当前位置:文档之家› 荧光基团及淬灭基团

荧光基团及淬灭基团

荧光基团及淬灭基团
荧光基团及淬灭基团

StepOne?

几种常见荧光素极其特性介绍

几种常见荧光素极其特性介绍 荧光素(英语:Fluorescein,又称为荧光黄)是一种合成有机化合物,它是具有光致荧光特性的染料,外观为暗橙色/红色粉末,可溶于乙醇,微溶于水,在蓝光或紫外线照射下,发出绿色荧光。荧光染料种类很多,目前常用于标记抗体的荧光素有以下几种:异硫氰酸荧光素,四乙基罗丹明,四甲基异硫氰酸罗丹明,酶作用后产生荧光的物质。目前荧光素广发应用在免疫荧光、免疫荧光染色实验中。 下面介绍几种常用荧光素及其基本生物学特性: 1、异硫氰酸荧光素,简称“FITC”。是一种小分子荧光素,其效率取决于于溶液的pH 值,因此,在使用FITC时应注意溶液的酸碱度。FITC分子量为389.4,最大吸收光波长为490~495nm,最大发射光波长为520~530nm,呈现明亮的黄绿色荧光。 FITC在冷暗干燥处可保存多年,是目前应用最广泛的荧光素。其主要优点是人眼对黄绿色较为敏感,通常切片标本中的绿色荧光少于红色。 2、藻红蛋白,简称“PE”。相对分子质量较大,约为240kD,最大吸收峰为564nm,当使用488nm激光激发时其发射荧光峰值约为576nm,故可能会对其它大探针产生空间位阻。 但PE的化学结构非常稳定,有很高的荧光效率,并易与抗体分子结合。需要注意的是PE作为天然染料,因来源不同可能造成荧光素结构上的微小差别,导致其特征的不一致。 3、PI和EB。两者都具有嵌入到双链DNA和RNA的碱基对中并与碱基对结合的特异性。为了获得特异的DNA分布,染色前必须用RNA酶处理细胞,排除双链RNA的干扰。 PI和EB不能进入完整的细胞膜,因此,又可以用于检测死活细胞。PI和EB各种理化性质相似,但PI比EB的发射光光谱峰向长波方向移动,因而在做DNA和蛋白质双参数测量时,PI的红色荧光和FITC的绿色荧光更易于区分和测量。另外,PI比EB测得的DNA 分布的变异系统(CV值)低,所以PI得到更广泛的应用。

