当前位置:文档之家› 三角函数的定义域值域和最值

三角函数的定义域值域和最值

三角函数的定义域值域和最值
三角函数的定义域值域和最值

三角函数的定义域值域

和最值

GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

三角函数的定义域、值域和最值

一 知识点精讲: 1 三角函数的定义域 (1)r y =αsin 定义域为R. (2)r

x

=αcos 定义域为R.

(3)x y =

αtan 定义域为 ?

??

???∈+≠Z k k ,2|ππαα. (4)y x =αcot 定义域

为{

}Z k k ∈≠,|παα. 2 三角函数的值域

① )0(,sin ≠+=a b x a y 型

当0>a 时,],[b a b a y ++-∈ ; 当0

此类型的三角函数可以转化成关于sinx 的二次函数形式。通过配方,结合sinx 的取值范围,得到函数的值域。x sin 换为x cos 也可以。 ③ x b x a y cos sin +=型

利用公式a

b

x b a x b x a =++=+φφtan ),sin(cos sin 22, 可以转化为一个三角函数的情形。

④x x b x x a y cos sin )cos (sin ++=型

利用换元法,设x x t cos sin +=, ]2,

2[-∈t ,则2

1

2cos sin -=

t x x ,

转化为关于t 的二次函数2

22122b

at t b t b at y -+=-+=. ⑤x x c x b x a y cos sin cos sin 22++=型

这是关于x x cos ,sin 的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,2

2sin cos sin ,22cos 1cos ,22cos 1sin 22x

x x x x x x =+=-=

可转化为p x n x m y ++=2cos 2sin 的形式。

⑥ d x c b

x a y ++=

sin sin 型 可以分离常数,利用正弦函数的有界性。

⑦b x a x y ++=cos sin 型 可以利用反解的思想方法,把分母乘过去,整理得,

a by x y x -=-cos sin ,11,

1)sin(2

2

≤+-+-=

-y

a by y

a by x φ, 通过解此不等式可得

到y 的取值范围。或者转化成两点连线的斜率。

以上七种类型是从表达的形式上进行分类的,如果x 有具体的角度范围,则再进行限制。

二 典例解析:

例1.求下列函数的定义域

(1)x x y 2cos 2sin 33--=; (2))2

1(cos log sin +=x y x . (3)

x x y cos lg 252+-=;

例2.求下列函数的值域

(1) 3sin 2+-=x y (2)4sin 5cos 22-+=x x y ;

(3)x x x x y 22cos 2cos sin 4sin 5+-=; (4)x x x x y cos sin cos sin ++= (5)2sin 31

sin 3++=x x y ; (6)2

cos 2sin ++=x x y

(7)x x y cos )6

sin(π

-=. (8))

4

(

tan 1)4

(tan 12

2x x y -+--=

ππ

(9)求函数x x

x x

y 2sin cos sin 12sin +--=的值域.

三 课堂练习:

1.若αααα则,11sec csc cos 2-=-?所在的象限是

( )

A .第二象限

B .第四象限

C .第二象限或第四象限

D .第一或第三象限 2.不解等式:

(1)21sin -

cos >x

3.已知)(cos ),2

3

,21()(x f x f 则的定义域为-的定义域为____________.

4.求下列函数的定义域

(1)1

tan 1

-=

x y (2)

.251sin 2

x

x y -+=

5.求下列函数的值域

(1)1cos 2-=x y

(2)

.sin 1cos sin 22x

x x y +=

(3)].,[2sin 2

1

cos sin 1ππ-∈+++=x x x x y (4).sin cos 3x x y -=

(5)x

y sin 21

+= (6)

1cot 4tan 22++=x y

6.有一块扇形铁板,半径为R ,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.

