当前位置:文档之家› 差分方程的概念

差分方程的概念

差分方程的概念
差分方程的概念

二五

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

实验3离散系统的差分方程、冲激响应和卷积分析

实验3离散系统的差分方程、冲激响应和卷积分析 一 一、实验目的 1 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统 ] [n x ] [n y Discrete-time systme 其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0 ][][ 输入信号分解为冲激信号 ∑-=∞ -∞=m m n m x n x ][][][δ 记系统单位冲激响应 ] [][n h n →δ 则系统响应为如下的卷积计算式 ∑∞ -∞ =-= *=m m n h m x n h n x n y ][][][][][ 当 N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为 FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。 二、实验内容 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。 ] 1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y 程序1: A=[1,0.75,0.125];B=[1,-1]; x2n=ones(1,65); x1n=[1,zeros(1,30)]; y1n=filter(B,A,x1n); subplot(2,1,1);y='y1(n)'; stem(y1n,'g','.'); title('单位冲击响应') 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

设系统分别用下面的差分方程描述

因为x(n)以N 为周期,所以: x(n 中kN —m) =x(n -m) 第三套 1.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性时不变的。 (1) y(n)=2x( n)+3 n y(n)= Z x(m) m 鱼 解: (1 ) 令:输入为x(n- n o ),输出为y '(n) =2x(n-山)+3,因为 y(n- n o ) =2x( n- n o )+3= y '(n) 故该系统是时不变的。又因为 T[ax 1 (n) + bx 2( n)] = 2ax 1 (n) + 2bx 2( n) + 3 T[ax i (n)] =2ax i (n)+3,T[bx 2(n)] =2bx 2(n) + 3 T[ax 1(n) + bx 2(n)] h aTIxJn)] +bT[x 2(n)] 故该系统是非线性系统。 n 令:输入为x(n- n o ),输出为y(n)=2: x(m-r t ),因为 m=0 n 』0 I y(n - n 。)= S x(m)北 y (n) m zzO 故系统是时变系统。又因为 n T[ax 1 (n) + bx 2(n)]=送(ax 1 (m) + bx 2(m)^ aT[x 1(n)] +bT[x 2(n)] m =0 2. 故系统是线性系统。 如果时域离散线性时不变系统的单位脉冲响应为 为周期的周期序列, 证明: h(n),输入x(n)是以N 试证明其输出 y(n)亦是以N 为周期的周期序列。 y( n)=h( n)*x( n)= □C y( n+kN)= Z m z=-oc h(m)x(n+kN - m) , k 为整数

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

分式,分式方程计算导学案

分式和分式方程的计算 《学案》 学习目标 1.了解分式的概念,能说出分式加减,乘除的法则. 会用这些法则 进行简单的加减乘除混合运算。 2.了解分式方程的概念,知道分式方程每一步的解法依据,从而使 学生会解分式方程。 3. 通过分式与分数计算的类比,分式解法与分式方程解法的类比, 使学生理解他们的异同。从而培养学生总结概括的能力。 学习重点和难点 分式的基本性质和等式基本性质的应用; 难点是分式计算与解分式方程的异同. 学习过程 一、 完成下列预习作业: 1、分解因式: ① 2x-6= ; ② x 3-4x 2+4x= ; ③1-2x+x 2= ; ④ x 2-9y 2= ; 2、计算 ;=+7372 =-7372 依据 ==+5432;==-5432 依据 3、计算 x x y ++y y x +=________= ;32b a -32a a =________= = 依据是 32ab +2 14a =________= ;a-b+22b a b += = 依据 4、填出下列各等式中未知的分子或分母。 ()22y x y x y x -=+-()y x ≠; ()b a ab ab a -=-2

()1)3(3=--x x x ; ()1122-=-+x x x x 依据是 __________________________________________________________ 5、=÷= ?5432,5432 依据: __________________________________________________________ (1) 3234y x x y ? = (2) cd b a c ab 4322222-÷ 依据: __________________________________________________________ 二、自学、合作探究 例1: 2221x x x x x -+÷ (写出步骤及依据) 例2: x x x x x x 34292222--?+- (写出步骤及依据) 例3: 22111x x x --- (写出步骤及依据) 例4:a a a a a 21)242(22+?---

离散序列的卷积和系统差分方程的MATLAB实现

信息工程学院实验报告 课程名称:数字信号处理 实验项目名称:离散序列的卷积和系统差分方程的MATLAB 实现 实验时间: 班级:电信131 姓名: 学号:201311404113 一、 实 验 目 的: 熟悉序列的卷积运算及其MATLAB 实现;熟悉离散序列的傅里叶变换理论及其MATLAB 实现;加深对离散系统的差分方程和系统频率响应的理解。 二、实 验 原 理 1、MA TLAB 提供了一个内部函数conv(x,h)来计算两个有限长序列之间的卷积。 2、对于时域离散系统,可用差分方程描述或研究输入、输出之间的关系。对于线性时不变系统,经常用的是线性常系数差分方程。一个N 阶线性常系数差分方程用下式表示: ()() N M i i i i b y n i a x n i ==-=-∑∑ 当 0,1,2,,i b i N == 时,[]h n 是有限长度的,称系统为FIR 系统;反之,称系统为IIR 系统。 在MA TLAB 中,可以用函数filter(a,b,x)求解差分方程,其中参数a,b 分别系统函数的分子和分母多项式的系数。 三、实 验 内 容 与 步 骤 实验内容: 1、已知 1(){1,1,1,1,1}x n =,2(){1,1,1,1,1,1,1}x n =,计算12()()*()y n x n x n =。 2、在0到π区间画出矩形序列 10()R n (其定义见例1-3)的离散时间傅里叶变换(含幅度和相位)。 3、求系统:()0.5((1)(2)(3)(4))y n x n x n x n x n =-+-+-+-的单位冲激响应和阶跃响应。 实验步骤: 1、