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

氧化石墨烯荧光淬灭

1我报告的题目是基于碌酸化多肽降解受阻的石墨稀/多肽复合焚光探针用于蛋白激酶活性及抑制作用分析 2蛋白激酶催化作用下的蛋白质憐酸化是生物体内翻译后修饰的重要方式之一。蛋白质的憐酸化和去磷酸化这一可逆过程几调节着细胞的发育、增殖、分化、信号转导、神经活动、肌肉收缩、细胞凋亡及肿瘤发生等过程在内的大部分生命活动。非正常的磷酸化会导致人体产生各种疾病,例如癌症或老年痴呆症等。因此,准确灵敏地检测过度磷酸化、分析蛋白激酶活性和高通量蹄选高效抑制剂对于人类一些重大疾病的早期诊断和治疗极为重要。 传统用于蛋白激酶活性分析的方法依赖于放射性元素标记伽马-32P-ATP法,由于放射性物质对环境及其人体的危害而随之被取代,基于憐酸特异性识别抗体的免疫技术[146]、突光分析方法表面等离子共振技术[184,185]以及质谱等都能有效用于蛋白激酶的活性分析。 石墨稀(Graphene),是从石墨材料中剥离出来的由碳原子组成的二维晶体, 是目前己知世界上强度最高的材料。石墨稀具有独特的电子、机械、热力学特性 在化学、质量、压力等传感应用中独具优势,。与碳纳米管相似,石墨烯对有机 荧光分子表现了有效的突光淬灭效果,这一过程中同时发生了激发态突光分子与 石墨烯表面之间的能量转移和电子转移。2010年诺贝尔物理学奖 氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,仍然具有淬灭荧光的效果 3本文首次提出了一种基于多肽/石墨烯突光浮灭机制和接肽酶降解作用的激 酶活性分析方法。酪蛋白激酶CKII是一种重要的丝氨酸/苏氨酸选择性蛋白激酶, 能磷酸化160种不同的蛋白质,我们以CKII为蛋白激酶模型。FITC 标记的CKII底物多 肽,FITC-peptide(FITC-RRRADDSDDDDD),能与GO发生有效的突光浮灭。幾肽酶CPY是一类 肽链端解酶,作用于任何一个C-末端残基,从肽链的C端开始逐个降解,释放出 游离氨基酸。FITC-peptide在CPY的消化作用下释放出游离的FITC分子,在 高离子强度环境下,游离FITC分子与GO之间的吸附较小而保持相当强的焚光。 而当FITC-peptide在CKII/ATP催化发生磷酸化,有效地阻碍CPY在憐酸化丝氨 酸位点的降解,使得FITC-多肽更容易与GO结合导致焚光淬灭。 1羧肽酶CPY 作用于任何一个C-末端残基逐个降解释放游离氨基酸,并释放出游离的FITC分子,在高离子强度环境下(猜想,故而加了氯化镁和钾),与GO之间吸附较小保持相当强的荧光 4. 梭肽酶(carboxypeptidase Y, CPY)、Staurosporine、弗斯可林(Fskorlin)和3-异丁基-1-甲基黄嘿呤(IBMX) 购买于西格玛公司(中国上海)。cAMP-依赖型蛋白激酶(PKA,催化亚基)购买 于Promega公司,酷蛋白激酶II (CKII)购买于New England Biolabs公司(美国)。 突光素标记底物多肽:FITC-RRRADDSDDDDD ( FITC-pep )、 FITC-RRRADDpSDDDDD (FITC-Ppep)和FITC-LRRASLG (FITC-kemptide) ATP、蛋白酶抑制剂和改良型Bradford蛋白总浓度检测试剂盒 牛血清蛋白(BSA)、三轻甲基氨基甲焼(Tris)、甘油、DTT、 EDTASynergy Mx酶标仪(BioTek仪器有限公司)进行突光光谱分析,所有样 品用480 nm作为激发波长,从500 nm到700 nm (25 °C)扫描焚光发射谱图。 5氧化石墨稀与多肽FITC-pep之间的劳光淬灭(氧化石墨烯对荧光强度的影响)FlTC-peptide+ TBS+ Tris-HCl+ MgCb+ KCl+氧化石墨稀 在96孔酶标板中加入60 nL浓度为的多肽(FlTC-peptide)溶液(溶 于TBS,即20 mM Tris-HCl,10 mM MgCb, 50 mM KCl, pH 7.5),每孔中加入

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman 探针、引物设计原则 遗传物质DNA 首先要把所携带的遗传信息转录成为信使RNA (mRNA ),携带遗传信息的mRNA 从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA 携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA 完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA 的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA 含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR 仪是在普通PCR 仪的基础上加装了荧光激发装臵和荧光检测装臵,PCR 扩增和检测同时进行;在PCR 反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems 公司推出,由于该技术不仅实现了PCR 从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR 污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR 常用的三个常用概念 扩增曲线、荧光阈值、Ct 值 扩增曲线:反映PCR 循环次数和荧光强度的曲线,定量PCR 仪每次轮PCR 扩增都会自动记录 荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动 设臵的原则要大于样本的荧光背 景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT 值: PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 扩增曲线 阈值及CT 值 荧光定量PCR 的数学原理 理想的PCR 反应: X=X0*2n 非理想的PCR 反应: X=X0* (1+Ex)n (n :扩增反应的循环次数;X :第n 次循环后的产物量;X0:初始模板量;Ex :扩增效率) 在扩增产物达到阈值线时 : C(t) value

不同标记荧光基团的稳定性、半衰期介绍说明

Please refer to STYLE GUIDE.doc for detailed guidelines Color code legene: Red = Proprietary; Pink = Discontinuation; Green = Anecdotal; Blue = Anything else customers will not see Custom Primers – All Modifications TABLE OF CONTENTS PRODUCT DESCRIPTION SHIPPING CONDITIONS STORAGE CONDITIONS STABILITY QC SPECIFICATIONS PROTOCOL & APPLICATION NOTES Modification/scale/purification Manufacturing Details Fluorescein Rhodamine HEX/TET/FAM Phosphate Biotin Amine Gateway Alexa Other dyes Alkaline Phosphatase Horse Radish Peroxidase Phosphorothioate “Fully-Phosphorothioated" Custom Primers Aldehyde Acridine Thiol Delivery Schedule OligoPerfect Designed Primers 3' Modifications of Oligos Reconstitution Protocol A260/A280 ratio of the oligo Oligo Visualization Troubleshooting “Custom Custom” modifications List of current technology limitations COMPETITOR INFORMATION ALTERNATE PRODUCTS & COMPATIBILITY PRODUCT DOCUMENTATION REFERENCES PRODUCT NAME & CATALOG NUMBER COMPONENTS DISCONTINUATION NOTICE ASSOCIATED PRODUCTS PRODUCT QUALITY ISSUES Returning Primers LICENSING INTERNAL CONTACTS

