当前位置:文档之家› 基于MATLAB的数字滤波器的设计

基于MATLAB的数字滤波器的设计

基于MATLAB的数字滤波器的设计
基于MATLAB的数字滤波器的设计

基于MATLAB 的数字滤波器的设计

1 引言

数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散线性非时变系统,其输入是一组(由模拟信号取样和量化的)数字量,其输出是经过变换或说处理的另一组数字量。数字滤波器具有稳定性高、精度高、灵活性大等突出优点。这里所说的数字滤波器是指理想带通,低通等的频率选择数字滤波器。

数字滤波器设计的一个重要步骤是确定一个可实现的传输函数H(z),这个确定传输函数H(z)的过程称为数字滤波器设计。数字滤波器的一般设计过程为:(1)按照实际需要,确定滤波器的性能要求(通常在频域内给定数字滤波的性能要求)。(2)寻找一满足预定性能要求的离散时间线性系统。(3)用有限精度的运算实现所设计的系统。(4)通过模拟,验证所设计的系统是否符合给定性能要求。 2 数字滤波器的设计

滤波器分为两种,分别为模拟滤波器和数字滤波器。数字滤波器可以理解为是一个计算程序或算法,将代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化的过程中,使信号按预定的形式变化。数字滤波器有多种分类,从数字滤波器功能上分可分为低通、高通、带阻、带通滤波器,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,即无限长冲激响应滤波器(IIR )和有限长冲激响应滤波器(FIR )。

数字滤波器指标:一般来说,滤波器的幅频特性是分段常数的,以低通为例,在通带内逼近于1,阻带内逼近与0,实际设计的滤波器并非是锐截止的通带和阻带两个范围,两者之间总有一个过渡带。在设计滤波器时事先给定幅频特性允许误差,在通带范围内幅度响应以误差1σ逼近于1,在阻带内幅度响应以误差2σ逼近于0。

π

σσ≤≤≤≤≤≤-w w e H w w e H r jw

c jw ,2|)(|,1|)(|11 (1)

式中wc 和wr 分别为通带边界频率和阻带边界频率,wr-wc 为过渡带。在具体的技术指标中往往用通带波动σ来表示1σ,用最小阻带衰减At 来表示2σ,其具体的对应公式这里就不详述了。 2.1 IIR 数字滤波器设计

IIR DF 的冲激响应h(n)是无限长的,其输入输出的关系为:

)()()(i n x i h n y i -=

∑+∞

-∞

= (2)

系统函数为

∑+∞

=-∞

=-=

n n n

z

n h z H )()(=

∑∑=-=--n

k k

k m

r r

r

z a z

b 1

1 (3)

设计无限长单位脉冲响应(IIR )数字滤波器一般可有三种方法。

第一种方法,先设计一个合适的模拟滤波器,然后将其数字话,即将S 平面映射到Z 平面得到所需的数字滤波器。模拟滤波器的设计技巧非常成熟,不仅得到的是闭合形式的公式,而且设计系数已经表格化了。因此,由模拟滤波器设计数字滤波器的方法准确,简便,得到普遍采用。对于这种方法,工程上

有两种常见得变换法——脉冲响应不变法及双线性变换法。

第二种方法,在Z 平面直接设计IIR 数字滤波器,给出闭合形式的公式,或者以所希望的滤波器响应作为依据,直接在Z 平面上通过多次选定极点和零点的位置,以逼近该响应。

第三种方法,利用最优化技术设计参数,选定极点和零点在Z 平面上的合适位置,在某种最优化准则意义上逼近所希望的响应。但一般不能得到滤波器的系数(即零,极点的位置)作为给定响应的闭合形式函数表达式。优化设计需要完成大量的迭代运算,这种设计法实际上也是IIR 滤波器的直接设计。

本文着重介绍由模拟滤波器设计相应的IIR 数字滤波器的方法。 (1)脉冲响应不变法

脉冲响应不变法是使数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应()a h t ,让h(n)正好等于()a h t 的采样值。设已有满足要求的模拟滤波器, 则可

()a H s →()a h t →()()a h n h nT =→()H z

{因为:()()a h t h n ≈的图形的图形}, 公式导出:

具体转换如下:设(以一阶极点为例)

1()N

k

a k k

A H s s s ==-∑

(4) 作拉氏反变换,得

1

1

()[()]()k N

s t a a k k h t FT H s A e u t -===∑

采样得

1

()()()k N

s nT a k k h n h nT A e u nT ===∑

作Z 变换,得

101

1

()()1k k N

N

s nT

n

k

k s T n k k A H z A e

u nT z

e z ∞--=====-∑∑∑

(5)

()H z 与()a H s 极点关系为: k s T k

z e = (6)

一般对应关系

sT

j T j T s j j z re

z e

re e e ωσΩσΩ

ω=+==→=?

,T r e T σωΩ?== (7)

图1 S 平面到Z 平面变换示意图

所以, 模拟系统稳定因果→数字系统稳定因果。

按照脉冲响应不变法,从S 平面到Z 平面的映射不是单值关系,而是先将()a H s 在S 平面沿虚轴作周期严拓,再按照映射关系将()a H s 映射到Z 平面,得到()H z ,因此,脉冲响应不变法只适用于带限的滤波器(如低通、带通)。

在Matlab 中利用M 文件impinvar 可以对模拟传输函数实行脉冲响应不变法。 (2)双线性变换法

脉冲响应不变法不适带阻和高通滤波器的设计,因为高频带为通带,前述方法易引起混频。故希望:s 平面虚轴?z 平面单位圆一周, 且应有

:0:0Ωωπ→+∞?→, :0:0Ωωπ→-∞?→-,

因为tan(/2)π±=±∞, 所以选变换

tan

2

K ω

Ω= (8)

其中K 可取任意正常数, 后面将导出2/K T =.

设计思路: tan 2

,,,,,,p s p s p s p s K ΩωωωααΩΩαα=========>.→设计出模拟滤波器→转化成数字滤波器.

图2 数字域频率与模拟域频率的对应关系 转化公式推导如下:

sin(/2)

tan 2cos(/2)j j jK K

ω

ωΩω==/2/2/2/211j j j j j j e e e K K e e e ωωωωωω

------==++

因只关心频率转换, 故可设s j Ω=,j z

e ω=, 则有

11

11z s K z ---=+, (称为双线性变换) (9)

所以模拟滤波器转换成数字滤波器的公式为

j Ω

σ

O

1

ω

1

r =O s 平面

0σ<0

σ=z 平面

1

r

r e

σ=k

s ?

k

z ?-10

-5

05

10

-2

02w

2 atan(w)

Ω

ωp

ωp

Ωππ

-O

1

1

11()()z a s K z H z H s ---=+= (10)

由双线性变换公式, 可得11Ks

z Ks

+=

-, 视为两复平面变换, 再由

,

j s j z re ωσΩ=+=.

