当前位置:文档之家› 如何提高永磁同步电机 功率因数

如何提高永磁同步电机 功率因数

如何提高永磁同步电机 功率因数
如何提高永磁同步电机 功率因数

如何提高永磁同步电机功率因数

发布者:admin 发布时间:2010-10-18 阅读:75次

提高永磁同步电机的功率因数就会相对提高电机的工作效率,进而起到节电节能的作用。下面以某油田为例教大家如何提高永磁同步电机的功率因数。

由于油田供用电由原来的关口计量改为单井(点)计量,故单井(点)功率因数不能达标。2003年,临盘采油厂仅功率因数调整电费就多付150万元。为此,采取了多种措施,以提高功率因数,达到了节能降耗的目的。

一、影响永磁同步电机功率因数的原因

抽油机上所用的永磁同步电动机是一种异步启动的同步电机,由转子交流启动后牵入同步运行,类似于交流同步电动机。其运行是靠定子线圈在气隙中产生的旋转磁场与转子上磁钢间的相互吸引,使转子与定子气隙磁场同步旋转而做功。其转子等效为电阻电路,故功率因数高。因无励磁电流,其空载损耗小。电动机效率可达96%左右,较三相异步电动机高。

影响永磁同步电机功率因数的原因是电压质量(电压幅值)和负载率。当电网电压高于电动机的反电势点时,永磁电机呈感性负载运行;反之,电动机呈容性负载运行。因此,电网电压波动会造成电机的功率因数波动,补偿困难。若电压幅值与电动机反电势点接近,偏差在±2%电压范围内时,电机功率因数大于或等于0.9,否则,功率因数较低;另外,当永磁同步电机的负载率低于25%时,电机功率因数也偏低。

二、提高永磁电机功率因数的方法

通过对各单井点功率因数低的原因分析,分别采取了以下方法进行调整。

1.根据实测负载率适当调换电机,以保证适当的负载率。

2.稳定系统电压,尤其是重载线路末端,电压普遍偏低。

3.稳定单井电压使其接近永磁同步电机的空载反电势。

4.当运行电压高于永磁电机的反电势点时,可根据感性无功功率的大小,加电容补偿,以提高功率因数。

5.当运行电压低于永磁电机的反电势点时,可调节变压器分接开关,适当提高二次电压的幅值,使电机运行电压在反电势点附近,提高功率因数。

6.对于重负荷长线路,调节变压器分接开关后,变压器二次电压幅值仍低于永磁电机反电势点时,可更换永磁同步电机,采用电容柜补偿。

三、调整情况及效果分析

通过对采油六队部分油井的调整试验,使功率因数不达标的油井基本达标。

首先对变电所及线路电容做了调整,使末端电压有所提高。

其次,根据对单井的测试结果,采取了相应对策,有的增加电容,有的调整变压器挡位,对部分井调整了电动机功率。测试结果显示,使用永磁同步电机的各井功率因数除一台外,其他全部合格,功率因数调整电费大幅度下降。

一、影响永磁同步电机功率因数的原因

抽油机上所用的永磁同步电动机是一种异步启动的同步电机,由转子交流启动后牵入同步运行,类似于交流同步电动机。其运行是靠定子线圈在气隙中产生的旋转磁场与转子上磁钢间的相互吸引,使转子与定子气隙磁场同步旋转而做功。其转子等效为电阻电路,故功率因数高。因无励磁电流,其空载损耗小。电动机效率可达96%左右,较三相异步电动机高。

影响永磁同步电机功率因数的原因是电压质量(电压幅值)和负载率。当电网电压高于电动机的反电势点时,永磁电机呈感性负载运行;反之,电动机呈容性负载运行。因此,电网电压波动会造成电机的功率因数波动,补偿困难。若电压幅值与电动机反电势点接近,偏差在±2%电压范围内时,电机功率因数大于或等于0.9,否则,功率因数较低;