(完整word版)荧光机理

1光致电子转移(PET) 递给荧光基团的键合基团(RecePtor),负责光吸收并产生荧光发射信号的荧光基团(Fluorophorc)—其荧光发射强度反映键合基团的结合状态,以及连接键合集团和荧光基团的连接基团(Spacer)。键合基团和荧光基团通常为电子给体或者电子受体。 光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移从而导致荧光的淬灭过程。例如,当荧光分子传感器的键合基团是电子给体,荧光基团是电子受体时,具体PET作过程如下:在光激发下,具有电子给予能力的键合基团能够将其处于最高能级的电子转入激发态下荧光基团空出的电子轨道,使被光激发的电子无法直接跃迁巨}到原基态轨道发射荧光,从而导致荧光的淬灭;当键合基团与底物结合后,降低了键合基团的给电子能力,抑制了PET过程,荧光基团中被光激发的电子可以直接跃迁回到原基态轨道,从而增强了的荧光基团的荧光发射。因此在未结合底物前,传感器分子表现为荧光淬灭,一旦键合基团与底物相结合,荧光基团就会发射荧光(见图) 由于与客底物结合前后的荧光强度差别很大,呈现明显的“关”、“开”状态,因此这类荧光化学传感器又被称为荧光分子开关。PET荧光分子传感器的作用机制可由前线轨道理论“来进一步说明(见图 1.5)。

2分子内电荷转移(ICT) ICT荧光化学传感器由推电子基团、吸电子基团通过p电子体系连接而成,在基态时表现为极化结构,一端为缺电子部分,另一端为富电子部分;而在光激发下,偶极矩增大,强化了这种极化特征,容易发 生ICT过程(如图)。 ICT荧光化学传感器的工作原理有两种(见图l.7a):当底物是缺电子基团(阳离子)时,一种是底物与吸电子基团结合,将增大分子内电荷转移程度,导致荧光光谱红移;一种是底物与推电子基团结合,则使原来向共扼体系转移的孤对电子用于与阳离子形成配位键,导致ICT 推一拉电子的特征下降,导致荧光光谱蓝移。当底物是富电子基团(阴离子)时,情况相反。一般情况下,ICT荧光化学传感器对荧光强度的影响不如PET荧光化学传感器显著。典型例子是同时含有吸电子

常见有机物及基团的缩写

% %de 非对映体过量百分比(不对称合成术语) %ee 对映体过量百分比(不对称合成术语) A A/MMA 丙烯腈/甲基丙烯酸甲酯共聚物 AA 丙烯酸 AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物 ABFN 偶氮(二)甲酰胺 ABN 偶氮(二)异丁腈 ABPS 壬基苯氧基丙烷磺酸钠 Ac 乙酰基 acac 乙酰丙酮基 AIBN 2,2'-二偶氮异丁腈 aq. 水溶液 B BAA 正丁醛苯胺缩合物 BAC 碱式氯化铝 BACN 新型阻燃剂 BAD 双水杨酸双酚A酯 BAL 2,3-巯(基)丙醇 9-BBN 9-硼二环[3.3.1]壬烷 BBP 邻苯二甲酸丁苄酯 BBS N-叔丁基-乙-苯并噻唑次磺酰胺 BC 叶酸 BCD β-环糊精 BCG 苯顺二醇 BCNU 氯化亚硝脲 BD 丁二烯 BE 丙烯酸乳胶外墙涂料 BEE 苯偶姻乙醚 BFRM 硼纤维增强塑料 BG 丁二醇 BGE 反应性稀释剂 BHA 特丁基-4羟基茴香醚 BHT 二丁基羟基甲苯 BINAP (2R,3S)-2.2'-二苯膦-1.1'-联萘,亦简称为联二萘磷,BINAP是日本名古屋大学的Noyori(2001年诺贝尔奖)发展的一类不对称合成催化剂 BL 丁内酯 BLE 丙酮-二苯胺高温缩合物 BLP 粉末涂料流平剂 BMA 甲基丙烯酸丁酯 BMC 团状模塑料 BMU 氨基树脂皮革鞣剂 BN 氮化硼

