当前位置:文档之家› 爱因斯坦的相对论

爱因斯坦的相对论

爱因斯坦的相对论
爱因斯坦的相对论

系的选择无

增加。它也可以用来解释核反应所释放的巨大能量,但它不是导致原子弹的诞生的原因。而广义相对论所预言的引力透镜和黑洞,与有些天文观测到的现象符合。

绝对时空观

所谓时空观,即是有关时间和空间的物理性质的认识。伽利略变换是力学相对论原理的数学描述。它集中反映了经典力学的绝对时空观。

1.时间间隔与惯性系的选择无关

若有两事件先后发生,在两个不同的惯性系中的观测者测得的时间间隔相同。

2.空间间隔也与惯性系的选择无关

空间任意两点之间的距离与惯性系的选择无关。

我们可以看出,在经典力学中,物体的坐标和速度是相对的,同一地点也是相对的。但时间、长度和质量这三个物理量是绝对的,同时性也是绝对的。这就是经典力学的绝对时空观。

寻找以太

十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。在十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种连续介质叫做“以太”,光线和射电讯号是在以太中的波动。完整理论需要的是仔细测量以太的弹性性质,为此,哈佛大学建立了杰弗逊实验室,整个建筑不用任何铁钉,以免干扰磁测量,然而因策划者忽视了褐红色转头中所含大量铁,预计实验无法如期进行。到世纪之末,开始出现了和穿透一切以太的观念的偏差,如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论;如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。就此,人们发现,这是一个充满矛盾的理论。

迈克尔逊莫雷的实验示意图

1887年阿尔伯特·迈克尔逊和爱德华·莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研

究了这一问题。他指出,只要摒弃牛顿所确立的绝对时间的概念,一切困难都可以解决,根本不需要什么以太。

★注释:以太:由希腊学者提出,认为是光传播的介质

固定以太理论:如果光是在一种称为以太的弹性物质中的波,则在向它运动来的航天飞船上的某人

(a)看来光速变得较高,而在与光同方向运动的航天飞船上的某人(b)看来光速变得

较低。

两个基本假设

1.物理规律在所有惯性系中都具有相同的形式。

2.在所有的惯性系中,光在真空中的传播速率具有相同的值C。

第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。

第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个假设没有抵触,就必须重新分析时间与空间的物理概念。

洛伦兹变换

经典力学中的速度合成法则实际依赖于如下两个假设:

1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系。

2.两点的空间距离与测量距离所用的尺的运动状态无关。

爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等,距离也有了相对性。

如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c 是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然

定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

时间与空间的联系

此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的刚性连续时空,通常称为明可夫基里平直时空。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=MC^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。在后来的核反应试验中证明了这一点。

对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了支配光电效应的定律。”对于相对论只字未提。

建立广义相对论

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即任何加速和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

实验验证

1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的

水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖。

编辑本段狭义相对论

概念

马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的,绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是由能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理推出了洛仑兹变换。创立了狭义相对论。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。有一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是

统一的,不可分割的整体,它们是一种“此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大,即在我们的自然世界中没有绝对静止的物体。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

原理

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。

著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。

由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变换,与传统的法则相矛盾,但实践证明是正确的,因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

洛伦兹变换(英文Lorentz transformation),由于爱因斯坦提出的假说否定了伽利略变换,因此需要寻找一个满足相对论基本原理的变换式。爱因斯坦导出了这个变换

式,一般称它为洛伦兹变换式。

效应

根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。

相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。

尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。

由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这时与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。

结论

相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形式不变,在洛伦兹变换下原本简洁的形式变得极为复杂。因此经典力学要进行修改,修改后的力学体系在洛伦兹变换下形式不变,称为相对论力学。

狭义相对论建立以后,对物理学起到了巨大的推动作用。并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。然而在成功的背后,却有两个遗留下的原则性问题没有解决。第一个是惯性系所引起的困难。抛弃了绝对时空后,惯性系成了无法定义的概念。我们可以说惯性系是惯性定律在其中成立的参考系。惯性定律实质是一个不受外力的物体保持静止或匀速直线运动的状态。然

而"不受外力"是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。第二个是万有引力引起的困难。万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意。

爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等效原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。建立了广义相对论以后,爱因斯坦后来的约四十年的时间都用来探索统一场论,试图把引力和电磁力统一起来,以完成物理学的完全统一。刚开始几年他十分乐观,以为胜利在握;后来发现困难重重。当时的大部分物理学家并不看好他的工作,因此他的处境十分孤立。虽然他始终没有取得突破性的进展,不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。

证明

相对论公式及证明

符号单位符号单位

坐标(x,y,z):m 力F(f):N

时间t(T):s 质量m(M): kg

位移r:m 动量p: kg*m/s

速度v(u):m/s 能量E: J

加速度a:m/s^2 冲量:N*s

长度l(L):m 动能Ek:J

路程s(S):m 势能Ep:J

角速度ω:rad/s 力矩:N*m

角加速度:rad/s^2α 功率P:W

牛顿力学

(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫vdt

(2)a=dv/dt,v=v0+∫adt

(注:两式中左式为微分形式,右式为积分形式)

当v不变时,(1)表示匀速直线运动。

当a不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

(二):质点动力学:

(1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。

(2)牛二:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=dp/dt

(3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡。

(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)

动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)

动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)

机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2

(注:牛顿力学的核心是牛顿第二定律:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)

狭义相对论力学

(注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)

1.基本原理:(1)相对性原理:所有惯性系都是等价的。

(2)光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出证明)

2.洛仑兹坐标变换:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

3.速度变换:

V(x)=(v(x)-u)/(1-v(x)u/c^2)

V(y)=v(y)/(γ(1-v(x)u/c^2))

V(z)=v(z)/(γ(1-v(x)u/c^2))

4.尺缩效应:△L=△l/γ或dL=dl/γ

5.钟慢效应:△t=γ△τ或dt=dτ/γ

6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)

(光源与探测器在一条直线上运动。)

7.动量表达式:P=Mv=γmv,即M=γm

8.相对论力学基本方程:F=dP/dt

9.质能方程:E=Mc^2

10.能量动量关系:E^2=(E0)^2+P^2c^2

(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)

三维证明

1.由实验总结出的公理,无法证明。

2.洛仑兹变换:

设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。

可令

x=k(X+uT) (1).

