量风阀控制回风风量,使房间的正压值在设定值控制范围内 室内压差的调节首先需要对室内送风量进行恒定调节,而室内风量的恒定必须满足系统在不同模式下实现自动切换,室内压差调节不能以室内压差作为测量控制对象。压差调节会对其他房间出生影响。 4.停机: 所有与本空调机组对应的排风机停机密闭电动风阀关闭;与本空调机组对应的冷冻水管路,热水管路,蒸汽管路,风管路,臭氧管路上的所有电动阀门均关闭。 关机时必须考虑系统送风管道中凝结水的处理。 5.值班: 所有与本空调机组对应的排风机停机;与本空调机组对应的热水管路,蒸汽管路,排风管路,臭氧管路上的所有电动阀门均关闭,送风机组根据设定的房间最小正压值变频送风运行 系统值班运行时,系统送风量发生变化,重点压差控制区域的送风量会发生变化,这就要求系统在风量切换后能够实现自动压差调节。 不能采用定风量阀来恒定风量,因为整个系统的风量已经发生了变化,这就要求洁净区的送风量要同步减少、稳定,否则未装调节装置的洁净区会出现压差失衡,造成梯度破坏。

中央空调系统介绍

中央空调系统——主要组成设备 一、按负担室内热湿负荷所用的介质可分为:1、全空气系统;2、全水系统;3、空气-水系统;4、冷剂系统。 二、按空气处理设备的集中程度可分为:1、集中式;2、半集中式。 三、按被处理空气的来源可分为:1、封闭式;2、直流式;3、混合式(一次回风二次回风)。 主要组成设备有空调主机(冷热源) 风柜风机盘管等等。从本质上讲,均由空气处理设备,空气输送设备,空气分布装置三大部分组成。此外还有制冷系统,供热系统及自动调节系统。 空气热湿处理设备空气热湿处理设备主要是对空气进行加热、加湿、冷却、除湿等处理。 1)喷水室。在民用建筑中不再采用,但在以调节湿度为主要目的的纺织厂和卷烟厂空调中仍大量使用。 2)表面式换热器。冷却器、加热器、蒸汽盘管统称为表面式换热器。 a、盘管表面式换热器有光管式和肋管式两种。根据加工方法不同,肋片管又可分成绕片管、串片管和轧片管。 b、电加热器。它有结构紧凑、加热均匀、热量稳定、控制方便的优点。

但是电加热器利用的是高品位的热能,它只宜在一部分空调机组和小型空调系统中使用。在恒温精度要求较高的大型空调系统中,也常用电加热器控制局部加热或作末级加热使用。 常用的电加热器有裸线式和管式两种。 3)常用空气湿处理设备。空气的加湿方法一般有喷水加湿(湿膜加湿)、高压蒸汽加湿、超声波加湿、远红外线加湿等。利用蒸汽锅炉使水变成蒸汽和空气的混合过程为等温加湿过程。a、等温加湿。b、等焓加湿设备。直接向空调房间空气中喷水的加湿装置有压缩空气喷c、空气的减湿。d、固体吸湿在空调工程中最常用的吸附剂是硅胶。 中央空调系统的组成 1、冷水机组:这是中央空调的“制冷源”,“心藏”,通往各个房间循环水由冷水机组进行“内部交换”,降温为“冷却水”。 2、冷却水塔:用于为冷水机组提供冷却水。 3、外部热交换系统:1)冷冻水循环系统:由冷冻泵及冷冻水管道组成。从冷水机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在个房间内进行热交换,带走房间内热量,是房间内的温度下降。