Bn 苄基 BNE 新型环氧树脂 BNS β-萘磺酸甲醛低缩合物 BOA 己二酸辛苄酯 BOC 叔丁氧羰基(常用于氨基酸氨基的保护)BOP 邻苯二甲酰丁辛酯 BOPP 双轴向聚丙烯 BP 苯甲醇 BPA 双酚A BPBG 邻苯二甲酸丁(乙醇酸乙酯)酯 BPF 双酚F BPMC 2-仲丁基苯基-N-甲基氨基酸酯 BPO 过氧化苯甲酰 BPP 过氧化特戊酸特丁酯 BPPD 过氧化二碳酸二苯氧化酯 BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚)BPTP 聚对苯二甲酸丁二醇酯 Bpy 2,2'-联吡啶 BR 丁二烯橡胶 BRN 青红光硫化黑 BROC 二溴(代)甲酚环氧丙基醚 BS 丁二烯-苯乙烯共聚物 BS-1S 新型密封胶 BSH 苯磺酰肼 BSU N,N’-双(三甲基硅烷)脲 BT 聚丁烯-1热塑性塑料 BTA 苯并三唑 BTX 苯-甲苯-二甲苯混合物 Bu 正丁基 BX 渗透剂 BXA 己二酸二丁基二甘酯 BZ 二正丁基二硫代氨基甲酸锌 Bz 苯甲酰基 C c- 环- CA 醋酸纤维素 CAB 醋酸-丁酸纤维素 CAM 甲基碳酰胺 CAN 硝酸铈铵 CAN 醋酸-硝酸纤维素 CAP 醋酸-丙酸纤维素 Cat. 催化 CBA 化学发泡剂 CBz 苄氧羰基

关于荧光染(资料集合)

关于荧光染料(资料集合) ●人肉眼对光源波长的颜色感觉 红色770-622 nm 橙色622~597 nm 黄色597~577 nm 绿色577~492 nm 蓝靛色492~455nm 紫色455~350nm ●理想的荧光染料一般具有以下几个特点: 1.具有高的光子产量,信号强度高; 2.对激发光有较强的吸收,降低背景信号; 3.激发光谱与发射光谱之间距离较大,减少背景信号的干扰; 4.易与被标记的抗原、抗体或其他生物物质结合而不影响被标记物的特异性; 5.稳定性好,不易受光、温度、PH、标本抗凝剂和固定剂的影响。 ●染料在生物化学中最早的应用是直接对切片进行染色,然后进行观察。随着生物技术、计算机技术以及荧光光谱测定技术的不断发展,许多染料尤其是荧光染料在细胞检测、肿瘤基因蛋白分析、毒物分析、临床医疗诊断等方面得到了广泛的应用。 荧光染料泛指吸收某一波长的光波后能发射出另一大于吸收光波长的光波的物质。利用荧光染料进行抗体标记分析在现代生物免疫学领域中应用广泛,并逐步显示出明显的优越性。 下面简要介绍应用于标记抗体的荧光染料及其种类: 1.荧光素类染料,包括异硫氰酸荧光素(FITC)、羟基荧光素(FAM)、四氯荧光素(TET)等及其类似物。这是一类具有较多苯环的化合物。应用最广泛的是FITC(如图为FITC标记的组织荧光图),在488nm 处由氩离子激光激发,发射525nm的蓝绿色荧光。FITC能够与各种抗体蛋白结合,并在碱性溶液中稳定呈现蓝绿色荧光。 2.罗丹明类染料,包括红色罗丹明(RBITC)、四甲基罗丹明(TAMRA)、罗丹明B(TRITC)等。TRITC在550nm处被激发可发射出570nm的黄色荧光。 3.Cy系列菁染料,菁染料通常有两个杂环体系组成,包括Cy2、Cy3、Cy3B、Cy3.5、Cy5、Cy5.5、Cy7及其类似物。 4.Alexa系列染料,它是由MolecularProbes开发的系列荧光染料。其激发光和发射光光谱覆盖大部分可见光和部分红外线光谱区域,应用广泛。以高亮度、稳定性、仪器兼容性、多种颜色、pH值不敏

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman探针、引物设计原则 遗传物质DNA首先要把所携带的遗传信息转录成为信使RNA(mRNA),携带遗传信息的mRNA从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR仪是在普通PCR仪的基础上加装了荧光激发装置和荧光检测装置,PCR扩增和检测同时进行;在PCR反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems公司推出,由于该技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR常用的三个常用概念 扩增曲线、荧光阈值、Ct值 扩增曲线:反映PCR循环次数和荧光强度的曲线,定量PCR仪每次轮PCR扩增都会自动记录荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动设置的原则要大于样本的荧光背景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT值: PCR扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 C(t) value 扩增曲线阈值及CT值 荧光定量PCR 的数学原理