又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.

故有

X=k(x-ut) (2).

对于y,z,Y,Z皆与速度无关,可得

Y=y (3).

Z=z (4).

将(2)代入(1)可得:x=k^2(x-ut)+kuT,即

T=kt+((1-k^2)/(ku))x (5).

(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.

代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:

k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

3.速度变换:

V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))

=(dx/dt-u)/(1-(dx/dt)u/c^2)

=(v(x)-u)/(1-v(x)u/c^2)

同理可得V(y),V(z)的表达式。

4.尺缩效应:

B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ 5.钟慢效应:

由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.

(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)

6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b) (1).

探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则

△t(N)=(1+β)△t(a) (2).

相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N) (3).

由以上三式可得:

ν(a)=sqr((1-β)/(1+β))ν(b).

7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)

牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。

牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)

8.相对论力学基本方程::

由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)

9.质能方程:

Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv

=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2

=Mv^2+Mc^2(1-v^2/c^2)-mc^2

=Mc^2-mc^2

即E=Mc^2=Ek+mc^2

10.能量动量关系:

E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2 四维证明

1.公理,无法证明。

2.坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,

dS^2=dx^2+dy^2+dz^2+(icdt)^2 (1).

则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。

由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)

X=xcosφ+(ict)sinφ

得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

3.4.5.6.略。

7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)

令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。

则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)四维动量:P=mV=(γmv,icγm)=(Mv,icM)

四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)

四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)

则f=mdV/dτ=mω

8.略。

9.质能方程:

fV=mωV=m(γ^5va+i^2γ^5va)=0

故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)

由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))

故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2

故E=Mc^2=Ek+mc^2

编辑本段广义相对论

概念

大爆炸宇宙学说图册(7张)

相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。

相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是 3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。

空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。而且不存在没有物质的空间,因为就算有你也永远无法发现,因为当你看见它的同时,它就有了物质,最起码是光。

相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,

称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。

公式

根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空”的思想,爱因斯坦给出了著名的引力场方程(Einstein's field equation):R_ - \fracg_ R = - 8 \pi {G \over c} T_

其中G 为牛顿万有引力常数,这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。加入宇宙学常数后的场方程为:R_ - \fracg_ R + \Lambda g_= - 8 \pi {G \over c} T_

原理

由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性

质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。

验证

爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。直到最近才增加了第四个验证:(4)雷达回波的时间延迟。

(1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。5M产生的红移,结果与相对论预言一致。

(2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hv和质能公式E=Mc^2 求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍。1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内。引起误差的主要原因是太阳大气对光线的偏折。最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会。精密测量进一步证实了相对论的结论。

(3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们

考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。

(4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。

编辑本段相对论分野

传统上,在爱因斯坦刚刚提出相对论的初期,人们以所讨论的问题是否涉及非惯性参考系来作为狭义与广义相对论分类的标志。随着相对论理论的发展,这种分类方法越来越显出其缺点——参考系是跟观察者有关的,以这样一个相对的物理对象来划分物理理论,被认为较不能反映问题的本质。目前一般认为,狭义与广义相对论的区别在于所讨论的问题是否涉及引力(弯曲时空),即狭义相对论只涉及那些没有引力作用或者引力作用可以忽略的问题,而广义相对论则是讨论有引力作用时的物理学的。用相对论的语言来说,就是狭义相对论的背景时空是平直的,即四维平凡流型配以闵氏度规,其曲率张量为零,又称闵氏时空;而广义相对论的背景时空则是弯曲的,其曲率张量不为零。

编辑本段佯谬问题

时钟双生子佯谬

相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A 看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在哪个参考系中,B都比A年轻。因为B是经过加速的,你看刚开始在地球上,于A的相对速度为0,而后来速度接近光速了(注意是接近)。很明显是变速运动了,所以这样一来就不能说是“认为A看B 在运动,B看A也在运动,为什么不能是A比B年轻呢?”这句话根本就是对相对论错误的理解。而且B的年轻是相对于A的,对于他本人来说是不存在多活多少时间这么一说的。

为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间调头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重

逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A先是比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。

编辑本段相对论获确证

伟大科学家爱因斯坦早于上世纪发表的“时间相对论”,一般国际科学家要100多年后的昨天才终于确证。

1905年,爱因斯坦订立著名的时间相对论,指一件对象相对于另一对象移动的速度,会使时间加快或减慢。根据这个假设,一个移动中的时钟秒针应比一个静止平放的时钟秒针跳动得慢,这现象称为“时间稀释”。

报道称,国际科学家发表报告指出,他们利用分子加速器把原子打成两条光束,绕圈而行,模拟理论中较快的时钟,然后用高精密度的激光光谱测量时间,发现光束相较外界的确慢了一些。实验与爱因斯坦的理论“完全吻合”。

重力感应磁场预言被证实

爱因斯坦相对论中的微“重力感应磁场”预言,近日首次于实验室得到证实,欧洲航天局日前公布了这项实验结果。

本次实验的首席科学家塔玛(Martin Tajmar)27日接受《第一财经日报》采访时表示

,实验所获“重力感应磁场”力比相对论所预言的威力要大得多,并将此磁场命名为“伦敦一刻重力感应磁场”(Gravitomagnetic London Moment)。