高三三角函数专题复习(题型全面)

三 角 函 数 考点1:三角函数的有关概念; 考点2:三角恒等变换;(两角和、差公式,倍角半角公式、诱导公式、同角的三角函数关系式) 考点3:正弦函数、余弦函数、正切函数的图象和性质;(定义域、值域、最值;单调区间、最小正周 期、对称轴对称中心) 考点4:函数y =Asin()0,0)(>>+???A x 的图象与性质;(定义域、值域、最值;单调区间、最小 正周期、对称轴对称中心、图像的变换) 一、三角函数求值问题 1. 三角函数的有关概念 例1. 若角θ的终边经过点(4,3)(0)P a a a -≠,则sin θ= . 练习1.已知角α的终边上一点的坐标为(3 2cos ,32sin π π),则角α的最小正值为( ) A 、65π B 、32π C 、35π D 、6 11π 2、公式法: 例2.设(0,)2πα∈,若3 sin 5α=)4 πα+=( ) A. 75 B. 15 C. 75- D. 15 - 练习1.若πtan 34α??-= ??? ,则cot α等于( ) A.2- B.12 - C.12 D.2 2.α是第四象限角,5 tan 12 α=-,则sin α=( ) A .15 B .15- C .513 D .513 - 3. cos 43cos77sin 43cos167o o o o +的值为 。 4.已知1sin cos 5θθ+=,且324 θππ ≤≤,则cos2θ的值是 . 3.化简求值 例3.已知α为第二象限角,且sin α,求sin(/4)sin 2cos21 απαα+++的值 练习:1。已知sin α=,则44sin cos αα-的值为( ) A .15 - B .35 - C .15 D .35

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法 三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下. 1 配方分析法 如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法. 例1求函数y=2cos2x+5sinx-4的值域. 解原函数可化为 当sinx=1时,y max=1; 当sinx=-1时,y min=-9, ∴原函数的值域是y∈[-9,1]. 注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意. “cosx”,再求已知函数的最值 例2求下列函数的最值,并求出相应的x值.

y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max= 3 求反函数法 如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.

∴原函数的值域是 4 应用函数的有界性 上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下. 解由原式可得 (3y-1)sinx+(2y-2)cosx=3-y, 则上式即为 利用函数的有界性有 ∴原函数的值域是

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

三角函数的定义域、值域和最值

三角函数的定义域、值 域和最值 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数的定义域、值域和最值 一 知识点精讲: 1 三角函数的定义域 (1)r y =αsin 定义域为R. (2)r x =αcos 定义域为R. (3)x y = αtan 定义域为 ? ?? ???∈+≠Z k k ,2|ππαα. (4)y x =αcot 定义域为 {}Z k k ∈≠,|παα. 2 三角函数的值域 ① )0(,sin ≠+=a b x a y 型 当0>a 时,],[b a b a y ++-∈ ; 当0

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

三角函数专题:三角函数的值域

高考复习专题 三角函数的值域与最值 一、基础知识 1、形如()sin y A x ω?=+解析式的求解:详见“函数()sin y A x ω?=+解析式的求解”一节,本节只列出所需用到的三角公式 (1)降幂公式:2 21cos21cos2cos ,sin 22 αα αα+-= = (2)2sin cos sin2ααα= (3)两角和差的正余弦公式 ()sin sin cos sin cos αβαββα+=+ ()sin sin cos sin cos αβαββα-=- ()cos cos cos sin sin αβαβαβ+=- ()cos cos cos sin sin αβαβαβ-=+ (4)合角公式:()sin cos a b ααα?+=+,其中tan b a ?= 2、常见三角函数的值域类型: (1)形如()sin y A x ω?=+的值域:使用换元法,设t x ω?=+,根据x 的范围确定t 的范围,然后再利用三角函数图像或单位圆求出x ω?+的三角函数值,进而得到值域 例:求()2sin 2,,444f x x x πππ?? ??=- ∈- ???? ??? 的值域 解:设24 t x π =- 当,44x ππ?? ∈- ???? 时,32,444t x πππ??=-∈-???? sin 22t ?∴∈-??? () f x ?∴∈? (2)形如()sin y f x =的形式,即()y f t =与sin t x =的复合函数:通常先将解析式化简为同角同三角函数名的形式,然后将此三角函数视为一个整体,通过换元解析式转变为熟悉的 函数,再求出值域即可 例:求()2 2sin cos 2,,63f x x x x ππ?? =-+∈- ???? 的值域 解:()() 2 2 sin 1sin 2sin sin 1f x x x x x =--+=++