另外,当永磁同步电机的负载率低于25%时,电机功率因数也偏低。

二、提高永磁电机功率因数的方法

通过对各单井点功率因数低的原因分析,分别采取了以下方法进行调整。

1.根据实测负载率适当调换电机,以保证适当的负载率。

2.稳定系统电压,尤其是重载线路末端,电压普遍偏低。

3.稳定单井电压使其接近永磁同步电机的空载反电势。

4.当运行电压高于永磁电机的反电势点时,可根据感性无功功率的大小,加电容补偿,

以提高功率因数。

5.当运行电压低于永磁电机的反电势点时,可调节变压器分接开关,适当提高二次电压

的幅值,使电机运行电压在反电势点附近,提高功率因数。

6.对于重负荷长线路,调节变压器分接开关后,变压器二次电压幅值仍低于永磁电机反

电势点时,可更换永磁同步电机,采用电容柜补偿。

三、调整情况及效果分析

通过对采油六队部分油井的调整试验,使功率因数不达标的油井基本达标。

首先对变电所及线路电容做了调整,使末端电压有所提高。

其次,根据对单井的测试结果,采取了相应对策,有的增加电容,有的调整变压器挡位,对部分井调整了电动机功率。测试结果显示,使用永磁同步电机的各井功率因数除一台外,其他全部合格,功率因数调整电费大幅度下降。

一、影响永磁同步电机功率因数的原因

抽油机上所用的永磁同步电动机是一种异步启动的同步电机,由转子交

流启动后牵入同步运行,类似于交流同步电动机。其运行是靠定子线圈

在气隙中产生的旋转磁场与转子上磁钢间的相互吸引,使转子与定子气

隙磁场同步旋转而做功。其转子等效为电阻电路,故功率因数高。因无

励磁电流,其空载损耗小。电动机效率可达96%左右,较三相异步电动

机高。

影响永磁同步电机功率因数的原因是电压质量(电压幅值)和负载率。当电网电压高于电动机的反电势点时,永磁电机呈感性负载运行;反之,电动机呈容性负载运行。因此,电网电压波动会造成电机的功率因数波动,补偿困难。若电压幅值与电动机反电势点接近,偏差在±2%电压范

围内时,电机功率因数大于或等于0.9,否则,功率因数较低;另外,

当永磁同步电机的负载率低于25%时,电机功率因数也偏低。

二、提高永磁电机功率因数的方法

通过对各单井点功率因数低的原因分析,分别采取了以下方法进行调整。

1.根据实测负载率适当调换电机,以保证适当的负载率。

2.稳定系统电压,尤其是重载线路末端,电压普遍偏低。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

异步起动永磁同步电机设计

Ansoft EM专题讨论(三)——异步启动永磁同步电机设计最近有感于论坛Ansoft版区学习的氛围越来越好了,这与各位版主的努力都是分不开的。看到前面两个专题中,我们的超版和技术精英们都做了很多工作,本着向大家学习的原则,我也来凑个热闹 本人在读研期间曾经涉猎过这种电机的设计与仿真,下面就把我很久以前做的一个练习分享给大家。做的不一定对,希望大家多多批评指正!这也是和大家学习的过程,望各位不吝赐教 其实,这种电机在实际设计过程中需要注意的问题还是很多的。很遗憾在校期间没能彻底解决这个领域的一些问题。这里也希望大家广泛针对该类电机的设计进行讨论和交流,向大家学习了! 下面先给出电机结构示意图 电机为典型的4极36槽结构,绕组为单层交叉,Y接形式,内置径向W型永磁体,采用冲片类型为DW315-50。具体的其他的电机参数将在RMxprt设计中给出区别于前面两位版主的纯V11仿真,该算例采用了Ansoft RMxprt V5.0版本与Maxwell V11.1版进行了简易的联合2D仿真。对新人而言,V5.0的界面更加人性化和易于上手,推荐新同学使用。 运用Ansoft RMxprt V5.0进行基本的电磁设计,输入相应电机参数反复调试运行。下面给出本例的参数设置