可得

22

22

(1)()(1)()K K r K K σΩσΩ++=-+ (11)

从上式可得:

0σ=时,1r =, s 上虚轴?z 上单位圆周。 0σ<时,1r <, s 上左半平面? z 上单位圆内。 0σ>时,1r >, s 上右半平面?z 上单位圆外。

故若模拟滤波器稳定,则双线性变换后数字滤波器也稳定。

由于双线性变换法是一种单值映射,因此消除了频率混叠的现象。双线性变换法的缺点是模拟频率与数字频率间的非线性,这种非线性关系要求被变换的连续系统的幅度响应是分段常数型的(某一频率范围内幅度响应近似于某一常数),不然所映射出的数字频率响应相对于原来的模拟频率响应会产生变形。为解决双线性变换中的频率非线性关系,我们采用预畸的方法,即

tan

2

K ω

Ω=,其中K=2/T 。

在Matlab 中利用M 文件bilinear 可以对模拟传输函数实行双线性变换法。

MATLAB 中IIR 数字滤波器的设计过程包括两步。第一步,根据给定指标,确定滤波器的阶数N 和频率缩放因子Wn 。第二步,利用这些参数和给定的波纹参数,确定传输函数的关系。阶数估计:利用双线性变换法设计数字滤波器时,首先要对IIR 数字滤波器的阶数进行估计,相应的M 文件为:buttord 用于巴特沃斯滤波器,cheb1ord 用于切比雪夫1型滤波器,cheb2ord 用于切比雪夫2型滤波器,ellipord 用于椭圆滤波器。滤波器的设计:对于基于双线性变换法的IIR 滤波器设计,对应于四种逼近技术(即巴特沃斯、切比雪夫1型和2型及椭圆逼近),MATLAB 工具箱中有相应的函数。特别地可以用到下面的M 文件:butter 用于巴特沃斯滤波器的设计,cheby1用于切比雪夫1型滤波器的设计,cheby2用于切比雪夫2型滤波器的设计,ellip 用于椭圆滤波器的设计。这些函数的输出可以是滤波器传输函数分子和分母的系数向量,也可以是滤波器的零极点向量和标量增益因子。同时,利用zp2tf 可以由滤波器的零极点向量和标量增益因子得到传输函数分子和分母的系数向量。相应地,利用函数zp2sos 可以得到传输函数分子和分母系数向量的二次项因子。在计算出传输函数的系数之后,可以利用M 文件freqz 来计算频率响应。 2.2 FIR 数字滤波器设计

FIR DF 的冲激响应h(n)是有限长的,M 阶FIR DF 可以表示为:

∑-=-=1

)()()(M i i n x i h n y (12)

其系统函数为:

∑-=-=1

)()(M n n z n h z H (13)

与IIR 数字滤波器的设计不同,FIR 滤波器的设计与模拟滤波器的设计没有任何联系。因此,FIR 滤波器的设计基于对指定幅度响应的直接逼近,并通常要求其具有线性相位响应。为了保证滤波器具有线性相位特性,滤波器系数必须满足条件:h(n)=±h(M-1-n)。

目前关于FIR 滤波器的设计方法主要有三种,即窗函数法,频率取样法和切比雪夫等波纹逼近的最优化设计方法。一般应用较多的是第一种和第三种方法。这是因为窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不严格的情况下市比较灵活的。最优化设计法必须借助计算机计算,但是它能得到最佳的等波纹的线性相位FIR 滤波器。目前切比雪夫等波纹的线性相位FIR 滤波器的计算机机助设计程序已经比较完善,由于采用了REMEZ 迭代算法,所以设计效率也很高,在应用中越来越占优势。 (1)窗函数法

一般设计过程总是先给定一理想的滤波器频率响应)(jw d e H ,然后设计一个FIR 滤波器,用它的频率响应jwn

M n jw

e

n h e H --=∑=

10

)()(来逼近理想的)(jw d e H 。这种逼近中最直接的方法,是在时域中用FIR 滤

波器的单位脉冲响应h(n)去逼近理想的单位脉冲响应)(n h d 。因而,先由)(jw d e H 的IDTFT 导出)(n h d

dw e e H

n h jwn jw d

d )(21)(?-

=

π

ππ

(14)

由于)(jw d e H 是矩形频率特性,故)(n h d 一定是无限长的序列,且是非因果的。然而FIR 滤波器是有限长的,所以用有限长的h(n)来逼近无限长的)(n h d ,最简单的方法是截取)(n h d 中最重要的一段,将无限长的)(n h d 截取成长度为M 的有限长序列,等效于再)(n h d 上施加了一个长度为M 的矩形窗口,更为一般的,可以用一个长度为M 的窗口函数w(n)来截取)(n h d ,即

)()()(n h n w n h d = (15) 这一方法通常称为窗函数法,窗口函数的形状及长度M 的选择是窗函数法的关键。 下面我们一低通为例,了解一下窗函数法的运用: ①提出希望频率响应函数(低通)

图3 理想低通滤波器的频响 线性相位, 具有片断特点, 即

||()0

||-?≤?

=?

<≤??j j c

d c

e H e ωτω

ωωωωπ

②算出

-

1

()()d 2=

?j j n d h n H e e π

ωωπ

ωπ

O

0.25-π

|()|

j d H e ω0.25π

ω

1

π-π

1d 2--

=?c

c

j j n e e ωωτωω

ωπ

sin(())

()

-=

-c n n ωτπτ(无限长)

图4 理想低通的单位脉冲响应(无限长的一部分) ③加窗()w n ,长N , 得

()()()=d h n h n w n (*)

要线性相位, 就要()h n 关于(1)/2-N 偶对称,而()d h n 关于τ偶对称, 故要求

(1)/2=-N τ

所以要求()w n 关于(1)/2=-N τ偶对称.

10

20

30

00.5

1

10

20

30

-0.1

0.1

0.20.3

图5 窗函数 图6 加窗后的单位脉冲响应 再回过来检验()j H e ω是否满足精度要求.

图7 图4的脉冲响应的频响 图8 理想频响与实际频响的对比 若基本满足, 则依截取的()h n , 制硬件, 编软件.

为便于选择使用, 将5种常见的窗函数基本参数如表1所示。

表1 5种常见的窗函数基本参数

1

2

3

0.5

1O

0.25-π|()|j d H e ω0.25π

ω

1

π-π

()

j H e ω0

1

2

3

0.51?

10

20

30

0.5

1

102030

-0.1

0.1

0.20.3

类型 窗函数的 旁瓣峰n α 过渡带宽度B ? 加窗后滤波器的 阻带最小衰减s α

rectwin -13 4π/N -21

bartlet 三角 -25 8π/N -25 hanning -31 8π/N -44 hamming -41 8π/N -53 blackman

-57

12π/N

-74

(2)频率取样法

窗口设计法事从时域出发,把理想的)(n h d 用一定形状的窗口函数截取成有限长的h(n),以此h(n)来近似理想的)(n h d ,从而频率响应)(jw e H 也近似于理想的频率响应)(jw d e H 。我们知道一个有限长序列可以通过其频谱的相同长度的等间隔采样值准确地恢复原有的序列。频率采样法便是从频域出发,对理想的频率响应)(jw d e H 加以等间隔采样 )()|

(2k H e

H d k M

w jw

d ==

π (16)

然后以此)(k H d 作为实际FIR 滤波器的频率特性的离散样本H(k),即

1,...2,1,0,|

)()()(2-====

M k e H k H k H k M

w jw d d π (17)

由H(k)通过IDFT 可求出有限长序列h(n)为

1,...1,0,)(1

)(10

2-==

∑-=M n e

k H M

n h M k M

nk

j π (18)