之前,已有超导(电)体的高速旋转能产生“感应磁场”的证明。但此前相对论预言,存在类地球引力磁场,即“重力感应磁场”,不过影响力很弱,此次试验对此作出了证明。

实验的主要仪器是特制的加速器。“重力感应磁场”主要产生于超导(电)体的高速旋转。

据了解,实验中的旋转速度达到了一分钟6500次。超导体是一种特殊的材料,很多微型加速感应器被放置在高旋超导体的不同部位,记录各种外部感应数据,数据显示,感应影响力远超于爱因斯坦的预言。

塔玛还表示,在发表这一实验结果之前,已经经历了250次尝试,改善实验仪器3年多,并且花了8个月的时间验证结果的有效性。现在可以非常自信地保证实验过程的合理性。但是他也同时强调,这一实验仪器并不具有唯一排他性。

塔玛表示,还希望能够有其他的实验组进行同样的实验来确认他们实验结果的精确性,这项技术在军事和空间技术上将能广泛地应用。

他说,如果得到确信,这可以说是一项伟大的突破,开启了爱因斯坦相对论研究的全新调查手段,并且影响整个量子领域。

欧洲航空局空间动力领域主管马特斯(Clovis J.deMatos)告诉本报记者,这项实验结果是否是相对论的一种突破,还在进一步讨论之中,虽然是否能被其他科学家同样验证还是未知数,但目前实验人员还将采用大量高速旋转的地球引力波色子,“重力波色子”继续完善这一感应磁场的模板。[1]

编辑本段同名图书

基本信息

作者:阿尔伯特·爱因斯坦著,易洪波李智谋译

出版社:江苏人民出版社

出版时间:2011-3-1

《相对论》

版次:1

页数:296

开本:16开

I S B N:9787214067821

这是一部彻底颠覆经典物理学观念的创世之书。它否定了牛顿的绝对时空观,认为空间不是平直的欧几里得空间,而是在引力场中弯曲的黎曼空间;时间也不是独立于空间的单独一维,它无时无刻不在空间之中,与空间构成一个统一的四维时空整体。这是一部并非凭借双眼,而是用智慧发现并创建了宇宙新秩序的书。它揭示了宇宙所具有的超乎寻常的秘密;同时性的相对性;运动中的钟慢、尺缩效应;水星的近日点异动;光谱红移;引力场中时钟变慢等。

这是一部为航天科学、天文学等高新学科奠定了理论基础的书。它的质能公式

E=mc2所显示的原子裂变的巨大能量,在成为新兴能源的同时,也变成了悬在人类头顶的达摩克利斯之剑。黑洞和暗能量的发现让我们开始接近宇宙的起源和终结。

总之,这是一部现代及未来科学最伟大的奠基之作。

作者简介

爱因斯坦(1879—1955年),20世纪最伟大的科学家,因创立相对论而闻名于世。

现代物理学的开创者和奠基者,相对论的提出者。

目录

总序

编译者语

相对论简史(代序)

导读

第一章狭义相对论

1.1几何命题的物理意义

1.2坐标系

1.3经典力学中的空间和时间

1.4伽利略坐标

1.5相对性原理(狭义)

1.6经典力学中的速度相加定理

1.7光的传播定律与相对性原理的表面抵触

1.8物理学的时间观

1.9相对性的同时性

1.10距离概念的相对性

第二章广义相对论

1.狭义和广义相对性原理

2.引力场

3.引力场的思想试验

4.惯性质量和引力质量相等是广义相对性公设的一个论据

5.等效原理

6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意

7.广义相对性原理的几个推论

8.在转动的参考物上的钟和量杆的行为

9.欧几里得和非欧几里得连续区域

10.高斯坐标

11.狭义相对论得时空连续区可以当作欧几里得连续区

12.广义相对论得时空连续区不是欧几里得连续区

13.广义相对论原理的严格表述

14.在广义相对性原理的基础上理解引力问题

爱因斯坦的相对论

篇名 愛因斯坦的相對論 作者 郭展嘉。國立虎尾高中。一年三班申建霖。國立虎尾高中。一年三班李憲昌。國立虎尾高中。一年三班

在我們的國中階段物理化學課已經學到了不少科學家與物理學家,上了高中之後,我們最常聽到的物理學家的名字就是屬於「愛因斯坦」了! 因為他的相對論造成了革命性的變化〈至今還沒有人能夠推翻他的學說〉,也是因為之前有人想解剖他的腦袋做觀察他為什麼會那麼地聰明,所以引發我們想了解他的動機;也剛好有這個小論文的機會所以我們國文老師指派了一個任務給我們班所有人,藉著這次機會我開始和組員一起開始對愛因斯坦做了更深入的研究。 貳●正文 一.愛因斯坦生平簡介 01.1902年任職於瑞士專利局,工作乏味,下班後在家中進行自已所喜 歡的研究。 02. 在他26歲時,也就是1905年,愛因斯坦共計發表了3篇論著{光電效應、分子論的布朗運動、電力學的相對論},其中第二篇光電效應使他在1921年榮獲諾貝爾物理獎。最引人注目的是他所提出相對論的質量和能量的關係,這兩者是一體的兩面,可以互相轉換,這導致核能的實現(質量的損失可以轉變成能量)。 03. 1912年秋天愛因斯坦回瑞士母校任教,他的座右銘為「研究的目的在追求真理」,時常告誡學生不要選擇輕鬆的途徑。 04. 在一九一五年十一月四日向柏林科學院提出有名的「廣義相對論」。其中曾斷言太陽的重力場會使通過太陽附近的星光彎曲,但是平常陽光太強無法觀測。按照當時一般的看法,光既非物質點所組成,在太陽的重力場裏,光理應以直線進行,不應該受到太陽的影響。愛因斯坦不尋常的主張自然引起了爭論,幸好愛因斯坦的理論終於找到了個試驗的機會。 05. 1938年德國在希特勒統治下已經發現以中子撞擊鈾會產生核分裂 的現象。美國科學家乃上書羅斯福總統,由愛因斯坦具名簽署,信中建議展開鈾實際用途的研究,終於研製出核武器。第二次世界大戰戰後愛因斯坦倡議原子能的和平用途,阻止戰爭的再發生。為本世紀的科學巨人。〈註一〉