基本参数 定子内外径和槽形尺寸

转子内外径和磁钢设计

转子槽形和端环设计 以上需要补充说明的是Ansoft RMxprt V5.0的材料设置问题和绕组编辑问题 就材料设置而言,大家可以利用软件自带的.h-b文件自行添加所需要的硅钢片材料,主要是需要查找一些手册来添加磁化曲线和损耗曲线,用记事本的格式进行编辑添加,放在指定的文件夹中,即可在设计中引用,图例DW315-50的.h-b文件,要对应操作窗口的各项参数进行添加,方可正确使用

极槽配合对永磁同步电机性能的影响_新(技术相关)

极槽配合对永磁同步电机性能的影响 摘要:永磁同步电机由于具有结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠等特点,在家用电器、医疗器械和汽车中得到广泛使用。永磁同步电机的齿槽转矩会引起输出转矩的脉动和噪声,不平衡径向电磁力则是电机的主要噪声源。本文着重研究极槽配合对永磁同步电机性能的影响,主要包括齿槽转矩和径向电磁力两个方面。详细介绍了齿槽转矩和径向电磁力的相关原理,并通过仿真对8极9槽和8极12槽两种极槽配合的电机进行分析比较,验证了相关的理论的正确性,最后得出电机设计中应综合考虑齿槽转矩、径向电磁力等相关因素合理选择极槽配合。 关键词:极槽配合;齿槽转矩;永磁同步电机;径向力 Influence of Pole-Slot Combination on The Performance of Permanent Magnet Synchronous Motor Abstract: Permanent magnet synchronous motor has simple structure, small volume, high efficiency, high power factor, small moment of inertia, strong overload capacity, reliable operation, widely used in household appliances, medical equipment and vehicles. Cogging torque will cause output torque ripple and noise of PMSM ,And unbalanced radial electromagnetic force is the main reason of noise of motor. In this paper,we focuses on the research of pole-slot combination effects on the performance of PMSM, including two aspects:the cogging torque and radial electromagnetic force. The relevant principles of the cogging torque and radial electromagnetic force were introduced in detail, and through the simulation of 8 poles 9 slots and 8 poles 12 slots motors,the two kinds of pole-slot combination motor were analyzed and compared, verified the related theory.Finally, we conclude that the cogging torque and radial electric force and so on related factors should be considered into the motor design when selecting reasonable pole-slot combination. Key words: pole-slot combination; cogging torque;PMSM; radial force 1引言 永磁同步电机结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠,且其

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

高效自启动永磁同步电动机核心技术研究

高效自启动永磁同步电动机核心技 术研究 1、永磁同步电动机关键制造工艺的研究 永磁同步电动机关键工艺的研究主要包括永磁体装配以及永磁电机总装配工艺的研究。 1)永磁体装配工艺的研究 由于高性能钕铁硼稀土材料的应用,永磁电机的转子加工精度要求较高,永磁电机转子上的永磁体槽与永磁体之间留有的间隙较小,一般在0.2~0.4mm范围,而目前永磁电机铁心叠压工艺大多采用铁心冲片的轴孔键槽定位方式已不能满足加工要求。

利用轴孔键槽定位,其定位方式精度低,转子铁心永磁体槽的整齐度得不到保证,叠压质量不能满足精度要求。通常的解决措施是,利用人工对永磁体槽进行磨挫,增加永磁体槽的周边气隙,使永磁体能够顺利装入永磁电机转子内,这种工艺浪费了大量的时间和人力,延长了电机的生产周期和增加了电机的加工成本,而且容易造成由于电机永磁体槽在磁化方向气隙的增大而引起永磁电机运行性能恶化的结果。 1 假轴2大头螺母3转子挡板4转子铁心5双头螺栓6螺母7转子槽8永磁体槽 图27.转子铁心叠压示意图 而采用假永磁体定位的叠压工艺,在转子铁心完成铸铝后拆卸假永磁体的时机不易掌握,铸铝转子的一次合格率较低,加工效率低下。 新的加工工艺是综合了两种加工工艺的优点而形成的、创新的叠压工艺(如图27),采用冲片键槽及固定转子端板的双头螺栓进行定位,有效地解决了转子铁心叠压不齐的问题,而且在永磁体装配前,增加了清槽工艺过程,使转子上的永磁体槽的尺寸公差完全能能够满