利用M 个频率的离散样本H(k)同样可求出FIR 滤波器的系统函数H(z)及频率响应)(jw e H 。

M

j M k k M M n n

e W z W

k H M

z z

n h z H π21

011

1)(1)()(--=----=-=--=

=∑∑,其中 (19) 令jw

e z =可得到滤波器的频率响应)(jw e H 。如果设计的是线性相位的FIR 数字滤波器,其采样值H(k)的相位的幅度一定要满足特定的约束条件,这个设计时一定要注意。 (3)最优化设计法

最优化设计法事以最佳一致逼近(最大误差最小化)理论为基础,利用雷米兹算法设计的具有等波纹特性的设计方法。具体设计步骤如下: ①对设计指标进行归一化处理。

②确定remezord 函数所需要的参数。包括归一化边界频率、各频带的幅度要求和波纹要求等。归一化边界频率总是从0开始到1结束,故只需递增列出中间的边界频率;频带幅度要求不含过渡区,个数是边界频率个数的一半加1;波纹要求是频带内幅度允许的波动要求,与分贝间的关系是:

)(log 20)1(log 20),11(

log 202101

2101110δδδ

δδ-≈+-=+--=s p R R (20)

③利用remezord函数确定remez所需参数。

④调用remez函数进行设计。

⑤利用freqz函数验算技术指标是否满足要求。

2.3 数字滤波器类型的选择

IIR和FIR各有优缺点,在实际运用中如何选择它们,这里做一个简单的比较。

表2 IIR与FIR的比较

IIR FIR

设计方法

利用AF的设计图表,可简单,

有效的完成设计一般无解析的设计公式,要借助计算机程序完成

设计结果只能得到幅频特性,相频特性

未知(缺点),如需要线性相位,

需用全通网络校准,但增加滤

波器的阶数和复杂性

可得到幅频特性(可以多带)和线性相位(优

点)

稳定性有稳定性问题极点全部在原点(永远稳定),无稳定性问题

因果性

总是满足,任何一个非因果的有限长序列,总

可以通过一定的延时,转变为因果序列

结构递归系统非递归

运算误差

有反馈,由于运算中的四舍五

入会产生极限环

一般无反馈,运算误差小

快速算法无快速运算方法可用FFT减少运算量

从以上简单的比较可以得到,IIR与FIR滤波器各有所长,所以应根据实际应用要求,从多方面考虑加以选择。

3 数字滤波器的MATLAB设计

(1)IIR的直接程序设计法

例如欲设计一数字(IIR)带阻滤波器,其数字域指标为:数字阻带边缘频率分别为0.4π和0.7π,数字通带边缘频率为0.25π和0.8π,通带波动为1db最小阻带衰减为40db。

此题的MATLAB程序为:

ws=[0.4*pi 0.7*pi]; %数字阻带边缘频率

wp=[0.25*pi 0.8*pi]; %数字通带边缘频率

rp=1 ; %通带波动(db)

as=40; %阻带衰减

[n,wn]=cheb2ord(wp/pi,ws/pi,rp,as);

%根据给定指标,确定滤波器的阶数N和频率缩放因子Wn

[b,a]=cheby2(n,as,ws/pi,'stop');%返回的b,a分别为H(z)的分子、分母。

[h,w]=freqz(b,a,512);%返回的h,w分别为滤波器的频率响应及其频率

plot(w/pi,abs(h));%画出频率响应(以w/pi为横轴)

grid;

xlabel('w/pi');

ylabel('幅值');

title('频率响应');

程序运行结果为:

图9 所设计的带阻滤波器的频率响应

在设计中如果该滤波器的特性不满足要求,原有的参数必须做相应的调整,在程序中只需对参数做新的设定就可以得到所需的滤波器。接下来我们来看看此题所设计的滤波器的滤波效果:S为含有3个频率成分的信号(归一化频率(w/2 )分别为0.1、0.3、0.45),用所设计的滤波器滤除归一化频率为0.3的成分。

n=0:100;

s1=sin(pi*0.2*n);

s2=sin(pi*0.6*n);

s3=sin(pi*0.9*n);

s4=s1+s3;

s=s1+s2+s3;

sf=filter(b,a,s);

subplot(311)

stem(n,s);title('滤波前的信号');

subplot(312);

stem(n,sf);title('滤波后的信号');

subplot(313);

stem(n,s4);title('想要保留的信号');

程序运行的结果为:

图10 采用filter函数进行数字滤波前后信号比较示意图

由图可以看出,滤波后的信号与想要保留的信号基本一致(相位有些许偏差,但基本一致),所以我们可以说该滤波器基本满足了以上所提出的滤波要求。

(2)FIR的直接程序设计法

例如欲设计一个线性相位数字(FIR)带通滤波器,其数字域指标为:数字通带边界频率为0.35π和

0.65π,数字阻带边界频率为0.2π和0.8π,通带波动为1db,最小阻带衰减为60db。

① FIR数字滤波器的窗函数法

此题的MATLAB程序为:

ws1=0.2*pi;

wp1=0.35*pi;

wp2=0.65*pi;

ws2=0.8*pi;

as=60;

tr=min((wp1-ws1),(ws2-wp2));

M=ceil(11*pi/tr)+1;

%滤波器的阶数,程序运行后M=75

n=[0:1:M-1];

r=(M-1)/2;

%r为群时延

wc1=(ws1+wp1)/2;

wc2=(wp2+ws2)/2;

hd=sin(wc2*((n-r)+eps))./(pi*((n-r)+eps))-sin(wc1*((n-r)+eps))./(pi*((n-r)+eps));

%hd为理想滤波器的脉冲响应

w_bla=(blackman(M))';

%长度为M的blackman窗

h=hd.*w_bla;

%h为滤波器的实际脉冲响应

stem(n,h);

title('滤波器的实际单位脉冲响应');

freqz(h,1,512);

title('幅度响应和相位响应');

图11 所设计的滤波器的实际单位脉冲响应

由上图可知滤波器的实际脉冲响应h是偶对称的,即h(n)=h(M-1-n),故该滤波器满足FIR线性相位的条件,该滤波器是线性相位的FIR滤波器。

图12 所设计的带通滤波器的幅度和相位响应

由滤波器的相位特性也可以看出该滤波器是线性相位的FIR滤波器。接下来我们来看看此题所设计的滤波器的滤波效果:S为含有3个频率成分的信号(归一化频率(w/2 )分别为0.05、0.2、0.45),用所设计的滤波器滤除归一化频率为0.05和0.45的成分。

l=0:100;

s1=sin(0.1*pi*l);s2=sin(0.4*pi*l);s3=sin(pi*0.9*l);

s=s1+s2+s3;

sf=filter(h,1,s);

subplot(311)

stem(l,s);title('滤波前的信号');

subplot(312);

stem(l,sf);title('滤波后的信号');

subplot(313);

stem(l,s2);title('想要保留的信号');

图13 采用filter函数进行数字滤波前后信号比较示意图

由上图可知滤波后的信号和想要保留的信号的幅度和频率基本一致(滤波后的信号相对于想要保的信号有一个相位延迟,这是线性相位FIR滤波器的群延迟引起的,此滤波器留的群延迟r=(M-1)/2=37),所以我们可以说该滤波器基本满足了以上所提出的滤波要求。

② FIR数字滤波器的频率采样法

此题的MATLAB程序为:

M=40;

%取滤波器的阶数为40

al=(M-1)/2;