爱因斯坦和他的相对论爱因斯坦的相对论说明了什么

爱因斯坦和他的相对论爱因斯坦的相对论说明了什么 爱因斯坦是本世纪的一位伟大的科学家。他在统计物理学、量子理论、辐射量子理论方面作出了杰出贡献。他建立的相对论,标志着现代物理学的诞生,对物理学、现代科学技术和现代哲学思想带来了革命性的影响。列宁称他为“伟大的自然科学革新家”。 学习、思考、勤奋的一生 1879年3月14日,阿耳伯特·爱因斯坦生于德国乌尔姆一个犹太人的家庭。 爱因斯坦小时并不显得很聪明,但却很爱动脑筋。五岁时,父亲送给他一个指南针,他玩得入了迷,无论怎么颠来倒去地摆弄它,小针总是指着一个方向,他沉思着这里必然隐藏着自然界的奥秘。爱因斯坦的小学、中学是在慕尼黑上的,学习成绩并不好。他十分讨厌当时德国的教育制度,提倡死记硬背拉丁文和希腊文的文法规则,填鸭式的教育方法。他爱好独立思考,渴望探索自然界的奥秘。 爱因斯坦十五岁时,跟随父母迁居到意大利的米兰。不久又进入瑞士阿劳中学学习。这里的学风和慕尼黑市大不相同,着重培养学生的独立思考能力和工作能力,自由空气很浓,学生不必死记硬背。学校有许多小实验室,摆着许多实验仪器和标本,学生可 __地去做

实验。这样的学习环境对爱因斯坦来说真是太好了。他在这里学习了一年,取得中学毕业证书后,未经考试进入了当时中欧一带著名的大学——苏黎世工科大学师范系学习物理。 爱因斯坦在大学里也不是一个优等生。他对一些学科不感兴趣,考试成绩较差,而把全部精力都化在钻研有兴趣的数学和物理学上。他喜欢在实验室里工作,同实验直接打交道。他对当时大学物理教学内容的落后状况,对教授只讲一些应用性的物理原理,对自然现象缺乏探索精神,很不满意。爱因斯坦只得坚持勤奋的自学,来不断增长自己的科学知识。 1900年夏天,爱因斯坦大学毕业。1902年,在一位朋友的帮助下,进了伯尔尼瑞士专利局工作。他的任务是负责对申请专利权的各种发明创造提出审查意见。这一工作使他有机会能接触到许多新的思想和有趣的意见,培养了能够迅速抓住事物本质的不寻常的能力,这对他的物理思想也有重大的激励作用。他白天工作,晚上和假日研究感兴趣的物理问题。1905年,他获得了惊人的突破。一年之内,连续发表了有关布朗运动、量子理论和相对论三篇划时代的论文,这三项重大成就奠定了现代物理学的基础。这在自然科学史上是独一无二的。

爱因斯坦相对论-论动体的电动力学(中文版)

论动体的电动力学 大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。 堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动

体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。 这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。 一运动学部分 §1、同时性的定义 设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。 如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。 如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到7 同火车的到达是同时的事件。”

爱因斯坦讲的相对论的故事读后感

爱因斯坦讲的相对论的故事读后感 导读:爱因斯坦讲的相对论的故事读后感1 同学们,你们都知道伟大的物理学家爱因斯坦吧!那肯定也听说过他那伟大的相对论理论。众所周知,相对论是由伟大的科学家爱因斯坦创立的,分成广义相对论和狭义相对论。 而相对论是关于时空和引力的基本理论,在大学的物理学科才有所涉及,那些深奥的理论是不是已经让你望而却步了呢?别,请走上前来,看看这本书——云南教育出版社出版的《爱因斯坦讲的相对论的故事》,跟伟大的爱因斯坦一起走上“相对论”的旅途吧! 记得小学一年级时,一位老师告诉过我,按照相对论,如果人类能够发明比光还快的机器就能够穿越时空,回到古代社会。如果找到虫洞,并且能够放大、移动虫洞的位置,就可以去往未来。多么神奇! 一直以来,我就对相对论很感兴趣。可惜,妈妈帮我找到的资料都很难懂,不过这本书可非常有趣,让我爱不释手。因为深入浅出是这本书的特色,高深的理论知识在一个个简单常见的例子中变得简单明了,虫洞、黑洞、时间机器等不再是一个个枯燥无味的词语。即使你是一个物理零基础的孩子,只要用心读这本书。相信它也会让你“赖”上物理,爱上科学! 这本书分成九课,都是以爱因斯坦为主讲老师,给孩子讲课的形式来给我们传播知识的。 分别是第一课什么是速度?

第二课光的速度不会变? 第三课能够到达未来吗? 第四课对于运动中的人来说,距离变短了。 运动会使物体的重量发生变化。 宇宙是什么样的呢? 地球拉住了布娃娃。 重力使光线变得弯曲。 能够吸引一切的黑洞。其中我最感兴趣的是第九课,因为读了这一章节之后,我解开了一直藏在心里的谜团——为什么地球没有被虫洞吸进去。 这是因为:重力越大吸引力也越大,黑洞是一个拥有巨大重力的天体,到了黑洞附近,任何物体都逃脱不了它那强大的吸引力。那么为什么地球还依然存在呢?因为,虽然宇宙里有很多黑洞,但是那些黑洞只能吸引一定距离内的物体,距离越远,黑洞的引力就越小。也就是说,地球是位于黑洞的边界线之外,所以它不会被黑洞吸进去。哈哈,可真有趣。 爱因斯坦说过:学习知识要善于思考,思考,再思考。我就是靠这个方法成为科学家的。我们小学生也要通过阅读,思考,让自己有更多的收获。即使不能成为科学家,也可以丰富自己的学识,让有趣的科学知识伴我们成长。大家一起来读书吧! 爱因斯坦讲的相对论的故事读后感2