实时荧光定量 原理 taqman 探针简介

实时荧光定量 PCR技术原理与应用 聚合酶链式反应 ( PCR) 可对特定核苷酸片断进行指数级的扩增。在扩增反应结束之后,我们可以通过凝胶电泳的方法对扩增产物进行定性的分析,也可以通过放射性核素掺入标记后的光密度扫描来进行定量的分析。无论定性还是定量分析,分析的都是 PCR 终产物。但是在许多情况下,我们所感兴趣的是未经 PCR 信号放大之前的起始模板量。例如我们想知道某一转基因动植物转基因的拷贝数或者某一特定基因在特定组织中的表达量。在这种需求下荧光定量 PCR 技术应运而生。所谓的实时荧光定量 PCR 就是通过对 PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量 PCR 反应中,引入了一种荧光化学物质,随着 PCR 反应的进行, PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图 ( 如图 1) 。 图 1 实时荧光扩增曲线图 一般而言,荧光扩增曲线扩增曲线可以分成三个阶段:荧光背景信号阶段 , 荧 光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号被荧光 背景信号所掩盖,我们无法判断产物量的变化。而在平台期,扩增产物已不再

呈指数级的增加。 PCR 的终产物量与起始模板量之间没有线性关系,所以根据最终的 PCR 产物量不能计算出起始 DNA 拷贝数。只有在荧光信号指数扩增阶段, PCR 产物量的对数值与起始模板量之间存在线性关系,我们可以选择在这个阶段进行定量分析。为了定量和比较的方便,在实时荧光定量 PCR 技术中引入了两个非常重要的概念:荧光阈值和 CT 值。荧光阈值是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,但一般我们将荧光域值的缺省设置是 3-15 个循环的荧光信号的标准偏差的10 倍。每个反应管内的荧光信号到达设定的域值时所经历的循环数被称为 CT 值( threshold value )(如图 2 所示)。

荧光淬灭

如果这种能量传递不有效的话,可能荧光就强。另外金的plasmon也会增强荧光材料的光吸收,可能会增强荧光总强度。这两个竞争过程除了与波长有关外,朱要与距离有关,一般 5纳米是界限,距离短被淬灭 荧光淬灭有以下几种说法: 1. 动态淬灭(碰撞淬灭,淬灭剂与发光物质的激发态分子之间的相互作用) 2. 静态淬灭(发光分子基态和淬灭剂形成不发光的基态络合物) 3. 转入三重态淬灭 4. 自吸淬灭(浓度高时,自淬灭) 首先确定荧光物质是否有电性,就是说荧光物质是否带有电荷,而且贵金属,例如纳米金,在 制作过程中,表面由于有柠檬酸根而带有负电荷,可以和带正电荷的荧光物质,如带正电荷水 溶性荧光共轭聚合物,通过静电作用,而使荧光猝灭;如果带相同电荷或者一方不带电荷,猝 灭是不怎么明显的。可以这样说,这种猝灭,是通过电荷作用相互吸附在一起,你可以让两者 相互作用后,做一个TEM,就可以判断了。 荧光淬灭有动态淬灭和静态淬灭两种,稳态的荧光强度都显示出荧光强度的衰减,无法分辨, 而动态淬灭至少分裂为2个荧光寿命,意味着能量转移的发生,而静态淬灭只是淬灭剂与荧光 物结合生成非荧光物质,荧光寿命并不发生变化。 Acrylamide和碘离子分别用于疏水淬灭或亲水淬灭,测量蛋白质中Trp残基荧光淬灭的寿命,能够轻易的得知Trp残基是位于蛋白质表面还是内部。 荧光淬灭多用于分析大分子或胶体的结构或构象,用淬灭的方法研究荧光基团在分子内还是分 子表面,有个淬灭的方程,一时写不出来,大概是淬灭剂浓度和荧光变化的关系,有个K常数,和淬灭效率和荧光寿命有关,如果分子构型改变,K会变化,这样就可以用来研究某些化合物 对大分子构型或构象的影响。 荧光漂白,就是用强光把荧光素的激发态全部给消除了,有可逆和不可逆两种,可逆的漂白相 当于清理出一个没有荧光的区域,相当于荧光清零,然后再观察测量某种特定的荧光的扩散、 产生或恢复。漂白是否可以恢复依赖于荧光素的种类和漂白光强,作为副作用,荧光素的漂白 常会发生。 磁性纳米粒子猝灭量子点的荧光很早就有人研究过。 具体原因: 处于导带的电子在回到价带的过程中,由于磁性纳米粒子的存在,发生了电子转移,量子点导带的电子转移到磁性纳米粒子上,结果荧光发生猝灭。因此,通常制备的磁性-荧光双功能纳 米材料都会在量子点表面修饰一层无机壳、聚合物等材料,降低这种电子转移。