%群时延

n=0:M-1;

T2=0.59417456;

T1=0.109021;

Hrs=[zeros(1,5),T1,T2,ones(1,7),T2,T1,zeros(1,9),T1,T2,ones(1,7),T2,T1,zeros(1,4)];

%采样值的幅值

k1=0:floor((M-1)/2);k2=floor((M-1)/2)+1:M-1;

angH=[-al*(2*pi)/M*k1,al*(2*pi)/M*(M-k2)];

%采样值的相位

H=Hrs.*exp(j*angH);

h=real(ifft(H,M));

%长度为M的单位脉冲响应

stem(n,h);

title('滤波器的实际单位脉冲响应');

freqz(h,1,512);

title('幅度响应和相位响应');

图14 所设计的滤波器的实际单位脉冲响应

由图14可知滤波器的实际脉冲响应h是偶对称的,即h(n)=h(M-1-n),故该滤波器满足FIR线性相位的条件,该滤波器是线性相位的FIR滤波器。

图15 所设计的带通滤波器的幅度和相位响应

由滤波器的相位特性也可以看出该滤波器是线性相位的FIR滤波器。此滤波器的群延时为al=(M-1)/2=19.5。接下来我们来看看此题所设计的滤波器的滤波效果:S为含有3个频率成分的信号(归一化频率(w/2 )分别为0.05、0.2、0.45),用所设计的滤波器滤除归一化频率为0.05和0.45的成分。

l=0:100;

s1=sin(0.1*pi*l);s2=sin(0.4*pi*l);s3=sin(pi*0.9*l);

s=s1+s2+s3;

sf=filter(h,1,s);

subplot(311)

stem(l,s);title('滤波前的信号');

subplot(312);

stem(l,sf);title('滤波后的信号');

subplot(313);

stem(l,s2);title('想要保留的信号');

图16 采用filter函数进行数字滤波前后信号比较示意图

同上面分析相似,滤波后的信号和想要保留的信号的幅度和频率基本一致(滤波后的信号相对于想要保的信号有一个相位延迟,这是线性相位FIR滤波器的群延迟引起的,此滤波器留的群延迟(r=(M-1)/2=19.5),所以我们可以说该滤波器基本满足了以上所提出的滤波要求。

③ FIR数字滤波器的最优设计法

此题的MATLAB程序为:

%设计指标

ws1=0.2*pi;

wp1=0.35*pi;

wp2=0.65*pi;

ws2=0.8*pi;

rp=1;

as=60;

%设置边界频率和幅度要求

F=[ws1/pi,wp1/pi,wp1/pi,ws2/pi];

A=[0,1,0];

%设置各频带的波纹要求

devp=(10^(rp/20)-1)/(10^(rp/20)+1);

devs=10^(-as/20);

dev=[devs,devp,devs];

%确定remez参数,其中滤波器的阶数为(N+1),程序运行后得到N=26

[N,Fo,Ao,W]=remezord(F,A,dev);

%调用remez函数进行设计

h=remez(N,Fo,Ao,W);

n=0:N;

stem(n,h);

title('滤波器的单位冲激响应');

freqz(h,1,512);

title('幅度响应和相位响应');

图17 所设计的滤波器的实际单位脉冲响应

由图17可知滤波器的实际脉冲响应h是偶对称的,即h(n)=h(N-n),故该滤波器满足FIR线性相位的条件,该滤波器是线性相位的FIR滤波器。

图18 所设计的带通滤波器的幅度和相位响应

由滤波器的相位特性也可以看出该滤波器是线性相位的FIR滤波器。此滤波器的群延时为al=(N)/2=13。接下来我们来看看此题所设计的滤波器的滤波效果:S为含有3个频率成分的信号(归一化频率(w/2 )分别为0.05、0.2、0.45),用所设计的滤波器滤除归一化频率为0.05和0.45的成分。

l=0:100;

s1=sin(0.1*pi*l);s2=sin(0.4*pi*l);s3=sin(pi*0.9*l);

s=s1+s2+s3;

sf=filter(h,1,s);

subplot(311)

stem(l,s);title('滤波前的信号');

subplot(312);

stem(l,sf);title('滤波后的信号');

subplot(313);

stem(l,s2);title('想要保留的信号');

图19采用filter函数进行数字滤波前后信号比较示意图

同上面分析相似,滤波后的信号和想要保留的信号的幅度和频率基本一致(滤波后的信号相对于想要保的信号有一个相位延迟,这是线性相位FIR滤波器的群延迟引起的,此滤波器留的群延迟r=(N)/2=13),所以我们可以说该滤波器基本满足了以上所提出的滤波要求。

4 Simulink仿真

本文通过调用Simuink中的功能模块构成数字滤波器的仿真框图,在仿真过程中,可以双击各功能模块,随时改变参数,获得不同状态下的仿真结果。在Simulink环境下,通过设置滤波器功能模块的参数(digital filter design模块的参数)来直接设计滤波器。

我们先设计满足上述带阻IIR滤波器参数的滤波器,再进行仿真。找到Simuink功能模块,communications blockset/comm filters/filter designs link/digital filter design,找到digital filter design模块。分别在sources和sinks中找到正玄信号示波器,再在math operation中找到相加器。信号n=0:100;s1=sin(pi*0.2*n);s2=sin(pi*0.6*n);s3=sin(pi*0.9*n);s4=s1+s3;

s=s1+s2+s3;修改正玄信号的参数sine type/time based、frequency分别改为0.2*pi,0.6*pi,0.9*pi,sample time改为1。其他模块的参数根据上述要求进行调整。将下图分别是仿真框图和滤波前后信号的波形:

图34 仿真框图

图35 滤波前后信号的比较

由上图可以看出信号s经过滤波后大致分离出了归一化频率为0.3的信号,即滤波后的信号与s4大致相同(与前面两种方法的结果相比较可知三种方法所得结果大致相同)。

同理我们设计满足上述带通FIR滤波器参数的滤波器,再进行仿真。输入

l=0:100;s1=sin(0.1*pi*l);s2=sin(0.4*pi*l);s3=sin(pi*0.9*l);s=s1+s2+s3

下图分别是仿真框图和滤波前后信号的波形:

图36 仿真框图

图37 滤波前后信号的比较

由上图可以看出信号s经过滤波后大致分离出了归一化频率为0.05和0.45的信号,即滤波后的信号与s2大致相同(与前面两种方法的结果相比较可知三种方法所得结果大致相同)。

5 结论

利用MATLAB的强大运算功能,基于MATLAB信号处理工具性的数字滤波器设计法可以快速有效的设计由软件组成的常规数字滤波器,设计方便、快捷,大大地减轻了工作量。在设计过程中可以对比滤波器特性,随时更改参数,以达到滤波器设计的最优化。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

matlab滤波器设计

长安大学 数字信号处理综合设 计 专业_______电子信息工程_______ 班级__24030602___________ 姓名_______张舒_______ 学号2403060203 指导教师陈玲 日期_______2008-12-27________