爱因斯坦广义相对论

爱因斯坦广义相对论 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广

关于爱因斯坦相对论论文

关于爱因斯坦相对论论文 屏幕上一闪而过的那趟高速列车使我的视网膜受到了前所未有的冲击,这趟列车最终以7圈/S的速度极速穿行在地球表面,竭尽全力的靠近光速,一种难以想象的实物运行速度…

当物体速度将达到光速的时候,时间的流速就会趋近于零,这种假设让我感觉到那种难以置信的速度,而且掺杂着一种无力去否认的人类现代科学研究。 本次的爱因斯坦相对论视频展又一次激起了我脑海里熄灭已久的一个念头,时光真正可以穿越吗 这让我想起一部自己非常喜欢的电影,由元彪、张曼玉主演的《急冻奇侠》。 明崇祯年间,淫贼凤三为祸京师,皇帝命凤三的师弟方守正追捕凤三。凤三偷取廖师门至宝黑玉佛,借此超越时空。不料被方所阻,两人双双跌下悬崖埋身雪地。1988年,两人的冻尸被地质队发现,准备运往美国进行研究,但途经香港时意外断电,两人苏醒过来,经历了一场穿越时空的生死搏斗…最终巧遇在港巡展的时光轮盘,借着时光隧道穿回了明朝。 时光可以穿梭,时间可以变慢,这一切还只是在理论与实践中摸爬滚打的科学假设~ 车内的时光明显变慢,也就是当物体速度将达到光速的时候,时间的流速就会趋近于零,这种假设真的让我感觉到那种难以置信的速度。 爱因斯坦狭义相对论证明高速旅行会使时间变慢,假定将来的某个时候,人们已解决了所有的技术难题,能够制造一艘以亚光速飞行的宇宙飞船,一定意义上的时间旅行就变成可能了。如果飞船以亚光速从地球出发向遥远的星系飞去,来回的旅程仅仅几年(按飞船上的时间),但在此期间地球上却已过去了几千年,一切都发生了天翻地覆的变化。如果人类文明依然还存在的话,那又会是一个什么新的模样呢, 记得,英国著名物理学家史蒂芬?霍金继日前承认外星人的存在后,又发表一个惊人论述:他声称带着人类飞入未来的时光机,在理论上是可行的,所需条件包括太空中的虫洞或速度接近光速的宇宙飞船。不过,霍金也警告,不要搭时光机回去看历史,因为“只有疯狂的科学家,才会想要回到过去"颠倒因果"。是的,在

爱因斯坦的相对论及其哲学思想

南京航空航天大学 课程名称:自然辩证法 论文题目:爱因斯坦的相对论及其哲学思想 学生姓名:陆想想 班级学号:SX1203225 学科名称:生物医学工程 2012年12月22日

爱因斯坦的相对论及其哲学思想 陆想想 (南京航空航天大学生物医学工程系,江苏省南京市 210016) 摘要:在物理学的发展史上,曾经出现电磁场理论与牛顿力学经典理论相矛盾的情况,众多物理学家坚持牛顿力学是权威,不可能有错,爱因斯坦则选择修改牛顿力学,最终导致相对论的产生。本文介绍了爱因斯坦创立狭义相对论的历史背景,阐述了相对论的历史意义,以及相对论所展现的哲学思想。 关键词:爱因斯坦;相对论;哲学; 0引言 19世纪下半期,麦克斯韦的电磁场理论(包括光波是电磁波的理论)在实验上得到了确认。当时,在物理学家的思想方法中,力学观点占有统治地位。因而一般认为电磁波(或光波)只有在介质中才能传播,并给传播电磁波(或光波)的介质取名为“以太”。但是以太的引入却使电磁场理论和相对性原 理之间出现了不可弥补的裂缝:力学相对性原理指出,所有的惯性系都是平权的;但是对引进了以太以后的电磁场理论来讲以太惯性系却是一个优越的 惯性系。如何解决相对性原理和电磁场理论之间存在的矛盾,物理学家们进行了积极的探索。 1相对论的创立 1.1物理学发展出现矛盾 1687年,牛顿的绝对时空与运动理论发表,牛顿力学以及伽利略变换统治了物理学两个多世纪。1864年,麦克斯韦建立了统一的电磁场理论——麦克斯韦方程组,由电磁场理论预言了电磁波的存在,并认为光波也是电磁波,提出了光的电磁学说,统一了电磁学和光学。1887年赫兹用实验证实了电磁波的存在,麦克斯韦电磁场理论取得了巨大成功。然而,电磁场的一些规律与牛顿力学理论相矛盾。此时,统治了两个多世纪的牛顿力学与伽利略变换遇到了困难。科学家们纷纷寻求解决困难的方法。 1.2拯救“以太”之路失败 大部分科学家认为,存在一种适用于力学但不适用于电动力学的相对性原理,在电动力学里存在着一个优越的惯性系,即“以太参考系”。相对于以太静止的参照系就是一种较之其它参照系具有 特殊优越性的“绝对参照系”,它对应着牛顿所讲的“绝对空间”。因此,为了拯救“以太”,科学家们进行了一系列探索研究。对双星现象、光行差现象的观察、分析以及斐索实验、迈克尔逊—莫雷实验,得到的结果是否定的,即以太参考系并不存在。 1.3爱因斯坦另辟蹊径 爱因斯坦则要通过修改牛顿力学,以一个既满足力学又满足电动力学的相对性原理来解决矛盾,这样一套理论就是狭义相对论。爱因斯坦在这个理论中,抛弃了以太,抛弃了绝对空间和绝对时间,从根本上改造了经典物理学,建立了一个新的物理学体系。爱因斯坦选择的是一条令其他物理学家望而生畏的道路。在19世纪末,几乎所有物理学家都认为,牛顿力学经受了几百年的考验,已成为全部物理学甚至是整个自然科学的基础,其正确是不容怀疑的。但是爱因斯坦恰恰就敢于把与旧时空观不相容的两个基本假设(相对性原理和光速不变原理)作为新理论的出发点,这充分表明爱因斯坦在科学探索中不迷信权威、敢于创新的精神。也可以说,爱因斯坦选择的是一条反传统的道路。 1.4狭义相对论的创立 1905年9月,爱因斯坦发表了《论动体的电动 力学》论文,标志着爱因斯坦创立了狭义相对论,使电磁场理论和经典力学得到了统一,开创了物理学的新纪元。 对牛顿力学成立的伽利略变换,在电磁学理论中不成立的原因,爱因斯坦认为是牛顿的绝对时间、绝对空间有问题。而且,爱因斯坦认为解决问题的关键是更改时间和同时性的定义。爱因斯坦明确地确定了时间和同时性的定义[1]。 爱因斯坦指出:“借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了‘同时’和‘时间’的定义。一个事件的‘时间’,就是在这事件发生地点静止的一只钟同该事件同时的一