函数的定义域和值域映射

函数定义域、值域、解析式、映射 知识点一:求各种类型函数的定义域 类型一: 含有分母和偶次方根 例1 求下列函数的定义域 1. y= 3102++x x 2. y = 类型二: 偶方根下有二次三项式 例2 求下列函数的定义域 1.. 1 ||1 42 -+-=x x y 2.2 3 568 4x x x y ---= 类型三:含有零次方和对数式 例3 求下列函数的定义域(用区间表示) (1)02 )23() 12lg(2)(x x x x x f -+--=; 练习:求下列函数的定义域 1. y=x x -||1 2. 122+--=x x y

3.()f x = 4.)13(log 2+=x y 5. 函数y =1122---x x 的取定义域是( ) A.[-1,1] B.(][)+∞-?-∞-,11, C.[0,1] D.{-1,1} 6. 求函数的定义域。 知识点二:抽象函数定义域 类型一:“已知f(x),求f(…)”型 例1:已知f(x)的定义域是[0,5],求f(x+1)的定义域。 类型二: “已知f(…) ,求f(x)”型 例2:已知f(x+1) 的定义域是[0,5],求f(x)的定义域。 类型三: “已知f(…),求f(…)”型 例3:已知f(x+2)的定义域为[-2,3),求f(4x-3)的定义域。 练习: 1、函数()f x 的定义域是[0,2],则函数(2)f x +的定义域是 ___________. 2、已知函数()f x 的定义域是[-1,1],则(2)(1)f x f x +++的定义域为 ___________.

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

函数的定义域和值域

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1) 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x

三角函数求值域专题

三角函数求值域专题 求三角函数值域及最值的常用方法: (1) 一次函数型:或利用为:=+=x b x a y cos sin )sin(22?+?+x b a , 利用函数的有界性或单调性求解;化为一个角的同名三角函数形式, (1):5)12 3sin(2+- -=π x y ,x x y cos sin = (2)x x y cos 3sin 4-= (3).函数在区间上的最小值为 1 . (4)函数且的值域是___(,1][1,)-∞-?+∞ (2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解; 二倍角公式的应用: 如: (1) x x y 2cos sin += (2)函数的最大值等于 4 3 . (3).当时,函数的最小值为 4 . (4).已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 1 . (5).若,则的最大值与最小值之和为____2____. (3)借助直线的斜率的关系用数形结合求解; 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6), 所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

高中数学讲义微专题27 三角函数的值域

微专题27 三角函数的值域与最值 一、基础知识 1、形如()sin y A x ω?=+解析式的求解:详见“函数()sin y A x ω?=+解析式的求解”一节,本节只列出所需用到的三角公式 (1)降幂公式:2 21cos21cos2cos ,sin 22 αα αα+-= = (2)2sin cos sin2ααα= (3)两角和差的正余弦公式 ()sin sin cos sin cos αβαββα+=+ ()sin sin cos sin cos αβαββα-=- ()cos cos cos sin sin αβαβαβ+=- ()cos cos cos sin sin αβαβαβ-=+ (4)合角公式:()22sin cos a b a b ααα?+=++,其中tan b a ?= 2、常见三角函数的值域类型: (1)形如()sin y A x ω?=+的值域:使用换元法,设t x ω?=+,根据x 的范围确定t 的范围,然后再利用三角函数图像或单位圆求出x ω?+的三角函数值,进而得到值域 例:求()2sin 2,,444f x x x πππ?? ??=- ∈- ???? ??? 的值域 解:设24 t x π =- 当,44x ππ?? ∈- ???? 时,32,444t x πππ??=-∈-???? 22sin 22t ?∴∈-??? ()2,2f x ??∴∈-?? (2)形如()sin y f x =的形式,即()y f t =与sin t x =的复合函数:通常先将解析式化简为同角同三角函数名的形式,然后将此三角函数视为一个整体,通过换元解析式转变为熟悉的 函数,再求出值域即可 例:求()2 2sin cos 2,,63f x x x x ππ?? =-+∈- ???? 的值域 解:()() 2 2 sin 1sin 2sin sin 1f x x x x x =--+=++