一、课程设计目的: 1. 进一步理解数字信号处理的基本概念、基本理论和基本方法; 2.熟悉在Windows环境下语音信号采集的方法; 3.学会用MATLAB软件对信号进行分析和处理; 4.综合运用数字信号处理理论知识,掌握用MATLAB软件设计FIR和IIR数字滤波器的方法; 5. 提高依据所学知识及查阅的课外资料来分析问题解决问题的能力。 二、课程设计内容: 1.语音信号的采集 利用windows下的录音机录制一段自己的话音,时间控制在1秒左右;并对语音信号进行采样,理解采样频率、采样位数等概念。 2.语音信号的频谱分析 利用函数fft对采样后语音信号进行快速傅里叶变换,得到信号的频谱特性。 3.设计数字滤波器 采用窗函数法和双线性变换法设计下列要求的三种滤波器,根据语音信号的特点给出有关滤波器的性能指标: 1)低通滤波器性能指标,fp=1000Hz,fc=1200Hz, As=100dB,Ap=1dB; 2)高通滤波器性能指标,fc=4800Hz,fp=5000Hz ,As=100dB,Ap=1dB; 3)带通滤波器性能指标,fp1=1200Hz,fp2=3000Hz,fc1=1000Hz,fc2=3200Hz,As=100dB,Ap=1dB。 4.对语音信号进行滤波 比较用两种方法设计的各滤波器的性能,然后用性能好的滤波器分别对采集的语音信号进行滤波;并比较滤波前后语音信号的波形及频谱,分析信号的变化。 5.回放语音信号,感觉滤波前后的声音变化。 三、实验原理 (一)基于双线性Z变换法的IIR数字滤波器设计 由于的频率映射关系是根据推导的,所以使jΩ轴每隔2π/Ts便映射到单位圆上一周,利用冲激响应不变法设计数字滤波器时可能会导致上述的频域混叠现象。为了克服这一问题,需要找到由s平面到z平面的另外的映射关系,这种关系应保证: 1) s平面的整个jΩ轴仅映射为z平面单位圆上的一周; 2) 若G(s)是稳定的,由G(s)映射得到的H(z)也应该是稳定的; 3) 这种映射是可逆的,既能由G(s)得到H(z),也能由H(z)得到G(s); 4) 如果G(j0)=1,那么。 双线性Z变换满足以上4个条件的映射关系,其变换公式为

滤波器设计MATLAB

数字信号处理

第一章概述 《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。通过该课程的课程设计实践,使我们对信号与信息的采集、处理、传输、显示、存储、分析和应用等有一个系统的掌握和理解,巩固和运用在《数字信号处理》课程中所学的理论知识和实验技能,掌握数字信号处理的基础理论和处理方法,提高分析和解决信号与信息处理相关问题的能力,为以后的工作和学习打下基础。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。 其中,设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用

最广泛的是双线性变换法。 我们在课本中学到基本设计过程是: ①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器; ③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。 而MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。 第二章总体方案设计 首先我将所给信号用MATLAB作图分析,然后通过观察st的幅频特性曲线,确定用高通滤波器作为处理信号的滤波器。选取滤波器的通带最大衰减为,阻带最小衰减为60dB为参数。 然后通过编程序调用MATLAB滤波器设计函数ellipord和ellip设计椭圆滤波器;通过编程序调用函数cheb1ord和cheby1设计切比雪夫滤波器,并绘图显示其幅频响应特性曲线。最后使用用滤波器实现函数filter,用两个滤波器分别对信号st进行滤波后绘图显示时域波形,观察滤波效果。 实验程序框图如图所示:

基于matlab的数字滤波器设计

淮北煤炭师范学院 2009届学士学位论文 基于MA TLAB的数字滤波器设计 学院、专业物理与电子信息学院 电子信息科学与技术 研究方向基于MATLAB的数字滤波器设计 学生姓名耿博 学号200513432024 指导教师姓名邹锋 指导教师职称讲师 2009 年4 月18

基于MATLAB的数字滤波器设计 耿博 (淮北煤炭师范学院物理与电子信息学院235000) 摘要随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。 数字滤波是数字信号处理的重要内容,数字滤波器可分为IIR和FIR两大类。对于IIR数字滤波器的设计,需要借助模拟原型滤波器,再将模拟滤波器转化为数字滤波器,文中采用的设计方法是脉冲响应不变法、双向性变换法和完全函数设计法;对于FIR数字滤波器的设计,可以根据所给定的频率特性直接设计,文中采用的设计方法是窗函数法。本文根据IIR滤波器和FIR滤波器的特点,在MATLAB坏境下分别用双线性变换法设计IIR和用窗函数设计FIR数字滤波器,并对采集的语音信号进行分析,最后给出了IIR和FIR对语音滤波的效果。 关键词数字滤波器;IIR ;FIR ;MATLAB

The Design of Digital Filter based on MATLAB Geng Bo School of Physics and Electronics Information, Huaibei Coal Industry Teachers? College, 235000 ABSTRACT Along with the information age and the digital world arrival, the digital signal processing has become a now extremely important discipline and the area of technology.The digital signal processing in the correspondence, the multitudinous domains the pronunciation such as the image, the automatic control, the radar, the military, the aerospace, the medical service and the domestic electric appliances and so on have obtained the widespread application.In the digital signal processing application, the digital filter are extremely important and have obtained the widespread application. The digital filter are the digital signal processing important content, the digital filter may divide into IIR and the FIR two main kinds. As for the IIR digital filter design, we need the help of analog prototype filter, and then transform analog filter into digital filter. In the paper we use the design of the pulse response invariable method, the bilinear method and full function design; as for the FIR filter, we can design it directly based on the giving frequency, in the paper it uses the design of the window function.This article according to the IIR filter and the FIR filter characteristic, uses the bilinearity method of transformation under the MATLAB bad boundary to design IIR and to design the FIR numeral filter separately with the window box number, and carries on the analysis to the gathering pronunciation signal, and finally gives IIR and FIR to the pronunciation filter effect. Keywords Digtial Filter;IIR;FIR;MATLAB

关于滤波器设计的matlab函数简表

关于滤波器设计、实现的Matlab函数分类函数名功能说明 滤波器分析 (求幅频、相频响应)abs求模值 angle求相角 freqs模拟滤波器的频率响应freqz数字滤波器的频率响应grpdelay群延迟 impz脉冲响应(离散的)zplane画出零极点图 fvtool滤波器可视化工具 滤波器实现(求输入信号通过滤波器的响应)conv/conv2卷积/二维卷积 filter求信号通过滤波器的响应 IIR滤波器阶数估算buttord巴特沃斯滤波器阶数估算 cheb1ord切比雪夫Ⅰ型滤波器阶数估算 cheb2ord切比雪夫Ⅱ型滤波器阶数估算 ellopord椭圆滤波器阶数估算 IIR数字滤波器设计(求系统函数H(z))butter cheby1 cheby2 ellip 模拟低通滤波器原型(归一化的)buttap模拟低通巴特沃斯滤波器原型cheb1ap模拟低通切比雪夫Ⅰ型滤波器原型cheb2ap模拟低通切比雪夫Ⅱ型滤波器原型ellipap模拟低通椭圆滤波器原型besselap模拟低通贝塞尔滤波器原型 模拟低通滤波器设计(求系统函数H(s))butter巴特沃斯滤波器设计cheby1切比雪夫Ⅰ型滤波器设计cheby2切比雪夫Ⅱ型滤波器设计ellip椭圆滤波器设计besself贝塞尔滤波器设计 模拟滤波器频带变换lp2bp低通→带通 lp2bs低通→带阻 lp2hp低通→高通 lp2lp低通→低通 滤波器离散化(由模拟滤波器得到数字滤波器)bilinear脉冲响应不变法impinvar双线性变换法 FIR滤波器设计fir1基于窗函数的FIR滤波器设计 fir2基于窗函数的任意响应FIR滤波器设 计 窗函数boxcar矩形窗 rectwin矩形窗 bartlett三角窗

