步学会用MATLAB做空间计量回归详细步骤
- 格式:docx
- 大小:17.11 KB
- 文档页数:26
与MATLAB链接:
Excel:
选项——加载项——COM加载项——转到——没有勾选项
2. MATLAB安装目录中寻找toolbox——exlink——点击,启用宏
E:\MATLAB\toolbox\exlink
然后,Excel中就出现MATLAB工具
(注意Excel中的数据:)
3.启动matlab
(1) 点击start MATLAB
(2) senddata to matlab ,并对变量矩阵变量进行命名(注意:选取变量为数值,不包括各变量)
(data表中数据进行命名)
(空间权重进行命名)
(3) 导入MATLAB中的两个矩阵变量就可以看见
4.将elhorst和jplv7两个程序文件夹复制到MATLAB安装目录的toolbox文件夹
5.设置路径: 6.输入程序,得出结果
T=30;
N=46;
W=normw(W1);
y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
results=ols(y,[xconstant x]);
vnames=strvcat('logcit','intercept','logp','logy');
prt_reg(results,vnames,1);
sige=*((nobs-K)/nobs);
loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*
% The (robust)LM tests developed by Elhorst
LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests
解释
每一行分别表示: 该面板数据的时期数为30(T=30),
该面板数据有30个地区(N=30),
将空间权重矩阵标准化(W=normw(w1)),
将名为A(以矩阵形式出现在MATLABA中)的变量的第3列数据定义为被解释变量y,
将名为A的变量的第4、5、6列数据定义为解释变量矩阵x,
定义一个有N*T行,1列的全1矩阵,该矩阵名为:xconstant,(ones即为全1矩阵)
说明解释变量矩阵x的大小:有nobs行,K列。(size为描述矩阵的大小)。
附录:
静态面板空间计量经济学
一、OLS静态面板编程
1、普通面板编程
T=30;
N=46;
W=normw(W1);
y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
results=ols(y,[xconstant x]); vnames=strvcat('logcit','intercept','logp','logy');
prt_reg(results,vnames,1);
sige=*((nobs-K)/nobs);
loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*
% The (robust)LM tests developed by Elhorst
LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests
2、空间固定OLS (spatial-fixed effects)
T=30;
N=46;
W=normw(W1);
y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
model=1;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);
results=ols(ywith,xwith); vnames=strvcat('logcit','logp','logy'); % should be changed if x is
changed
prt_reg(results,vnames);
sfe=meanny-meannx*; % including the constant term
yme = y - mean(y);
et=ones(T,1);
error=y-kron(et,sfe)-x*;
rsqr1 = error'*error;
rsqr2 = yme'*yme;
FE_rsqr2 = - rsqr1/rsqr2 % r-squared including fixed effects
sige=*((nobs-K)/nobs);
logliksfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*
LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
3、时期固定OLS(time-period fixed effects)
T=30;
N=46;
W=normw(W1); y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
model=2;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);
results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is
changed
prt_reg(results,vnames);
tfe=meanty-meantx*; % including the constant term
yme = y - mean(y);
en=ones(N,1);
error=y-kron(tfe,en)-x*;
rsqr1 = error'*error;
rsqr2 = yme'*yme;
FE_rsqr2 = - rsqr1/rsqr2 % r-squared including fixed effects sige=*((nobs-K)/nobs);
logliktfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*
LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
4、空间与时间双固定模型
T=30;
N=46;
W=normw(W1);
y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
model=3;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);
results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is
changed
prt_reg(results,vnames) en=ones(N,1);
et=ones(T,1);
intercept=mean(y)-mean(x)*;
sfe=meanny-meannx*(en,intercept);
tfe=meanty-meantx*(et,intercept);
yme = y - mean(y);
ent=ones(N*T,1);
error=y-kron(tfe,en)-kron(et,sfe)-x*(ent,intercept);
rsqr1 = error'*error;
rsqr2 = yme'*yme;
FE_rsqr2 = - rsqr1/rsqr2 % r-squared including fixed effects
sige=*((nobs-K)/nobs);
loglikstfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*
LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
二、静态面板SAR模型
1、无固定效应(No fixed effects)
T=30;
N=46; W=normw(W1);
y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N;
wx(t1:t2,:)=W*x(t1:t2,:);
end
xconstant=ones(N*T,1);
[nobs K]=size(x);
=0;
=0;
=0;
results=sar_panel_FE(y,[xconstant x],W,T,info);
vnames=strvcat('logcit','intercept','logp','logy');
prt_spnew(results,vnames,1)
% Print out effects estimates
spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sar(results,vnames,W);
2、空间固定效应(Spatial fixed effects)
T=30;
N=46;
W=normw(W1);
y=A(:,[3]);
x=A(:,[4,6]);