足永磁体装配的要求。 2)永磁电机总装配工艺的研究 由于装入磁性较强的钕铁硼永磁材料,给永磁电机的装配工艺带来了很大的困难。在转子刚接近定子时,由于永磁体的磁(极)性作用,定、转子就会紧紧地吸在一起,造成转子不能顺利装入定子,电机的功率越大,两者作用力就越大。在无专用设备的过程中,如果装配时处理不当,不但两者会被强烈地吸引在一起而无法分开,影响了装配工作;甚至在强行分开的过程中损坏定、转子,更有甚者在实际装配过程中出现碰伤手指而致残的人身伤亡事故。因此,研究永磁电机装配专用装备是十分必要的。 对于小功率的永磁电机,可不借助于专用装备,将永磁转子装入定子中,但对于较大功率的永磁电机,则必须借助于专用装备将转子推入到定子,以完成永磁电机的装配过程。 永磁电机总装配工艺的研究则是发明了一种永磁电机装配专用装备(如图28),此装备应用后能够克服操作困难,人体易受伤害等问题,工艺装备代替人工装配永磁电机,实现了机械化,效率高、安全可靠,为永磁电机制造开辟了一条高效装配之路,具有一定的经济效益。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

自启动永磁同步电机与开关磁阻电机对比word版本

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比 1、自启动永磁同步电机 1.1 工作原理 起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。 1.2 基本结构 主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。 定子结构转子结构 2、开关磁阻电机 2.1 工作原理 开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始

终从最小磁阻的路径流过。然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。 2.2 基本结构 除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。 3、性能对比 3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。 3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。 3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。 3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。 3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

maxwell软件- 自起动永磁同步电动机

11 自起动永磁同步电动机 本章我们将简化RMxprt 一些基本介绍,以便介绍一些更高级的使用。有关RMxprt 基本操作的详细介绍请参考第一部分的章节。 11.1基本理论 同步电机定子绕组上输入三相正弦电压,在气隙中产生旋转磁场。转子上的永久磁极力图与定子旋转磁场对齐,因而在转子上产生同步转矩。起动时,转子上的阻尼绕组产生异步起动转矩,使其具有自起动能力。 自起动永磁同步电机的频域相量图如图11.1所示。 图 11.1 矢量图 图11.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。 aq 1q ad 1d X X X X X X +=+= (11.1) 上式中,X 1为电枢绕组漏电抗,X ad 和X ad 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。 设力矩角为θ(相量E 0与相量U 的夹角),可导出 ??????-=????????????-θθsin cos U E U I I X R R X 0q d q 11d (11.2) 解得: ??????+---+=??????θθθθsin )cos (sin )cos (U X E U R U R E U X X X R 1I I d 0110q q d 21q d (11.3) 设相量I 与相量E 0的夹角为ψ: q d 1I I -=tan ψ (11.4)