数字滤波器的MATLAB设计与DSP上的实现

数字滤波器的MAT LAB设计与 DSP上的实现 数字滤波器的MATLAB 设计与DSP上的实现 公文易文秘资源网佚名2007-11-15 11:56:42我要投稿添加到百度搜藏 摘要:以窗函数法设计线性相位FIR数字滤波器为例,介绍用MATLAB工具软件设计数字滤波器的方法和在定点DSP上的实现。实现时,先在CCS5000仿真开发,然后将程序加载到TMS320VC5409评估板上实时运行,结果实现了目标要求。文中还讨论了定标、误差、循环寻址等在DSP上实现的关键问题。关键词 摘要:以窗函数法设计线性相位 FIR数字滤波器为例,介绍用 MATLAB工具软件设计数字滤波器的方法和在定点DSP上的实现。实现时,先在 CCS5000仿真开发,然后将程序加载到 TMS320VC5 409评估板上实时运行,结果实现了目标要求。文中还讨论了定标、误差、循环寻址等在DSP上实 现的关键问题。 关键词:数字滤波器MATLAB DSP 引言 随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应

用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。 1数字滤波器的设计 1.1数字滤波器设计的基本步骤 数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR )滤波器和有限长冲激响应(FIR )滤波器。IIR滤波器的特征是,具有无限持续时间冲激响应。种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间, 在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。随着 MATLAB软件尤 其是MATLAB的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。 数字滤波器设计的基本步骤如下: (1确定指标 在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般在频域中给岀幅度和相位响应。幅度指标主要以两种方式给岀。第一种是绝对指标。它提供对幅度响应函数的要求,一般应用于FI R滤波器的设计。第二种指标是相对指标。它以分贝值的形式给岀要求。在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中人有线性相位。运用线性相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③长度为N的滤波器(阶数为N-1),计算量为N/2数量级。因此,本文中滤波器的设计就以线性相位FIR滤波器的设计为例。 (2)逼近

基于matlab的FIR数字滤波器设计(多通带,窗函数法)

数字信号处理 课程设计报告 设计名称:基于matlab的FIR数字滤波器设计 彪

一、课程设计的目的 1、通过课程设计把自己在大学中所学的知识应用到实践当中。 2、深入了解利用Matlab设计FIR数字滤波器的基本方法。 3、在课程设计的过程中掌握程序编译及软件设计的基本方法。 4、提高自己对于新知识的学习能力及进行实际操作的能力。 5、锻炼自己通过网络及各种资料解决实际问题的能力。 二、主要设计内容 利用窗函数法设计FIR滤波器,绘制出滤波器的特性图。利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图,验证滤波器的效果。 三、设计原理 FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。 目前 FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的。 如果 FIR 滤波器的 h(n)为实数, 而且满足以下任意条件,滤波器就具有准确的线性相位: 第一种:偶对称,h(n)=h(N-1-n),φ (ω)=-(N-1)ω/2 第二种:奇对称,h(n)=-h(N-1-n), φ(ω)=-(N-1)ω/2+pi/2 对称中心在n=(N-1)/2处 四、设计步骤 1.设计滤波器 2.所设计的滤波器对多个频带叠加的正弦信号进行处理 3.比较滤波前后信号的波形及频谱 五、用窗函数设FIR 滤波器的基本方法 基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能

matlab数字滤波器设计程序

%要求设计一butterworth低通数字滤波器,wp=30hz,ws=40hz,rp=0.5,rs=40,fs=100hz。>>wp=30;ws=40;rp=0.5;rs=40;fs=100; >>wp=30*2*pi;ws=40*2*pi; >> [n,wn]=buttord(wp,ws,rp,rs,'s'); >> [z,p,k]=buttap(n); >> [num,den]=zp2tf(z,p,k); >> [num1,den1]=impinvar(num,den); Warning: The output is not correct/robust. Coeffs of B(s)/A(s) are real, but B(z)/A(z) has complex coeffs. Probable cause is rooting of high-order repeated poles in A(s). > In impinvar at 124 >> [num2,den2]=bilinear(num,den,100); >> [h,w]=freqz(num1,den1); >> [h1,w1]=freqz(num2,den2); >>subplot(1,2,1); >>plot(w*fs/(2*pi),abs(h)); >>subplot(1,2,2); >>plot(w1*fs/(2*pi),abs(h1)); >>figure(1); >>subplot(1,2,1); >>zplane(num1,den1); >>subplot(1,2,2); >>zplane(num2,den2);

高级数字滤波器设计及Matlab实现

高级数字滤波器设计及Matlab 实现 利用Parks-McClellan 算法设计线性相位FIR 滤波器 一、 算法原理 长度为2n+1的线性相位数字滤波器的传输函数为:20 ()n k k k G z h Z -== ∑。当 Z=exp(j T ω)=exp(2j F π)时,可得到频率响应: ()exp(2)cos 2n k k G F j nF d k F ππ==-∑ exp(2)()j F H F π=- 其中2n k k d h -=,k=0,……,n-1,0n d h = max ()()()W F D F H F - 对于一个理想的低通滤波器上式中的H(F)可以表示为: 误差加权函数: 允许设计者自己给定通带和阻带内的误差范围。令p s B B A = ,设计长度为2n+1的线性相位低通滤波器只要找到k d 并使得m a x ()()()W F D F H F -最小。 设空间A 是[0,1/2]的封闭子空间,为了使0 ()cos 2n k k H F d kF π== ∑是D(F) 在A 上唯一的最佳逼近,加权误差方程()()[()()]E F W F D F H F =-在A 上至少要有n+2个交错点。因此1()()i i E F E F E -=-=±,011,n i F F F F A +<∈ ,

max ()E E F =。算法的流程如图1所示。 对于给定的n+2个频率点,需要计算n+2个方程: ()(()())(1)k k k k W F H F D F ρ-=-- 写成矩阵的形式就是: 图 1.