专项复习16三角函数的值域与最值

高三数学理科复习十六——三角函数的值域与最值 一、【知识复习与自学质疑】 1.求下列函数的最大值、最小值 (1)2sin cos ;3 y x x = (2)y = (3)212sin 1;2y x ??=-++ ??? (4)2515sin 416y x ??=-+ ?? ? 2.(1)若4x π≤ ,则()2cos sin f x x x =+的最小值是_________ (2)若 2x π ≤,则()sin f x x x =的值域是 3.(1)函数2cos sin x y x -= ()0x π<<的最小值是 (2)函数2cos 12cos 1x y x +=-的值域是 二、【例题精讲】 例1、已知1sin sin 3x y += ,求2sin cos y x -的最大值与最小值. 例2、求函数sin cos sin cos y x x x x =++的最大值. 例3、已知函数()22cos sin sin cos 3f x x x x x x π? ?=+-+ ??? ,求函数()f x 的最大值、最小值以及取得最值时的x 的值。

【矫正反馈】 1.(1)已知()0,θπ∈,函数23sin 13sin y θθ =+的最大值是___________________________ (2)已知()0,x π∈,函数2sin sin y x x =+的最小值是_____________________ (3)函数()223sin ,sin y x x k k Z x π= +≠∈的值域是____________________________ 2.设,当0,2x π??∈????时,()f x 的最大值为4,则a =_____________ 3.函数()2sin cos 36y x x x R ππ????=--+∈ ? ?????的最小值等于____________________ 4.函数sin 2sin x y x =+的值域为 ;函数sin cos 2 x y x =+的值域为 5.函数sin 2sin y x x =-的值域是_________________ 6.若()22cos 2cos 22sin 136f x x x x ππ????=-+ -++ ? ?????,则()f x 的最大值为_________ 7.函数()()sin 2cos 2y x x =--的最大值、最小值分别是_____________________________ 【迁移应用】 8.已知函数()22sin 23sin cos f x a x a x x a b =-++的定义域是,2ππ?????? ,值域是[]2,5,求,a b 的值. 9.求函数()24sin cos2f x a x x =--的最大值和最小值.(a R ∈)

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

高中数学-三角函数图像及性质与值域及最值

高中数学总复习-三角函数 第5课 三角函数的图像和性质(一) 【考点导读】 1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质; 2 2 2. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像; 3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】 动的最小正周期T _____L_;初相 —- 2. 三角方程2sin(_ - x)=1的解集为 4. 要得到函数y sinx 的图象,只需将函数 y cos x ______ - ____ 个单位. 【范例解析】 例 1.已知函数 f (x) 2sin x(sin x cosx). (I) 用五点法画出函数在区间 ——上的图象,长度 为一个周期; 2’ 2 (H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而 1. 已知简谐运动 f(x) 2sin (3X )( 2)的图象经过点(0,1),则该简谐运 3.函数 y Asin( x )( 0, 尹R)的部分图象如图所示,则函数表达为 y 4si n( x ) 8 4 的图象向右平移

分析:化为Asin( x )形式.得到?