功率因数角φ(相量I 与相量U 的夹角)为: ψθ?+= (11.5) 输入电功率为: ?cos UI 3P 1= (11.6) 输出机械功率为: )(Fe Cu fw 12P P P P P ++-= (11.7) 式中P fw , P Cu , 和P Fe 分别为风摩损耗、电枢铜损和铁心损耗 输出机械转矩为: ω2 2P T = (11.8) 式中ω为同步角速度rad/s ). 电机效率为: %100P P 12?=η (11.9) 电机的起动方式与感应电机相同,即借助于转子上的鼠笼绕组(在此称为阻尼绕组)产生起动力矩。 11.2 主要特点 11.2.1适用于8种转子结构 转子结构中由于永久磁钢的布置方式不同,转子的磁路结构差别很大。RMxprt 可对不同的转子结构进行分析和设计。 11.2.2线圈和绕组的排列优化设计 几乎所有常用的三相和单相,单层和双层,整数槽和分数槽交流绕组都能自动设计。用户不需要一个接一个的自己定义线圈。 当设计者采用全极式单层绕组时,RMxprt 将自动对绕组进行排列,以减少绕组端部长度。当使用不对称三相绕组时,绕组排列按照最少负序和零序进行优化。 11.2.3 绕组编辑器支持任何单、双层绕组的设计 除了利用RMxprt 中的绕组自动排列功能,用户也能通过Winding Editor 来指定特殊形式的绕组排列。 在Winding Editor (绕组编辑器)中,通过改变每个线圈的相属Phase 、 匝数Turns 、 入槽号In Slot 和出槽号Out Slot ,可排列出任意所需的单、双层绕组分布形式。 11.2.4 阻尼绕组的动态参数分析 第3 ~ 7种转子的阻尼绕组结构与感应电机的鼠笼绕组相同。第8种转子结构与凸极同步电机相同,这种结构中阻尼绕组处于d-轴和q-轴差别很大的非均匀磁场中,而阻尼条的连接又有每极连接(极间不连接)、全部连接和端板式连接。所有这些复杂情况RMxprt 都能进行分析处理,给出阻尼绕组的动态参数。

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比 1、自启动永磁同步电机 1.1 工作原理 起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。 1.2 基本结构 主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。 定子结构转子结构 2、开关磁阻电机 2.1 工作原理 开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始终从最小磁阻的路径流过。然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。 2.2 基本结构 除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。

3、性能对比 3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。 3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。 3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。 3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。 3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。 综上:与开关磁阻电机相比,永磁同步电机的优势更明显,特别是在负载不高的工况下,节能效果比较突出。

永磁同步电机失磁故障的对策分析

永磁同步电机失磁故障的对策分析 1.引言 永磁同步电机由于其结构简单、运行可靠、损耗少、功率密度高、电机的形状和尺寸可以灵活多样等显著优点,应用范围极为广泛,遍及航空航天、国防、工农业和产和日常生活的各个领域。目前,永磁电机的应用领域仍在不断的拓展,风力发电、电动汽车等新能源领域也在大量使用永磁电机。因此,为了确保像电动汽车这样的应用系统以及其它对可靠性要求更高的应用领域的安全性,必须重视永磁同步电动机运行的可靠性和稳定性。 嵌入电机内的永磁体是永磁同步电机重要的结构部件,它的磁性能直接影响永磁同步电机的效率、性能和可靠性。在温度、电枢反应及机械振动等因素影响下,嵌入电机内的永磁体可能会产生不可逆失磁,使电机性能急剧下降,甚至有可能导致电机停转,对于像电动汽车这样的应用系统,永磁电机的突然失磁是非常危险的。因此,分析永磁同步电机的永磁体磁性能及失磁故障,对电机安全高效运行具有十分重要的意义[1][2]。 2.国内外研究现状 近年来,国内外对永磁材料的失磁机理和永磁同步电机的失磁故障进行了广泛的研究。文献[3]对稀土永磁材料的交流失磁现象进行研究,总结出稀土永磁材料表面磁感应强度在不同频率的交变磁场作用下随时间的变化规律。文献[4]针对稀土永磁同步电机在运行一段时间后性能下降这一现象,分析了引起电机失磁的原因,提出了在检修和运行中避免失磁的一些有效方法。文献[5]提出了一种基于卡尔曼滤波器的永磁同步电机永磁体磁场状况在线监测方法。文献[6][7]中通过建立参数模型或有限元模型来研究电机的失磁故障,提出了一些对永磁同步电机失磁故障的监测方法。文献[10]对失磁故障原因进行了全面的分析,提出了离线和在线检测方法。基于永磁体磁场状况的动态监测,可防止永磁电机失磁状况的恶化,降低不可逆失磁程度。文献[13]提出一种改进的反电势法,可用于永磁体磁链估计。 3.永磁同步电机失磁的发生 任何磁性材料都存在材料自身的磁性能稳定问题。永磁材料也具有失磁特