0000001 1 1 1 1011 1 1 1 11 1cos 2cos 4cos 2()()11cos 2cos 4cos 2()()()(1)1cos 2cos 4cos 2()n n n n n n n F F nF W F d D F d F F nF D F W F d D F F F nF W F ππππππρπππ++++++?? ???? ?? ?? ??-????????????=??????????????????-?? ????? ? 通过该方程组可得: 其中: 利用拉格朗日插值公式可得: 这里 利用求得的H(F)求出误差函数E(F)。如果对所有的频率都有()E F ρ≤,说明ρ是纹波极值,交错频率点121,n F F F + 是交错频率点。若存在某些频率使得()E F ρ>,说明初始交错点组中的某些点需要交换。 对于上次确定的121,n F F F + 中每一点,都检查其附近是否存在某一频率 ()E F ρ>,如果有再在该点附近找出局部极值点,并用该,点代替原来的

基于MATLAB的滤波器设计

基于MATLAB 的滤波器设计 摘 要:利用MA TLAB 设计滤波器,可以按照设计要求非常方便地调整设计参数,极大地减轻了设计的工作量,有利于滤波器设计的最优化。Matlab 因其强大的数据处理功能被广泛应用于工程计算,其丰富的工具箱为工程计算提供了便利,利用Matlab 信号处理工具箱可以快速有效地设计各种数字滤波器,设计简单方便。本文介绍了在MATLAB R2011a 环境下滤波器设计的方法和步骤。 关键词:滤波器,matlab ,FIR ,IIR Abstract :By using MATLAB , we can design filters and modify the filters’parameters conveniently according to our demands. This relieves greatly design work loads and makes for optimization of filter designing. Matlab can be widely used in engineering calculations because of its powerful functions of data processing. Its rich toolbox makes the calculations easy. With Matlab signal processing toolbox, various digital filters can be designed effectively in simple way. This article introduce the methods and processes in the circumstance of MATLAB R2011a. Keywords :filter ,matlab ,fdatool 1.滤波器的原理 凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器,相当于频率“筛子”。 滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。 滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带内的电压增益为零;实际滤波器的通带和阻带之间存在一定频率范围的过渡带。 a .理想滤波器的频率特性 理想滤波器:使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。 如理想低通滤波器的频率响应函数为 0()()jw t C H jw A l W W Ω-=≤ 或 ()0()C H jw W W =>理想滤波器实际上并不存在。 b .实际滤波器 实际滤波器的特性需要以下参数描述: 1)恒部平均值A0:描述通带内的幅频特性;波纹幅度:d 。 2)上、下截止频率:以幅频特性值为A0/2时的相应频率值WC1,WC2作为带通滤波器的上、下截止频率。带宽21C C B W W =-。

基于MATLAB的数字滤波器设计

基于matlab的数字滤波器设计 摘要:本文介绍的是数字滤波器在MATLAB环境下的设计方法。数字滤波是数字信号处理的重要内容,在实际应用中有非常大的作用。我们研究的数字滤波器可分为IIR和FIR两大类。对于IIR数字滤波器的设计,我们需要借助模拟原型滤波器,然后再将模拟滤波器转化为数字滤波器,文中采用的设计方法是脉冲响应不变法、双向性变换法和完全函数设计法;对于FIR数字滤波器的设计,可以根据所给定的频率特性直接设计,文中采用的设计方法是窗函数法。根据IIR 滤波器和FIR滤波器的特点,本文在MATLAB坏境下分别用双线性变换法设计IIR和用窗函数设计FIR数字滤波器,并让这两种滤波器对采集的语音信号进行分析和比较,经过分析,最后给出了IIR和FIR对语音滤波的效果,并总结这两种滤波器在MATLAB环境下设计方法的优缺点。 关键词:数字滤波器;IIR ;FIR ;MATLAB

The Design of Digital Filter based on MATLAB Abstract:This article describes a digital filter in the MATLAB environment design. Digital filtering is an important part of digital signal processing which is playing a very big role in practice .The digital filter we studied can be divided into two categories——IIR and FIR. For the IIR digital filter design, we will need the help of simulation prototype filter, analog filters and then converted it into digital filter For the IIR digital filter design .The design methods used in the text is the same impulse response method, bi-sexual transformation and full function design ;We can based on the frequency characteristics of the given direct design, design method used in the text is the window function for FIR digital filter design. Based on the characteristics of IIR filter and FIR filters ,the bad paper in the MATLAB environment under the bilinear transformation method were used to design IIR and FIR with window function digital filter design and filters to capture both the voice signal analysis and compare. Through analysis of IIR and FIR Finally, the effect of filtering on the speech, and concluded the advantages and disadvantages in the two filter design methods in the MATLAB environment. Key words: Digital Filter ;IIR;FIR;MATLAB

FIR数字滤波器设计及MATLAB使用要点

数字信号处理课程设计 《数字信号处理》 课程设计报告 FIR数字滤波器设计及MATLAB实现 专业:通信工程 班级:通信1101班 组次:第9组 姓名及学号: 姓名及学号:

目录 一、设计目的 (3) 二、设计任务 (3) 三、设计原理 (3) 3.1窗函数法 (3) 3.2频率采样法 (4) 3.3最优化设计 (5) 3.3.1等波纹切比雪夫逼近准则 (5) 3.3.2仿真函数 (6) 四、设计过程 (7) 五、收获与体会 (13) 参考文献 (13)

FIR数字滤波器设计及MATLAB实现 一、设计目的 FIR滤波器:有限长单位冲激响应滤波器,是数字信号处理系统中最基 本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性, 同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。因此,FIR 滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。滤波器设 计是根据给定滤波器的频率特性,求得满足该特性的传输函数。 二、设计任务 FIR滤波器设计的任务是选择有限长度的() H e满足一定 h n,使传输函数()jw 的幅度特性和线性相位要求。由于FIR滤波器很容易实现严格的线性相位,所以FIR 数字滤波器设计的核心思想是求出有限的脉冲响应来逼近给定的频率响应。 设计过程一般包括以下三个基本问题: (1)根据实际要求确定数字滤波器性能指标; (2)用一个因果稳定的系统函数去逼近这个理想性能指标; (3)用一个有限精度的运算去实现这个传输函数。 三、设计原理 FIR滤波器设计的任务是选择有限长度的() H e满足一定 h n,使传输函数()jw 的幅度特性和线性相位要求。由于FIR滤波器很容易实现严格的线性相位,所以FIR数字滤波器设计的核心思想是求出有限的脉冲响应来逼近给定的频率响应。 设计过程一般包括以下三个基本问题: (1)根据实际要求确定数字滤波器性能指标; (2)用一个因果稳定的系统函数去逼近这个理想性能指标; (3)用一个有限精度的运算去实现这个传输函数。 3.1窗函数法 设计FIR数字滤波器的最简单的方法是窗函数法,通常也称之为傅立叶级数法。FIR数字滤波器的设计首先给出要求的理想滤波器的频率响应()jw H e,设计 d

用Matlab设计FIR滤波器的三种方法

用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法 摘要介绍了利用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法:程序设计法、FDATool设计法和SPTool设计法,给出了详细的设计步骤,并将设计的滤波器应用到一个混和正弦波信号,以验证滤波器的性能。 关键词 MATLAB,数字滤波器,有限冲激响应,窗函数,仿真 1 前言 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。 2 FIR滤波器的窗函数设计法 FIR滤波器的设计方法有许多种,如窗函数设计法、频率采样设计法和最优化设计法等。窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为: (1) 通过傅里叶逆变换获得理想滤波器的单位脉冲响应hd(n)。 (2) 由性能指标确定窗函数W(n)和窗口长度N。 (3) 求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。 (4) 检验滤波器性能。 本文将针对一个含有5Hz、15Hz和30Hz的混和正弦波信号,设计一个FIR带通滤波器,给出利用MATLAB实现的三种方法:程序设计法、 FDATool设计法和SPTool设计法。参数要求:采样频率fs=100Hz,通带下限截止频率fc1=10 Hz,通带上限截止频率 fc2=20 Hz,过渡带宽6 Hz,通阻带波动0.01,采用凯塞窗设计。 2 程序设计法 MATLAB信号处理工具箱提供了各种窗函数、滤波器设计函数和滤波器实现函数。本文的带通滤波器设计及滤波程序如下: [n,Wn,beta,ftype]=kaiserord([7 13 17 23],[0 1 0],[0.01 0.01 0.01],100); %得出滤波器的阶数n=38,beta=3.4 w1=2*fc1/fs; w2=2*fc2/fs;%将模拟滤波器的技术指标转换为数字滤波器的技术指标 window=kaiser(n+1,beta);%使用kaiser窗函数