空调冷热水系统的设计与配置讲课讲稿

浅谈空调冷热水系统的设计与配置随着我国钢铁事业的高速发展,中央空调系统在钢铁厂也得到了越来越广泛的应用,中央空调相对于分体空调有如下优点: ①中央空调运行管理灵活方便,且运行费用低于分体空调,中央空调制冷站可直接控制制冷机的开停时间和冷量大小,可根据气候变化进行调整,以节约运行电费。 ②中央空调能保证向房间输送新风,使房间始终保持空气清新、卫生。但分体空调只有通过开门、窗和采用新风换气机通风换气,冷量损失大,这不仅影响房间温度,而且浪费了能源。 ③中央空调故障少好维修。中央空调无论是空调机组和全空气风道系统,还是房间风机盘管和新风系统,均不易发生故障,而制冷设备则设在制冷站内,便于维修。但分体空调的分体空调器遍布在各处,制冷压缩机不仅数量多而且分散,出了故障很难一一去维修好。 ④中央空调噪声小于分体空调。中央空调可加装各种消声装置降低噪声,而分体空调因压缩机距离空调房间比较近,则难以实现降噪措施。 ⑤中央空调末端形式美观多样,可与装修施工密切配合,管路和设备均可隐蔽在吊顶内,保证建筑的美观,节约室内的使用空间;但分体空调的风冷式室外机须零散的悬挂在外墙上或装于室外地面上,影响外装修效果,而室内机则须挂在内墙上或安放在地面,又占用了室内空间,这无形中减小了房间的使用面积。 ⑥中央空调末端的空调冷凝水可集中排放,但分体空调因空调器布置分散,凝结水的排放不易处理。 基于以上原因,在钢铁厂内采用中央空调系统是可行的,但钢铁厂内的中央空调系统相对于民用建筑有以下特点: ①钢铁厂内各空调用户比较分散,空调用户的种类比较多,如何合理的设计空调管路的走向,解决各空调用户的水力失调,满足不同用户的需要就显得尤其重要。 ②钢铁厂内的管道相当复杂,尽可能把纵横交错的管网排列的经济紧凑是值得探讨的,其中供冷热水工程的室外保温管道的做法相当重要,做法不当将直接影响使用效果。 ③钢铁厂内的各空调用户投入使用的时间不同,空调负荷变化比较大,因充分考虑机组的自动调节以适应负荷的变化。 下面就从空调机房和空调管线两个方面,讨论钢铁厂空调设计中,应注意的问题,以供大家参考。 1、机房侧的设计配置 1.1 冷水机组的选择和配置 钢铁厂中央空调冷水机组的选择应充分考虑厂内的能源配置情况,对于大多数钢铁厂而言,炼钢和其他工艺过程会产生大量的蒸汽,从节能的角度来说,在空调冷水机组的选择上应尽量考虑利用这部分蒸汽,所以对于有多余蒸汽的钢铁厂,在冷水机组的选择上应优先选用蒸汽型溴化锂冷水机组,对于相同制冷量的蒸汽型溴化锂制冷机组和电制冷机组而言,溴化锂机组可节电98%左右。 对于冷水机组台数的选择应尽量避免选用单台机组,在条件允许的情况下,可选用两台或以上的冷水机组,这样可不考虑备用机组,而且在负荷变化的情况下,可以关闭部分冷水机组,节约运行费用,可以使机组在较高的COP值下运行。

空调系统设备选型介绍资料

空调系统设备选型 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等)2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同类型、不同容

量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比进行选择。 冷水机组机型冷量范围(kW)参考价格(元/kcal/h) 往复活塞式≤700 0.5~0.6 螺杆式116~1758 0.6~0.7 离心式≥1758 0.5~0.6 2.3.2冷水机组机型选择 电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规定。 水冷冷水机组机型额定制冷量(kW)性能系数(W/W)活塞式/涡旋式<528 3.8 528~1163 4.0 >1163 4.2 螺杆式<528 4.10 528~1163 4.30