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在 异步转矩、永磁发电制动转矩、矩起的磁阻转矩和单轴转由转子磁路不对称而引 等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动 过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其他 的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机的应用

永磁同步电机的应用 一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机经常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送进电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对四周的电器设备带来有害的影响。电机的容量越大、转速越高,题目就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、本钱低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过往的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,均匀转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速题目,但在70年代以前,变频电源是可想而不可得的设备。所以,过往的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶然也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有: 1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用珍贵的金属钴,本钱高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,轻易氧化生锈而需涂复处理。经过这几年的精益求精进步,这些缺点大多已经克服,现钕铁硼永磁材料最高的工作温度已可达180℃,一般也可达150℃,已足以满足尽大多数电机的使用要求。表1是各种永磁材料性能比较。 表1各种永磁材料的性能比较 永磁材料的发展极大地推动了永磁同步电动机的开发应用。在同步电动机中用永磁体取代传统的电激磁磁极的好处是: 用永磁体替换电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积;省往了激磁直流电源,消除了激磁损耗和发热。当今中小功率的同步电动机尽大多数已采用永磁式结构。 2、电力电子技术的发展大大促进了永磁同步电动机的开发应用。 电力电子技术是信息产业和传统产业间重要的接口,是弱电与被控强电之间的桥梁。自58年世界上第一个功率半导体开关晶闸管发明以来,电力电子元件已经历了第一代半控式晶闸管,第二代有自关断能力的半导体器件(大功率晶体管GTR、可关断晶闸管GTO、功率场效应管MOSFET)的三代复合场控器件(尽缘栅功率晶体管IGBT、静电感应式晶体管SIT、MOS控制的晶体管MCT等)直至90年代出现的第四代功率集成电路IPM。半导体开关器件性能不断

永磁同步电机文献综述

永磁同步电机失磁故障诊断综述 1.引言 永磁同步电机由于其结构简单、运行可靠、损耗少、功率密度高、电机的形状和尺寸可以灵活多样等显著优点,应用范围极为广泛,遍及航空航天、国防、工农业和产和日常生活的各个领域。目前,永磁电机的应用领域仍在不断的拓展,风力发电、电动汽车等新能源领域也在大量使用永磁电机。因此,为了确保像电动汽车这样的应用系统以及其它对可靠性要求更高的应用领域的安全性,必须重视永磁同步电动机运行的可靠性和稳定性。 嵌入电机内的永磁体是永磁同步电机重要的结构部件,它的磁性能直接影响永磁同步电机的效率、性能和可靠性。在温度、电枢反应及机械振动等因素影响下,嵌入电机内的永磁体可能会产生不可逆失磁,使电机性能急剧下降,甚至有可能导致电机停转,对于像电动汽车这样的应用系统,永磁电机的突然失磁是非常危险的。因此,分析永磁同步电机的永磁体磁性能及失磁故障,对电机安全高效运行具有十分重要的意义[1][2]。 2.国内外研究现状 近年来,国内外对永磁材料的失磁机理和永磁同步电机的失磁故障进行了广泛的研究。文献[3]对稀土永磁材料的交流失磁现象进行研究,总结出稀土永磁材料表面磁感应强度在不同频率的交变磁场作用下随时间的变化规律。文献[4]针对稀土永磁同步电机在运行一段时间后性能下降这一现象,分析了引起电机失磁的原因,提出了在检修和运行中避免失磁的一些有效方法。文献[5]提出了一种基于卡尔曼滤波器的永磁同步电机永磁体磁场状况在线监测方法。文献[6][7]中通过建立参数模型或有限元模型来研究电机的失磁故障,提出了一些对永磁同步电机失磁故障的监测方法。文献[10]对失磁故障原因进行了全面的分析,提出了离线和在线检测方法。基于永磁体磁场状况的动态监测,可防止永磁电机失磁状况的恶化,降低不可逆失磁程度。文献[13]提出一种改进的反电势法,可用于永磁体磁链估计。 3.永磁同步电机失磁的发生 任何磁性材料都存在材料自身的磁性能稳定问题。永磁材料也具有失磁特