matlab设计滤波器程序

Fs=1000; t=0.1:1/Fs:0.3; A=1; B=fir1(100,[0.12 0.18],'bandpass');%fir1基于窗函数的有限脉冲响应滤波器 X=3*sin(2*pi*80*t)+sqrt(5)*randn(1,length(t)); subplot(2,2,1) plot(t,X) title('叠加白噪声的正弦信号') xlabel('time (seconds)') X1=3*sin(2*pi*80*t); subplot(2,2,2) plot(t,X1) title('正弦信号') xlabel('time (seconds)') Y=filter(B,A,X); subplot(2,2,3) plot(t,Y) title('Hamming窗滤波后的信号') xlabel('time (seconds)') B=fir1(100,[0.12 0.18],'bandpass',kaiser(101)); Y1=filter(B,A,X); subplot(2,2,4) plot(t,Y1) title('bartlett窗滤波后的信号') xlabel('time (seconds)') B=fir1(100,[0.12 0.18],'bandpass',barthannwin(101)); Y2=filter(B,A,X); subplot(2,2,4) plot(t,Y1) title('barthannwin窗滤波后的信号') xlabel('time (seconds)') figure(2) Xk=fft(X1); Mk=abs(Xk); subplot(2,2,1) stem(Mk)

基于MATLAB的数字滤波器设计(DOC)

目录 1 引言 (1) 2 设计任务 (2) 2.1设计内容 (2) 2.2设计要求 (2) 3 语音信号的采集及时频分析 (3) 3.1语音信号的采集 (3) 3.2语音信号的时频分析 (3) 4 基于MATLAB的数字滤波器的设计 (5) 4.1数字滤波器的设计 (5) 4.1.1数字滤波器的基本概念 (5) 4.1.2 IIR滤波器设计思想 (5) 4.2IIR数字滤波器设计 (5) 4.2.1 IIR低通滤波器设计 (5) 4.2.2 IIR带通滤波器设计 (7) 4.2.3 IIR带通滤波器设计 (9) 5 合成信号及其滤波 (12) 5.1合成信号 (12) 5.2合成信号滤波 (13) 6 设计系统界面 (15) 6.1系统界面设计工具—GUI概述 (15) 6.2界面设计及使用说明 (15) 7 心得体会 (18) 参考文献 (19) 附录 (20)

1 引言 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 IIR滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。 MATALB 可以创建图形用户界面GUI (GraphicalUser Interface) ,它是用户和计算机之间交流的工具。MATLAB 将所有GUl 支持的用户控件都集成在这个环境中并提供界面外观、属性和行为响应方式的设置方法,随着版本的提高,这种能力还会不断加强。而且具有强大的绘图功能,可以轻松的获得更高质量的曲线图。 滤波器的设计可以通过软件或设计专用的硬件两种方式来实现。随着MATLAB软件及信号处理工具箱的不断完善,MATLAB很快成为应用学科等领域不可或缺的基础软件。它可以快速有效地实现数字滤波器的设计、分析和仿真,极大地减轻了工作量,有利于滤波器设计的最优化。

滤波器设计与信号处理的matlab实现(2014年12月)

滤波器设计与信号处理的MATLAB 实现 庞 勇 2014年12月 1. IIR 滤波器设计和MATLAB 实现 1.1 IIR 滤波器设计原理 对于IIR 滤波器设计,我们主要学习的是由模拟滤波器设计数字滤波器的方法,设计思路和流程如图: 目的满足 先设计 基于第3步由模拟滤波器向数字滤波器的转化方式,IIR 滤波器设计方法分为“脉冲响应不变法”和“双线性变换法”,由于“脉冲响应不变法”存在混叠误差的缺陷,因此一般我们多选“双线性变换法”,而对于第2步模拟滤波器的设计,我们主要学习的是巴特沃斯设计方法,因此这里以“巴特沃斯滤波器双线性变换”设计法为例来阐述IIR 滤波器的设计方法和matlab 实现。 “巴特沃斯滤波器双线性变换”设计法的设计流程: 终始DF 指标 DF () c H s () d H z 11 211z s T z ---= +

原理解释: δ1δ-1+δ 222p T tg 1-1+2 s T 2 2() c H j Ω2p T ω 2 δ1 1δ-1 1+δ2 s T ω(d p ωs ω0 δ1δ-1 1+π 其中巴特沃斯模拟滤波器设计流程为: 1+2 δ1δ-δH 得两点代入()j ΩN Ωj A 点代入 ()H Ω得c H(s)H(-s)极点分布:共2N 个共圆c Ω等角距N π 1.2 “巴特沃斯滤波器双线性变换”设计法的matlab 实现: 按照设计原理和流程,每一步都可以在matlab 里进行编程计算,因此完全可以编程实现从技术指标到系统函数的整个计算,并且matlab 的信号处理工具箱已经把这整个计算过程编成函数供人们直接调用,我们只要了解这个函数的使用方法就可以了。

matlab工具箱设计滤波器

MATLAB中用FDATool设计滤波器及使用 该文章讲述了MATLAB中用FDATool设计滤波器及使用. 1. 在Matlab中键入fdatool运行Filter Design and Analysis Tool。具体使用请参见Matlab Help中的Signal Processing Toolbox->FDATool。 2. 在fdatool工具中应该注意的几个问题:(a)Fstop(阻带截止频率)不能大于或等于采样频率Fs/2,这是由于数字滤波器设计的方式决定的。(b)将设计好的滤波器导出,可以采用两种方式Export the filter either as filter coefficients variables or as a dfilt or mfilt filter object variable。(详细说明参见Matlab Help中的Signal Processing Toolbox-> FDATool-> Exporting a Filter Design。 导出:File---Export弹出EXPORT对话框,选择“Export As”为“Objects”,“Varable Names”可以更改,默认为Hd。 3. (a)如果导出的是dfilt or mfilt filter object variable,则可以用[b, a] = tf(Hd)将dfilt filter object转换为传递函数形式,然后用d=filter(b,a,x); 使用这个滤波器。其中:filter是默认函数,b、a是刚刚设计的传递函数参数,x是原始采集信号,d为滤波后的信号。x=importdata('E:\matlab_work\xy\bb\O6.txt'); N=length(x); %取长度 fs=4000; %采样频率 t=(0:N-1)/fs; 输出Hd; [b,a]=tf(Hd);%得到传递函数 d=filter(b,a,x); subplot(311); plot(t,x); title('原始信号'); xlabel('t'); ylabel('y'); grid on; 基于fdatool工具的数字滤波器的matlab设计 数字滤波器的matlab设计 1.1 fdatool界面设计 1.1.1 fdatool的介绍 fdatool(filter design & analysis tool)是matlab信号处理工具箱里专用的滤波器设计分析工具,matlab6.0以上的版本还专门增加了滤波器设计工具箱(filter design toolbox)。fdatool可以设计几乎所有的基本的常规滤波器,包括fir和iir的各种设计方法。它操作简单,方便灵活。

相关主题
文本预览
相关文档 最新文档