荧光素_GOD_HRP荧光淬灭法测定植物果实组织中的葡萄糖含量

第22卷第1期海南大学学报自然科学版V ol.22N o.1 2004年3月NATURA L SCIENCE JOURNA L OF H AINAN UNIVERSIT Y M ar.2004 文章编号:1004-1729(2004)01-0057-04 荧光素-GOD-HRP荧光淬灭法测定 植物果实组织中的葡萄糖含量 占达东1,王周平2,吕家根3 (1.琼州大学化学系,海南五指山572200;2.西南师范大学化学系,重庆400715; 3.陕西师范大学化学系,西安710062) 摘 要:植物组织中的葡萄糖在葡萄糖氧化酶的作用下产生的过氧化氢可在辣根过氧化物酶的 催化作用下使荧光素褪色并使荧光淬灭,基于这一现象,笔者建立了一种选择性测定植物果实 组织中葡萄糖含量的荧光分析方法,同时利用这种方法对苹果、鸭梨和酥梨组织液中的葡萄糖含 量进行了测定,并与分光光度法检测的结果及文献值进行了比较,结果表明:该方法具有安全、 方便、准确的优点,适合检测复杂样品尤其是植物中的葡萄糖含量. 关键词:G OD;HRP;植物果实组织;荧光素;荧光淬灭法;葡萄糖 中图分类号:Q554 文献标识码:A 葡萄糖在生物体内具有极其重要的生理意义,有关各种动植物体内的葡萄糖含量的测定已有大量的报道[1~8].由于检测的对象多为血液、组织液和细胞液,这些分析对象的组成往往十分复杂,尤其是植物组织液中的果糖和其他还原性物质常常对葡萄糖的分析产生严重的干扰,因此大多数的检测方法都是基于酶反应的高度选择性来消除各种共存物的干扰的.植物组织液中葡萄糖检测的经典方法是利用G OD催化氧化葡萄糖,使其生成过氧化氢,进而利用HRP催化过氧化氢氧化邻连茴香胺或高香草酸,使其生成有色产物,然后再以分光光度法或荧光法进行检测[8].该方法的主要缺点是邻连茴香胺和高香草酸不仅价格较高,而且都是致癌物质,这不仅会危害操作者的身体健康,同时也会对环境造成污染.本文所介绍的方法是在保留经典方法的高度选择性的同时,用廉价、安全的荧光素取代了连苯胺类物质,使过氧化氢在HRP的作用下氧化荧光素并使其褪色,因此以荧光法来检测剩余荧光素的含量便可间接地测定出葡萄糖的含量.由于荧光素在490nm处有很强的吸收,并在514nm处产生很强的荧光,因而对提高分析方法的灵敏度十分有利.为了使这一方法得到广泛的应用,笔者采用该方法分别测定了苹果、鸭梨和酥梨组织中的葡萄糖含量,并与分光光度法[9]的分析结果和文献报道的数值进行了比较,认为三者之间显示了较好的一致性. 1 实 验 1.1 试剂、材料及仪器 配制0、5、20、50、100、200、300、400mg?L-1的葡萄糖(分析纯)标准溶 收稿日期:2003-04-07 作者简介:占达东(1963-),男,海南琼山人,琼州大学化学系副教授.

荧光淬灭法测定Ni(2)