浅谈爱因斯坦

从相对论到量子力学 ---浅谈爱因斯坦的研究 摘要: 二十世纪,相对论和量子力学是物理学界最伟大的成就。科学家的视野从牛顿的经典中离开,开始转向更为广袤的天地———高速运动和微观粒子的世界。 爱因斯坦是相对论的创立者,是量子力学的催生者之一。毫无疑问,他是伟大的。 但伟人并不意味着完美。 爱因斯坦始终排斥着玻尔的量子系统的概率论。他说,“上帝不掷骰子。” 但实验是铁证。 玻尔说:“我们不能告诉上帝,该做什么。” 霍金评论道,“上帝不仅掷骰子,而且他总是把骰子扔到我们看不到的地方!” 从相对论到统一场理论,爱因斯坦试图用数学统一整个物理。但是,上帝掷了骰子,他还是失败了。 关键词:相对论,量子力学,爱因斯坦,场理论。 引言:作为二十世纪最伟大的物理学家,爱因斯坦以其天才的头脑,提出了相对论。但,作为二十世纪的另一座里程碑——量子力学,爱因斯坦却没有留下过多的贡献。而倾尽毕生之力的场理论,成为了爱因斯坦的遗憾。 是什么原因造成了这样的状况呢?为什么已经登上巅峰的爱因斯坦终究没能攻下另一座堡垒? 正文:一、爱因斯坦是如何创立相对论的 1、伯尔尼的辉煌记录

1905年,在不到8个星期内,四篇划时代的论文被寄到《物理学杂志》。 这四篇论文分别是《论动体的电动力学》、《关于光的产生和转化的一个启发性的观点》、《热的分子运动论所要求的静液体中悬浮粒子的运动》和《物体的惯性同她所含的能量有关吗?》。相对应的内容是著名的狭义相对论、量子学论文、布朗运动的理论解释和质能转换定律。 就是在远离科学中心的伯尔尼,身为无名小卒的爱因斯坦发表了彻底改变现代物理学和宇宙学的四篇论文,他的1905年的奇迹年(annus mirabilis)总是被庆祝,他如泉水般喷涌的天才引发了令人惊愕的敬意。 2、天才的思考 空间和时间的概念在狭义相对论中扮演着重要的角色,也是最大的突破。因为在牛顿的绝对时空观里,空间和时间是具有绝对的意义的,并且相互独立。 1905年以前的很长一段时间内,爱因斯坦一直思考着一个很困难的问题:麦克斯韦的方程组是正确的,光速是不变的。但光速的不变性又与经典力学的速度相加规则相矛盾。在和朋友的一次谈话之后,这个问题解开了:时间和信号速度之间有着不可分割的联系。 从某个角度来讲,狭义相对论几乎是直接从麦克斯韦的电磁场理论地出来的。麦克斯韦的电磁理论具有一种不对称性。而他认为这种不对称性是值得怀疑的,因为它破坏了物理学中的统一和内在的和谐。而不对称性起源于其理论中少不了的“绝对静止”的以太。方程组推出光速是恒定的,但这是对哪个参考系成立的呢?包括洛伦兹在内的一些物理学家明确承认绝对静止的“以太”的存在。可是所有的以太漂移实验都失败了,经典物理学走入了死胡同。 但爱因斯坦认为,绝对静止的以太是一个错误的概念,这明显破坏了对称性和统一性。爱因斯坦以其惊人的想象力,抛弃了经典力学的速度合成法,肯定了同时性在不同惯性参考系中是相对的,提出了空间和时间的相对性和统一性。不变的不是时间和空间,而是光速。 绝对静止是人类的假想,并不足以成为一个客观规律。自然界的存在和发展并不以人的意志为转移。他认为,好的物理规律是恒定不变的,如果事实无法与方程结合,那么努力让它们统一。用一组方程,用最简洁的表达,阐述真理。 不得不说,爱因斯坦是当之无愧的天才。身体活在低速运动的世界,思想已