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

分式方程知识点总结

分式方程知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解;

④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;(2)分式方程的解法,是段考、中考考查的重点。 误区提醒 (1)去分母时漏乘整数项; (2)去分母时弄错符号;

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

离散系统的差分方程、冲激响应和卷积分析

实验2 离散系统的差分方程、冲激响应和卷积分析 一、实验目的 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统可表示为 其输入、输出关系可用以下差分方程描述: ∑∑==-=-M k m N k k m n x b k n y a 00][][ 输入信号分解为冲激信号, ∑∞ -∞=-= m m n m x n x ][][][δ。 记系统单位冲激响应 ][][n h n →δ, 则系统响应为如下的卷积计算式: ∑∞ -∞=-= *=m m n h m x n h n x n y ][][][][][ 当N k a k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(b,a,N)求系统的冲激响应。 对于N 阶差分方程∑∑==-=-M k m N k k m n x b k n y a 00][][, 1) 当给定函数的系数和输入序列时,差分方程的递推过程在MA TLAB 中用函数y=filter(b,a,x)来实现,其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。求得的输出序列y 和输入序列x 的长度相等。若x 的长度太短,需要补零。用conv 函数计算能在输入序列后自动补零,而filter 函数不能。 2) MATLAB 中有一个求离散系统脉冲响应的专门函数y=impz(b,a,N),其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。N 为要求的点数。键入impz(b,a),程序将自动给出脉冲响应的曲线。 3) 当输入序列和脉冲响应序列都是以数值方式给出时,可以用MATLAB 中的卷积函数y=conv(x,h)来计算。

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验2 离散系统的差分方程、单位脉冲响应和卷积分析 一、 实验目的 1、 熟悉并掌握离散系统的差分方程表示法; 2、 加深对单位脉冲响应和卷积分析方法的理解。 二、 实验原理 (一), 1. 单位采样序列 ???=01 )(n δ 0 0≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01 )(k n δ 0≠=n k n 2.单位阶跃序列 1()=0 u n ??? 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3.正弦序列 )/2sin()(?π+=Fs fn A n x 在MATLAB 中 ) /***2sin(*1:0fai Fs n f pi A x N n +=-=

4.复指数序列 n j e n x ?=)( 在MATLAB 中 ) **exp(1:0n w j x N n =-= 5.实指数序列 n a n x =)( 在MATLAB 中 n a x N n .^1:0=-= (二) 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 00()()N M i i i i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即: ()()()m x n x m n m δ∞ =-∞= -∑ 记系统单位脉冲响应 ()()n h n δ→ 则系统响应为如下的卷积计算式:

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

人教版八年级上册分式方程练习及解析

第八讲 分式方程 考点综述: 中考对于分式方程的主要要求包括分式方程的概念以及解法,会检验分式方程的根,分式方程的应用也是中考考查的重点和热点。 典型例题: 例1:解方程: (1)(2007连云港) 11322x x x -=--- (2)(2007德州)解方程:120112x x x x -+=+- (3)(2007宁波)解方程21124x x x -=-- 解:(1)方程两边同乘(2)x -,得1(1)3(2)x x =----. 解这个方程,得2x =. 检验:当2x =时,20x -=,所以2x =是增根,原方程无解 (2)两边同乘以(1)(12)x x +-, 得(1)(12)2(1)0x x x x --++=; 整理,得510x -=; 解得 15 x = . 经检验,15x =是原方程的根. (3)方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1, 化简,得2x=-3 x=-3/2, 经检验,x=-3/2是原方程的根. 例2:(2007沈阳)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队 单独完成此项工程所需天数的45 ,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天, 则乙施工队单独完成此项工程需45 x 天, 根据题意,得 10x +1245x =1

解这个方程,得x =25 经检验,x =25是所列方程的根 当x =25时,45 x =20 答:甲、乙两个施工队单独完成此项工程分别需25天和20天. 实战演练: 1.(2008安徽)分式方程112 x x =+的解是( ) A . x=1 B . x =-1 C . x=2 D . x =-2 2.(2008荆州)方程21011x x x -+=--的解是( ) A .2 B .0 C .1 D .3 3.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .12012045x x -=+ B . 12012045x x -=+ C .12012045x x -=- D .12012045x x -=- 4.(2008襄樊)当m = 时,关于x 的分式方程213 x m x +=--无解. 5.(2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________. 6.(2008泰州)方程 22123=-+--x x x 的解是=x __________. 7.解方程: (1)(2008赤峰)2112323x x x -=-+ (2)(2008南京)22011 x x x -=+- 8.(2008咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?

相关主题
文本预览
相关文档 最新文档