荧光淬灭法测定Ni(II) 摘要: 目的运用荧光淬灭法检测工业废水①中的Ni(II)是否达标。 方法镍对邻二氮菲的荧光具有淬灭的特性,本文采取标准曲线法,首先测定一系列邻二氮菲的标准溶液的荧光强度,得到以荧光强度(F)与邻二氮菲浓度(c)的曲线,再测定用过量的邻二氮菲处理的Ni(II)试样的荧光强度,最后间接计算出Ni(II)试样的浓度。 通过标准曲线法课以有效地扣除背景,减小误差,结果相对准确,标准曲线的r2约为0.99925②,通过与环境监测部门给出的数据对比,相对误差较小,结果值得信赖。 关键词:镍邻二氮菲荧光淬灭法 Abstract: Purpose use the fluorescence quenching method to detect Ni (II) in the natural lake. Method this method is based on the quenching of fluorescence of phenanthroline due to the formation of complex Ni (II)-phen. Firstly, determine the fluorescence intensity of a series of o-phenanthroline standard solution, so we obtain a standard curve about fluorescence intensity(F) and o-phenanthroline concentration (c) . Then determine the fluorescence intensity of Ni (II) sample with excess o-phenanthroline treatment, and finally indirectly calculate the Ni (II) sample concentration. Through the standard curve method we can effectively deduct the background, reduce errors, the result is relatively accurate, the standard curve r2 is about 0.99925, and by the comparison of the data given by the environmental monitoring department, the relative error is small, the results reliable. Key words: nickel phenanthroline fluorescence quenching 引言:镍是人体必需的微量元素之一, 对体内某些酶有激活作用及刺激造血机能和促进红细胞再生的作用。但过量亦会中毒③。环境中镍的主要污染来源为:镍矿的开采和冶炼;合金钢的生产和加工过程;煤、石油燃烧时排放烟尘中;电镀、镀镍的生产过程④。测定镍的方法有原子吸收法和ICP-AES法、丁二酮肟分光光度法、极谱催化波等⑤。本文基于镍对邻菲罗啉自身荧光淬灭的作用,进行了痕量镍的测定。该方法具有操作简便,测定快速,重现性好,灵敏度高等特点。应用该方法测定了工业废水中的痕量镍,得到了满意的结果。 ①以某冶金厂的废水为测定样本; ②本文中的测定数据均属由在实验中的分子荧光法测定奎宁含量的实际数据类比之后虚拟而得; ③孙成均. 生物材料检验[M] . 北京: 人民卫生出版社, 2006. 49; ④镍有何毒性与危害?南宁环保局网络课堂2005-06-10; ⑤《PAN- Rh6G 能量转移荧光猝灭法测定痕量镍》,宁玲, 吕昌银, 陈云生, 范翔, 贺元文,2008.05

荧光染料基础知识大全

荧光染料基础知识大全 益阳纺织染整团队今天 荧光显微镜技术的基本原理是借助荧光剂让细胞成分呈现高度具体的可视化效果,比如在目的蛋白后面连一个通用的荧光蛋白—GFP。在组织样本中,目的基因无法进行克隆,则需要用免疫荧光染色等其他技术手段来观察目的蛋白。为此,就需要利用抗体,这些抗体连接各种不同的荧光染料,直接或间接地与相应的靶结构相结合。此外,借助荧光染料,荧光显微镜技术不只局限于蛋白质,它还可以对核酸、聚糖等其他结构进行染色,即便钙离子等非生物物质也可以检测出来。 1免疫荧光 (IF) 在荧光显微镜技术中,可以通过两种方式观察到你的目的蛋白:利用内源荧光信号,即通过克隆手段,用遗传学方法将荧光蛋白与目的蛋白相连;或利用荧光标记的抗体特异性结合目的蛋白。 有些生物学问题采用第二种方法会更有用或更有必要。比如,组织学样品无法使用荧光蛋白,因为通常来说,标本都是从无法保存荧光蛋白的生物体中获取。此外,当有一个有功能的抗体可用时,免疫荧光法会比荧光蛋白技术快很多,因为后者必须先克隆目的基因再将DNA转染到适当的细胞中。 荧光蛋白的另一项劣势在于其本身属于蛋白质。因此,细胞内的这些荧光蛋白具有特定的蛋白质特性,其会导致附着的目的蛋白质发生功能紊乱或出现误释的情况。然而,荧光蛋白技术仍然是观察活细胞的首选方法。 免疫荧光法利用了抗体可以和相应抗原特异性结合的这个特性,对此它还有两种不同的表现形式。最简单的方式是使用可与目的蛋白相结合的荧光标记抗体。这种方法被称为“直接免疫荧光法”。 在很多情况下,我们可以利用两种不同特性的抗体。第一种抗体可以结合目的蛋白,但其本身并未进行荧光标记(一抗)。第二种抗体本身就携带荧光染料(二抗),并且可以特异性结合一抗。这种方法被称为“间接免疫荧光法”。 这种方法存在诸多优势。一方面,它会产生放大效应,因为不只一个二抗可以与一抗相结合。另一方面,没有必要始终用荧光染料标记目的蛋白的每个抗体,但可以使用市售荧光标记的二抗。免疫荧光中广泛使用的荧光染料包括FITC、TRITC 或一些Alexa Fluor?染料,下文均有提及。 2FITC 和TRITC 异硫氰酸荧光素(FITC) 是一种有机荧光染料,目前,这种荧光染料仍用于免疫荧光和流式细胞术中。在495/517 nm 处,该染料会产生激发/发射峰值,并可借助异硫氰酸盐反应基团与不同抗体结合,该基团可以和蛋白质上的氨基、巯基、咪唑、酪氨酰、羰基等基团相结合。 而它的基本成分——荧光素,其摩尔质量为332 g/mol,常被用作荧光示踪剂。FITC(389 g/mol) 是用于荧光显微镜技术的首批染料,且其被当成Alexa Fluor?488 等后续荧光染料的发端。该染料的荧光活性取决于它的大共轭芳香电子系统,而该系统受蓝色光谱中的光所激发。