牛顿绝对时空观和爱因斯坦相对论时空观的统一

牛顿绝对时空观和爱因斯坦相对论时空观的统一 殷业 上海师范大学信息与机电工程学院,上海200234 yinye@https://www.doczj.com/doc/da7813597.html, 摘要:时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。从亚里士多德、伽利略、牛顿到爱因斯坦,每一个伟大的物理学家都对时间和空间是什么做过回答,但这些答案还不是最终答案。本文分析了历史上存在的各种时空观,从笛卡尔的“物质空间”思想出发重新审视了时间和空间的关系,通过分析说明:不同的“物质空间”中时间是不同的,从而获得了对牛顿绝对时空观和爱因斯坦相对时空观的统一认识。 关键词:虚空;物质空间;绝对时间;相对时间;相对论;牛顿力学 中图分类号:O412 文献标识码:A 0. 引言 时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。从亚里士多德、伽利略、牛顿[1]到爱因斯坦[2],每一个伟大的物理学家都对时间和空间是什么做过回答,但他们的答案还不是最终答案。以上四位伟人对时空的答案,有一个共同点,就是时间和空间只有一种,但以笛卡尔的“物质空间”思想[3,4,14]为基础的时空观中,时间和空间可分成两种,一种是“虚空”中的时间和空间,对应“牛顿的绝对时间和空间”,另一种是“物质空间”中的时间和空间,对应“爱因斯坦的相对时间和空间”,前一种时间是空间无关的,后一种时间是空间相关的,所以在“物质空间时空观”中牛顿的绝对时空观和爱因斯坦的相对时空观可以得到了统一,下面我们对这两种不同的时间和空间的有关问题进行讨论。 1. 虚空和物质空间 牛顿在“原理”[1]中阐述的绝对空间是:“绝对空间就其自身特性与一切外在事物无关,处处均匀,永不移动”。牛顿的绝对空间有如下几层含义,(1)绝对空间是真实感知空间的抽象;我们可以设想一个玻璃围成的正方体,假设这个玻璃正方体相对绝对空间静止,将玻

爱因斯坦相对论超级经典通俗理解

爱因斯坦相对论超级经典通俗理解 (注:摘自百度知道) 达到光速时间停止: 假如有一段足够长的笔直公路,你站在甲地,12:00准时从甲地以光速前进。在你开始前进的那一时刻,甲地发生的一切现象也正好以光速向四面八方传播。10分钟以后,也就是12:10分,你到达了乙地。此时在甲地12:00钟发生的现象也正好传到乙地,那么你回头看甲地还是12:00的现象,不管你前进了多久,回头看到得一直都是甲地12:00的现象。这就是时间停止的现象。 超越光速时间倒流: 假如有一段足够长的笔直公路,你站在甲地,12:00以2倍光速前进,那么10分钟后到达丙地,不难得出光从甲地传播到丙地需要20分钟,意思就是在甲地11:50发生的现象在12:10分正好到达丙地。那么你12:10在丙地看到了甲地在11:50就发生的事情,时间倒流的现象就这样发生了。 相对时间公式: 设从甲地出发,速度为V,前进时间为T1,看到甲地现象的时间为T2=T1V/C。相对时间T=T1-T2=T1(1-V/C)。 公式中可以看出,V=C,T=0。时间停止;V>C,T<0,时间倒流。

光速不可超越理论: 假如有一段足够长的笔直公路,你站在甲地,12:00以2倍光速前进的时候,甲地有一个人在看着你。10分钟后你达到丙地,你达到丙地的现象还要经过20分钟才可以传到甲地。这样一来,甲地的人在12:30分的时候才看到你达到丙地,从而得出你的速度是2/3倍的光速。 设你的速度为V,光速为C,前进距离S,你前进的时间T1=S/V,达到后的现象传回甲地的时间T2=S/C,可以得出甲地的人看你的速度为 V1=S/(T1+T2)=S/(S/V+S/C)=VC/V+C。 从这个公式里就可以看出,不管你的速度V有多大,看起来的速度都不可能达到光速。只有当你的速度是无穷大的时候,看起来才是光速。 接近光速时物体长度变短: 假设一辆长30万千米的火车,车头在A地,车尾在B地,观察者站在B地,火车以光速前进。1秒钟后,车尾到达A地,再过1秒后观察者看到车尾到达A地。得出2秒钟后观察者看到车尾在A 地;从运动开始,0.5秒后车头前进15万千米达到C地,BC距离45万千米,再过1.5秒后,观察者看到车头到达C地,得出2秒钟

爱因斯坦提出狭义相对论的论文

ON THE ELECTRODYNAMICS OF MOVING BODIES By A. Einstein June 30, 1905 It is known that Maxwell's electrodynamics--as usually understood at the present time--when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise--assuming equality of relative motion in the two cases discussed--to electric currents of the same path and intensity as those produced by the electric forces in the former case. Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relatively to the ``light medium,'' suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest rather that, as has already been shown to the first order of small quantities, the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good.1 We will raise this conjecture (the purport of which will hereafter be called the ``Principle of Relativity'') to the status of a postulate, and also introduce another postulate, which is only apparently irreconcilable with the former, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state of

浅谈爱因斯坦相对论感想

浅谈学习爱因斯坦相对论的感想

在学习这们课程前对于相对论只是在书籍或一些科普节目听说过,通过老师深入浅出的讲解后对爱因斯坦的相对论也有了初步的了解。在学习过程中也有了自己一些体会与见解。虽然比较偏面与浅薄但也为自己在学习上打开了又一扇门。 在狭义相对论之前,牛顿继承伽利略等科学家的成果,加上自己的总结归纳以及在数学上创立用微积分解决变加速问题的方法,创立了以牛顿运动力学为核心的经典运动力学(也叫古典运动力学)。但是,在19世纪许多的科学技术革新后,人类对于非运动学的电磁现象有了深入的探索,许多电磁学的物理规律直接违反古典运动力学的定律。在古典运动力学中,光速没有任何理论限制,可以任意大,而且可以是不恒定的,这缺乏实验根据,仅仅是早期科学家的猜测。然而,电磁学精确实验验证:真空光速与真空介磁常数及真空介电常数直接相关,也是一个常数!这些尖锐矛盾导致大家对于缺乏精确实验证据的古典运动力学产生怀疑。 为解决这个矛盾,爱因斯坦创造性地以电磁学理论出发,承认真空光速最大且对于任意观测者恒定,并且遵从电磁学中物理规律对于不同观测者都相同两个原则,成功推导出洛仑兹先生通过精确电磁学实验测定出的轮伦兹变换公式。于是,狭义相对论诞生了,它纠正了古典运动学在电磁