列表,取点,描图: x 335 88888 y11逅1 1 V21 故函数y f(x)在区间[-,2]上的图象是: (U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x ) 4 4 1 的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不 4 2 变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标 4 4 伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将 4 y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到 4 y 1 - 2 sin(2x -)的图像. 1 解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得 2 到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到 8 解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x 2(sin 2x cos — 4 cos2xs in ) 4 2sin(2x 4 ).

三角函数的定义域与值域题库

. 专题三:三角函数的定义域与值域(习题库) 一、选择题 1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为() A、[﹣,] B、[,] C、[2kπ+,2kπ+](k∈Z) D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z) 分析:由题意知,求出x的围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴, 解答(k∈Z) ∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D. 2、函数的定义域是() A、. B、. C、 D、. 解答:由题意可得sinx﹣≥0?sinx≥又x∈(0,2π)∴函数的定义域是.故选B. 3、函数的定义域为() A、B、 C、D、 解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+), ∴,故选D. 4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是() A、[1,] B、 C、 D、

解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx= ==又∵∴ ∴则1≤f(x)≤故选A. 5、函数y=﹣cos2x+sinx﹣的值域为() A、[﹣1,1] B、[﹣,1] C、[﹣,﹣1] D、[﹣1,] 解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣ =sin2x+sinx﹣1=﹣ ∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣. sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B. 6、函数值域是() A、B、C、D、[﹣1,3] 解答:因为,所以sinx∈[],2sinx+1∈故选B 7、函数的最大值是() A、5 B、6 C、7 D、8 解答:∵= =∈[﹣7,7] ∴函数的最大值是7 8、若≤x≤,则的取值围是() A、[﹣2,2] B、 C、 D、 解答:=2(sinx+cosx)=2sin(), ∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1, 则函数f(x)的取值围是:.故选C.

三角函数最值与值域专题

三角函数最值与值域专题 三角函数的最值问题是高考的一个重要内容,要求掌握求三角函数最值的常见方法。 类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。 例1:求函数x x y sin 21sin --= 的值域。 解:由x x y sin 21sin --=变形为(1)sin 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +?≤?+≤++203 y ?-≤≤,则此函数的值域是2[,0]3 y ∈- 例2,若函数cos y a x b =+的最大值是1,最小值是7-,求a,b 练习:1,求函数1cos 3cos x y x -=+的值域 3][1-∞-∞(,,+) 2,函数x y sin =的定义域为[a ,b],值域为]2 1,1[-,则b-a 的最大值和最小值之和为b A .34π B .π2 C .38π D .π4 类型二:x b x a y cos sin += 型。此类型通常可以可化为sin cos )y a x b x x ?=+=+求其最值(或值域)。 例1:求函数3sin 4cos ,(0,)2y x x x π =+∈的最值。 解:343sin 4cos 5sin(),cos ,sin 55 (,),(3,5] 2y x x x x y ???π ???=+=+==+∈+∈ 2,求函数)3sin()6sin(ππ++- =x x y (R x ∈)的最值。 解法:)12sin(2]4)6sin[(2)6cos()6sin(π ππππ+=+-=-+-=x x x x y ,∴函数的最大值为2,最小值为2-。 练习:1,函数y=3sin(x+20°) +5sin(x+80°)的最大值是: ( c ) A 、215B 、216C 、7 D 、8 2,已知函数x x f 2sin )(=,)62cos()(π+=x x g ,直线x =t (t ∈?? ????2,0π)与函数f (x )、g (x )的图像分别交于M 、N 两点,则|MN |的最 类型三:)0(sin sin 2≠++=a c x b x a y 型。此类型可化为)0(2≠++=a c bt at y 在区间]1,1[-上的最值问题。 例1:求函数1sin 3cos 2++=x x y (R x ∈)的最值 解:49)23(sin 1sin 3sin 122+- -=++-=x x x y ∴函数的最大值为4 9,最小值为4325- 例2:求函数1sin 3cos 2++=x a x y (R a ∈,R x ∈)的最大值。 解:1sin 3cos 2 ++=x a x y 转化为2sin sin 2y x x =-+配方得: ①当123>a ,即332>a 时,在sinx=1,13max +=a y

