Anomalous thermal conductivity of frustrated Heisenberg spin-chains and ladders
- 格式:pdf
- 大小:190.33 KB
- 文档页数:5
arXiv:cond-mat/0201300v3 [cond-mat.str-el] 9 Sep 2002AnomalousthermalconductivityoffrustratedHeisenbergspin-chainsandladders
J.V.AlvarezandClaudiusGros
Fakult¨at7,TheoretischePhysik,UniversityoftheSaarland,66041Saarbr¨ucken,Germany.
Westudythethermaltransportpropertiesofseveralquan-
tumspinchainsandladders.Wefindindicationsforadiverg-ingthermalconductivityatfinitetemperaturesforthemodelsexamined.Thetemperatureatwhichthenon-divergingpref-
actorκ(th)(T)peaksisingeneralsubstantiallylowerthanthetemperatureatwhichthecorrespondingspecificheatcV(T)ismaximal.Weshowthatthisresultofthemicroscopicap-
proachleadstoasubstantialreductionforestimatesofthemagneticmean-freepathλextractedbyanalyzingrecentex-periments,ascomparedtosimilaranalysesbyphenomenolog-icaltheories.PACSnumbers:
Introduction-Thenatureofthermaltransportin
systemswithreduceddimensionsisalongstandingprob-
lemandhasbeenstudiedintensivelyinclassical1sys-
temseitherbydirectnumericalout-of-equilibriumsimu-
lations2orbyinvestigationofsoliton-solitonscattering
processes3.Therehasbeen,ontheotherhand,con-
siderablylessprogressforquantumsystems.Huber,in
oneofthefirstsworksonthesubject4,evaluatedthe
thermalconductivityκ(T)fortheHeisenberg-chainwith
anequation-of-motionapproximationandfoundafinite
κ(T),aresultwhichis,bynow,knowntobewrong.It
hasbeenshownrecently5,thattheenergy-currentop-
eratorcommuteswiththehamiltonianforthespin-1/2
Heisenbergchain.Thethermalconductivityisconse-
quentlyinfiniteforthismodel.Theintriguingques-
tion,“underwhichcircumstancesdoesaninteracting
quantum-systemshowaninfinitethermalconductivity”,
isto-datecompletelyopen,theanalogousquestionfor
classicalsystemsbeingintensivelystudied1.
Asecondmotivationtostudyκ(T)forquantumspin-
systemscomesfromexperiment.Ananomalouslarge
magneticcontributiontoκhasbeenobserved6forthe
hole-dopedspin-laddersystemSr14−xCaxCu24O41.For
Ca9La5Cu24O41,whichhasnoholesintheladders,an
evenlargerthermalconductivityhasbeenmeasured7
raisingthepossibilityofballisticmagnetictransportlim-
itedonlybyresidualspin-phononandimpurityscatter-
ing.Thereis,however,up-to-datenomicroscopiccalcu-
lationforthethermalconductivityofspin-ladders.
InthisLetterwepresentafinitesizeanalysisofthe
thermalconductanceinHeisenbergJ1−J2chainsand
ladderssuggestingballisticthermaltransportinthese
twofamiliesofspinmodels.Followingthisresultwe
proposeapossiblescenariothatwouldaccountanum-
berofanomaliesfoundinthethermalconductivityin
spinsystems.Weapplytheseideastothecaseof
Ca9La5Cu24O41,obtaininggoodagreementwithrecentexperimentalmeasurements.
Models-Weconsiderquasione-dimensionalsystems
forwhichthehamiltoniantakestheformH=Lx=1Hx,
whereListhenumberofunitsalongthechain.Wewill
considertwomodels,theisotropicHeisenbergchainwith
dimerizednearestandhomogeneousnext-nearestneigh-
borexchangecouplings,
H(ch)x=J
(1+δ(−1)x)Sx·Sx+1+αSx·Sx+2
,
andthetwo-legHeisenberg-ladder:
H(lad)x=J(S1,x·S1,x+1+S2,x·S2,x+1)+J⊥S1,x·S2,x.
H(ch)hasbeenproposedtomodelthemagneticprop-
ertiesofthespin-PeierlscompoundCuGeO3.Thenon-
frustrateddimerizedHeisenbergchain(α=0)models
themagneticbehavior8of(VO)2P2O7.Ca9La5Cu24O41containsdopedspin-chainsandundopedspin-ladders7,
describedbyH(lad).
Method-Ourgoalistomakeconnectionbetweenthe
microscopictransport-propertiesofthelowdimensional
modelspresentedaboveandtheexperimentalmeasure-
mentsofthermalconductivitymentionedintheintro-
duction.
Thethermalconductivityisdefinedastheresponse
oftheenergy-currentdensityjExtoathermalgradient
jEx=−κ∇Tandithasunitsof[κ]=W
cjEx,
wherecisthelatticeconstantalongthechain-direction.
Intheabsenceofappliedmagneticfieldsspin-inversion
symmetryholdsandtheKuboformulaforκ=
limω→0κ(ω)reducesto4
κ=limω→0β2α=0=δandaspin-anisotropy).Thetotalthermal
currentcommuteswiththehamiltonianinthiscase5and
thecurrent-currentcorrelationfunctionisthereforetime-
independent.Eq.(1)reducesthentothestaticexpecta-
tionvalueκ(ω=0)=β2(JE)2/(Ls),aquantitywhich
canbeevaluatedbyBethe-Ansatz10.
Ingeneralwehave[JE,H]=0,butthethermaltrans-
portwillbeballisticif
κ(th)=β2
vs(3)
toholdforthethermalconductivityκ.
LetusdiscusstherelationofEq.(3)totheusualphe-
nomenologicalformula13(hereinonedimension)
κ(ph)=cVvsλ,(4)
wherecVisthespecificheat.Whenappliedinorder
toanalyzeexperimentaldata,themicroscopicequation
(3)willingeneralyielddifferentvaluesforthemagnetic
mean-freepathλ.Ontheotherhand,wemightexpect
Eq.(4)toholdatlowtemperaturefortheHeisenberg-
chaininthegaplessphase,whentheLuttinger-liquid
quasiparticlesarewelldefinedandaBoltzmannapproach
isjustified.Consequentlyweexpectκ(th)λ/vs≡cVvsλ
inthiscase,i.e.weexpectκ(th)/cV≡v2sinthelimit
T→0.Allthreequantitiesinthisequation(κ(th),cVandvs)canbecomputedbyBethe-AnsatzfortheXXZ-
chain.Onefindsthatthisequationisexact10inthelimit
T→0.
Numerics-Thecomputationofκ(th)(T)demandsthe
wholespectrumofthehamiltonian,restrictingthemax-
imumlatticesizeandacarefulfinite-sizeanalysisisre-
quired.Ingeneralonefinds,e.g.fortheXXZ-modelfor
whichtheexactBethe-Ansatzresultisknown10,thatthe
κ(th)inchainswithodd(even)numberofsiteschainsis
aupper(lower)boundoftheexactresult.Thevalueof
κ(th)(T)decreases(increases)forchainswithodd(even)
numberofsiteswhenthelatticeisenlarged.Thisobser-
vationhasledustoconsidertheaverage
κ(th)(Leff)=L0κ(th)(L0)+L1κ(th)(L1)