学上的错误,并且涵盖了古典运动学的基本定律,统一了运动力学和电磁力学。 相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说等等.这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言全世界只有两个半人懂相对论".更有甚者将相对论与"通灵术","招魂术"之类相提并论.其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的. 广义相对论就是说由于物质的存在引起了时空的弯曲,通俗理解是:如果一个“空间”中的任意一个“点”最少需要n个线性无关的有序数组(向量)来描述,我们就可以认为这是一个数学上的n维空间。我们的普通空间需要用三个数来描述:长、宽、高。但这样描述的仅仅是一种静态的图像,要想描述物质的运动,还应该引入一个数:时间。这样,如果想描述完整的物质运动,就需要用四个数来描述。 广义相对论预言了引力波的存在,否定了万有引力定律的超距作用.当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。以上便是我对最近学习爱因斯坦相对论的粗浅体会希望在以后的学习中有进一步的提高。

爱因斯坦创建狭义相对论的思想发展

爱因斯坦创建狭义相对论的思想启示 12级物理一班段延波1207020016 在《物理学史》6.2节,我们学习了爱因斯坦创建狭义相对论的经过。而在爱因斯坦创建狭义相对论的过程中,最令我在意的还是爱因斯坦的思想发展,所以,我查阅了文献资料,研究学习了爱因斯坦在创建狭义相对论的过程中的思想,特在此进行简短阐述。 一、善于提问与不畏权威 阿尔伯特爱因斯坦小时候并不写的才华出众,直到五岁话还说不清楚,曾被医生认为发育不正常,不过他很爱思考,总是像大人盘问“为什么?”有强烈的求知欲和好奇心。例如四五岁时就对罗盘发生过浓厚兴趣,“为什么罗盘的指针总是指向南北,这里一定有什么东西深刻的隐藏在事物后面”爱因斯坦后来回忆时这么说。12岁时他对几何定理的神奇也深有触动。例如他曾想到,“三角形的三个高交于一点,虽然不是显而易见,却可以可靠地加以证明,以至于任何怀疑似乎不可能”他说“这种明晰性和可靠性给我造成了一种难以形容的印象。” 正是源于这种对世界和学问的好奇与质疑, 促使爱因斯坦如饥似渴地读书, 天马行空地思考问题。 爱因斯坦不喜欢当年德国的教育制度,中学没有毕业就退学在家自学,16岁通过自学掌握了微积分,在爱因斯坦的学习阶段,15岁的爱因斯坦放弃德国国籍,居家迁居意大利,后只身到瑞典的苏黎世,目的是上那里的联邦工业大学,却因不善记忆而没有录取,后来转学到阿劳(Aaeau)中学补习功课。他在自述中写道,“这所学校以他的自由精神和那些毫不依赖外界权威的教师们的淳朴热情,给我留下了难忘的印象”。 “在阿劳这一年中,我想到这样一个问题:倘若一个人以光速跟着光波跑,那么它就处在一个不随时间而改变的波场,但看来不会有,样的事情!这是从狭义相对论有关的第一个朴素的思想实验。”[ 3] 正是这种对事物的好奇和对人类已有知识的质疑, 造就了爱因斯坦, 成为他不断追求科学创新的内在动力, 引导他提出和解决前人不可能提出和解决的问题。

研究性学习——爱因斯坦与相对论(原创)

爱因斯坦与相对论 引言:“政治是暂时的,方程是永恒的”——爱因斯坦仰观星空,觉宇宙之浩瀚;俯视大地,察生命之神奇;透过显微镜,是量子的奇迹。我们在理论与实践中穿梭,游走在神秘的物理世界。 一.漫长的探索 纵观人类的历史,从亚里士多德开始,就已经开始探索那浩如烟海的物理世界了——力学。 早期的物理学家们都是从实验的角度来阐述物理(准确说是物理理论)的,亚里士多德从显而易见的现象中便得出重物比轻物下降的快的结论(虽说是错误的),阿基米德也从简单的实验中得出了杠杆原理和浮力定律,伽利略通过理想实验建立了动力学的基础,传出了相对性原理的先声,笛卡尔发明了坐标系,使之能更好的表述,物理开普勒透过第谷的测量用数学知识成功导出了开普勒三大定律。 这一切的积累,终于在一个人身上有了叠加与爆发,1687年,艾萨克·牛顿出版了他的新书《自然哲学的数学原理》,从此“经典力学”建立了,也翻开了数学研究物理的辉煌一页。书中详细的讲解的力学与运动学,阐述了牛顿三大定律,流体阻力原理和万有引力定律,以及牛顿的绝对时空观,是经典力学前所未有的进步。 二.相对论的横空出世

19世纪后期,随着经典力学和电磁学的进一步发展(电磁学的主要贡献者法拉第和麦克斯韦一直想把电磁学建立在经典力学上,然而失败了),科学家们相信他们对宇宙的描述达到了尾声,然而,与“以太”思想相悖的理论出现了, 1887年实验证实光的传播速度是不变的(间接否定了“以太”论和经典力学),整个物理学界陷入了巨大恐慌。 这时,1905年,爱因斯坦(生平简介:阿尔伯特·爱因斯坦,Albert.Einstein,1879年3月14日-1955年4月18日,出生于德国符腾堡王国乌尔姆市,毕业于苏黎世大学,犹太裔物理学家,享年76岁。爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭<父母均为犹太人>,1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,创立狭义相对论。1915年创立广义相对论。爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。)的一篇论文《论动体的电动力学》永久地解决了这一棘人的问题,狭义相对论便由此创生了。 1.经典力学的时间和空间 牛顿所谓的时间与空间都是绝对的,与外界无关永远相同和

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

相关主题
文本预览
相关文档 最新文档