利用电磁特性分析对永磁同步电机进行故障诊断的新方法讲诉

文献翻译 题目利用电磁特性分析对永磁同步电机 进行故障诊断的新方法 学生姓名黄建波 专业班级电气工程及其自动化10级1班学号541001020215 院(系)电气信息工程学院 指导教师张志艳 完成时间 2014年 05月23日

利用电磁特性分析对永磁同步电机进行故障诊断的新方法姚达,IEEE学生会员,石晓东,IEEE会员,马赫施·奎纳姆瑟,IEEE会员 摘要 本文提出了一种通过直接测量传感线圈的磁通量对永磁同步电机进行健康监测和多故障检测的新方法。不同于其他基于频谱的故障检测方案,这种方法仅需要测量用于故障检测的基频分量。因此,本方案的性能不受速度波动或者电源谐波的影响。此外,可以检测到匝间短路的位置和静态偏心的方向,这是其他方案都没有的。虽然是嵌入式技术,但它非常适合于关键任务和新兴技术的应用,离岸风力涡轮机和混合动力汽车技术,军事上的应用等故障的早期检测非常重要的场合。使用有限元分析进行二维模拟已经验证了不同条件下提出的方法。实验简介对定子匝间短路故障、失磁故障、静态偏心故障进行了讨论,对提出的方案进行实验,验证其有效性。 关键词:故障检测,有限元分析、永磁同步电机、传感线圈。 1.简介 过去十年,永磁同步电机(PMSM)由于其高效率、高输出功率体积比和高转矩电流比,在诸如风力涡轮机和电动汽车中得到了很大的普及。在这些关键任务的应用中,一个意想不到的机器故障可能会导致非常高的维修或更换费用,甚至灾难性的系统故障。因此,这种场合需要坚固可靠的健康监测和故障检测方法,可以为预防性维护提供依据,延长使用寿命,减少机器故障。 离线机故障检测与诊断的方法不能频繁地测试,经济上也不允许,研究人员已经提出了许多在线检测的方法,这类方法维修费用少、诊断结果更可靠。一个具有成本效益的方式是基于定子电流频谱,通常被称为电动机电流特征分析(MCSA)[1]-[6]。电机电流的特定次谐波可以作为某种特定故障的标志。由于离散傅里叶变换(DFT)不包含机器操作和快速变化的速度的时间信息,短时傅里叶变换可以权衡时间和频率的分辨率。然而,一个固定长度的窗口可能导致不同的电流频率[7]不一致,改变电机的速度使它难以确定谐波次数。为了避免时间分辨率和频率分辨率之间的矛盾,罗赛罗等人[7]利用连续小波变换(CWT)和离散小波变换(DWT)在一台机器非平

永磁同步电机的原理和结构

WoRD文档可编辑 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流, 在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上 安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥 的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子 的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步 电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步 启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的 主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引起的磁阻转矩和单轴转矩等一系列的因素共同作用下而引起的,所以在这个过 程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性质的转矩, 电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为 主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体 脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现 转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。 一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图 1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入 式而言,各种结构都各有其各自的优点。

相关主题
文本预览
相关文档 最新文档