1 函数定义域和值域

第一讲 函数定义域和值域 ★★★高考在考什么 【考题回放】 1.函数f (x )=x 21-的定义域是 ( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 2.函数) 34(log 1 )(2 2-+-=x x x f 的定义域为 (A ) A .(1,2)∪(2,3) B .),3()1,(+∞?-∞ C .(1,3) D .[1,3] 3. 对于抛物线线x y 42=上的每一个点Q ,点()0,a P 都满足a PQ ≥,则a 的取值范围是 ( B ) A .()0,∞- B .(]2,∞- C .[]2,0 D .()2,0 4.已知)2(x f 的定义域为]2,0[,则)(log 2 x f 的定义域为 ]16,2[ 。 5. 不等式x x m 22 +≤对一切非零实数x 总成立 , 则m 的取值范围是 (,-∞__。 6. 已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0) f f '的最小值为 。 52 ★★★高考要考什么 一、 函数定义域有两类:具体函数与抽象函数 具体函数:只要函数式有意义就行---解不等式组; 抽象函数:(1)已知)(x f 的定义域为D ,求)]([x g f 的定义域;(由D x g ∈)(求得x 的范围就是) (2)已知)]([x g f 的定义域为D ,求)(x f 的定义域;(D x ∈求出)(x g 的范围就是) 二、 函数值域(最值)的求法有: 直观法:图象在y 轴上的“投影”的范围就是值域的范围; 配方法:适合一元二次函数 反解法:有界量用y 来表示。如02 ≥x ,0>x a ,1sin ≤x 等等。如,2 211x x y +-= 。 换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围。注意三角换元的应用。

例谈三角函数值域(最值)的几种求法

例谈三角函数值域(最值)的几种求法 南县一中 肖胜军 有关三角函数的值域(最值)的问题是各级各类考试考察的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等重常用方法。掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。 一、合理转化,利用有界性求值域 例1、求下列函数的值域: (1)1sin cos y x x =+ (2)cos 3 cos 3 x y x -= + (3)2 2 sin 2sin cos 3cos y x x x x =++ (4)3sin()4cos()44 y x x π π =+ ++解析: (1)根据11sin cos sin 222x x x ≤ ≤可知:13 22 y ≤≤ (2)将原函数的解析式化为:3(1)cos 1y x y += -,由cos 1x ≤可得:1 22 y -≤≤- (3) 原函数解析式可化为:2 1sin 22cos 2sin 2cos 22)4 y x x x x x π =++=++=++ 可得: 22y ≤≤+ (4)根据sin cos )a x b x x φ?+=+∈?可得:55y -≤≤ 二、单调性开路,定义回归 例2、求下列函数的值域: (1)y = (2)y = (3)2cos ,63y x x x ππ?? ??=+∈ ?? ????? (4)y 1sin 02x ≤≤≤解析:(1)由-1知: 1sin 1,cos1cos sin 1 2 2 x x π π ≤-≤≤≤ ≤≤≤≤(2)由- 有()125sin()663366 x x x ππππππ +≤≤≤+≤≤≤(3)y=2由知:由正弦函数的单调性:1y 2 [](4)0,2y == 三、抓住结构特征,巧用均值不等式

三角函数的定义域、值域和最值

三角函数的定义域、值域和最值 一 知识点精讲: 1 三角函数的定义域 (1)r y = αsin 定义域为R. (2)r x = αcos 定义域为R. (3)x y = αtan 定义域为 ? ?? ? ??∈+≠ Z k k ,2|ππ αα. (4)y x = αcot 定义域为{}Z k k ∈≠,|παα. 2 三角函数的值域 ① )0(,sin ≠+=a b x a y 型 当0>a 时,],[b a b a y ++-∈ ; 当0

相关主题
文本预览
相关文档 最新文档