冷梁空调系统简介

冷梁空调系统 主动型冷梁空调系统 巴科尔主动型冷梁系统是一种集制冷、供热和通风功能为一体的空调系统,它能够提供良好的室内气候环境及单独区域的控制。一次风主要用来对消除室内湿负荷,同时也可以供热、供冷和保证新风;末端换热盘管用来进行室内热/冷负荷的处理。图1为主动型冷梁空调系统示意图。冷梁系统集高舒适度、低噪音、节能和低维护的优点于一体。主要包括标准主动型冷梁、多功能组合式冷梁、玄关吊顶式安装的水平诱导单元、地板式诱导单元等几种型式,以满足不同建筑美观及功能的需求。 图2为主动型冷梁末端工作原理图。从中央空气处理机组(AHU)送到主动型冷梁末端的空气被称之为一次风。一次风以恒定风量和相对较低的静压条件被送至冷梁末端。一次风通过末端单元内的一排喷嘴(可调节)送入混合腔体内,通过喷嘴的高速气流在混合腔内产生负压区域,从而诱导室内空气经过换热盘管后与一次风混合,然后经出风口送入房间内。 图 1 主动型冷梁空调系统示意图图 2 主动型冷梁末端工作原理图 系统能得到实实在在的能源节约,因为在换热盘管中使用相对较高温度的冷水,这可以在初投资和冷水主机的运行成本上得到很大的节约。同时它能保证末端换热盘管在干工况下工作,避免出现和其它系统一样因为冷凝水而带来的维护和卫生方面的问题,譬如风机盘管系统的冷凝水问题。输送的风量大大减少从而节省了风机能量,因为该系统不依靠空气来弥补显热负荷,这可以使得一次风的需求量可以减少到仅用来进行通风、湿度控制和诱导室内回风气流。因为它节能的特点,这个系统在欧洲变得越来越普及。同时还因为它气流需求量很低,所以能使用100%的新风作为一次送风来源,可以提高空气品质,因此该系统很适合用于医院或者医疗场所等需要减少空气流通而交叉感染的场所。 巴科尔有全系列的主动型冷梁,它们的名义标准宽度为300mm和600mm,长度为1200~3000mm,能与市场大多数的吊顶天花配置互相匹配。巴科尔的冷梁使用特殊喷嘴组合技术来使得每个冷梁的制冷能力可以单独改变。

冰蓄冷系统介绍

冰蓄冷 目录 冰蓄冷空调技术简述 蓄冰流程选择 蓄冰空调的选型 评价蓄冰系统的几个指标 冰蓄冷空调技术简述 蓄冰流程选择 蓄冰空调的选型 评价蓄冰系统的几个指标 展开 冰蓄冷空调技术简述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 1.削峰填谷、平衡电力负荷。 2.改善发电机组效率、减少环境污染。 3.减小机组装机容量、节省空调用户的电力花费。 4.改善制冷机组运行效率。 5.蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 6.应用蓄冷空调技术,可扩大空调区域使用面积。 7.适合于应急设备所处的环境,计算机房、军事设施、电话机房和易燃易爆物品仓库等。 与普通空调相比所具有的优势 (1)节省电费。 (2)节省电力设备费用与用电困扰。 (3)蓄冷空调效率高。 (4)节省冷水设备费用。 (5)节省空调箱倒设备费用。 (6)除湿效果良好。 (7)断电时利用一般功率发电机仍可保持室内空调运行。 (8)可快速达到冷却效果。 (9)节省空调及电力设备的保养成本。 (10)降低噪乱冷水流量与循环风上减少,即水泵与空调机组运转振动及噪音降低。 (11)使用寿命长。

与普通空调相比所具有的缺点 (1)对于冰蓄冷系统,其运行效率将降低。 (2)增加了蓄冷设备费用及其占用的空间。 (3)增加水管和风管的保温费用。 (4)冰蓄冷空调系统的制冷主机性能系数(COP)要下降。运行策略和工作模式 运行策略 所谓运行策略是指蓄冷系统以设计循环周期(如设计日或周等)的负荷及其特点为基础,按电费结构等条件对系统以蓄冷容量、释冷供冷或以释冷连同制冷机组共同供冷作出最优的运行安排考虑。一般可归纳为全部蓄冷策略和部分蓄冷策略。 工作模式 蓄冷系统工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需在规定的几种方式下运行,以满足供冷负荷的要求常用的工作模式有如下几种: (1)机组制冰模式 (2)制冰同时供冷模式 (3)单制冷机供冷模式 (4)单融冰供冷模式 (5)制冷机与融冰同时供冷 制冷机与融冰同时供冷 在此工作模式下制冷机和蓄冰装置同时运行满足供冷需求。按部分蓄冷运行策略,在较热季节都需要采用这种工作模式,才能满足供冷要求。该工作模式又分成了两种情况,即机组优先和融冰优先。 机组优先 回流的热乙二醇溶液,先经制冷机预冷,而后流经蓄冰装置而被融冰冷却至设定温度。 融冰优先 从空调负荷端流回的热乙二醇溶液先经蓄冰装置冷却到某一中间温度,而后经制冷机冷却至设定温度。 蓄冰流程选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰

相关主题
文本预览
相关文档 最新文档