荧光机理

1光致电子转移(PET) 光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移从而导致荧光的淬灭过程。具体PET过程如下:在光激发下,具有电子给予能力的键合基团能够将其处于最高能级的电子转入激发态下荧光基团空出的电子轨道,使被光激发的电子无法直接跃迁到原基态轨道发射荧光,从而导致荧光的淬灭;当键合基团与底物结合后,降低了键合基团的给电子能力,抑制了PET过程,荧光基团中被光激发的电子可以直接跃迁回到原基态轨道,从而增强了的荧光基团的荧光发射。因此在未结合底物前,传感器分子表现为荧光淬灭,一旦键合基团与底物相结合,荧光基团就会发射荧光(见图) 由于与客底物结合前后的荧光强度差别很大,呈现明显的“关”、“开”状态,因此这类荧光化学传感器又被称为荧光分子开关。PET荧光分子传感器的作用机制可由前线轨道理论来进一步说明(见图1.5)。 2002年Nolan 小组合成了手性的二氮杂环-9-冠-3 衍生物化合物1,它是第一个用来检测Li+的PET 荧光探针[56]。在乙腈溶液中,相较于其它碱金属和碱土金属,能够高选择性的识别锂离子。用280 nm 光激发,不断向溶液中加入

LiClO4,化合物 1(Φ = 0.022)对Li+的滴定表现出 5 倍荧光信号增强效应,表明从胺的冠醚到荧光团的电子转移,荧光量子效率升高(Φ = 0.11),形成 1 : 1 的配合物,结合常数 log β = 5.4。 Gunnlaugsson, Bichell, Nolan, A Novel Fluorescent Photoinduced Electron Transfer (PET) Sensor for Lithium [J]. Tetrahedron Lett., 2002, 43, 4989-4992. NH H 3C O HN CH 3 O N O N ×× PET PET Li + Bozdemir, Altan Sozmen, Fazli Buyukcakir, et al. Reaction-Based Sensing of Fluoride Ions Using Built-in Triggers for Intramolecular Charge Transfer and Photoinduced Electron Transfer[J]. Organic Letters, 2010, 12(7) : 1400-1403. 2010年Akkaya 等[18]通过在BODIPY 的中位引入一个含三异丙基硅烷的酚盐基团,已知酚盐是强的给电子基团,当被硅烧保护后,酚盐的强给电子能力被抑制,即PET 现象被抑制,所以探针2在与F 离子作用之前发出很强的荧光,当探针与F-离子作用之后,硅浣保护基团被去除,酚盐的强给电子能力恢复,发生PET 现象,荧光被淬灭。在F-离子的浓度达到0.5mM 时,探针的荧光被完全淬灭。

常见荧光基团

Dihydrorhodamine 123 二氢罗丹明123 Tetramethylrhodamine-6-maleimide 四甲基罗丹明-6-马来酰亚胺 Tetramethylrhodamine-5-maleimide 四甲基罗丹明-5-马来酰亚胺 5--IAF ,5-Iodoacetamidofluorescein 5-吲哚乙酰氨基荧光素 6-TET 6-羧基-2',4,7',7-四氯荧光素琥珀酰亚胺酯 BIS[N,N-BIS(CARBOXYMETHYL)AMINOMETHYL]FLUORESCEIN TETRASODIUM SALT 双[NN-双(羧甲基)氨甲基]荧光素四钠盐 Fluorescein-5-maleimide 荧光素-5-马来酰亚胺 5-FITC cadaverine 5-异硫氰酸荧光素尸胺 Sulforhodamine G 磺基罗丹明G 7-Hydroxy-4-methylcoumarin 7-羟基-4-甲基香豆素 3-Cyano-7-hydroxycoumarin 3-氰基-7-羟基香豆素 Fluorescein, disodium salt 荧光素二钠盐 Fluorescein 荧光素 6-FAM phosphoramidite 5'-荧光素氨基磷酸酯 6-TRITC四甲基罗丹明-6-异硫氰酸 6-Carboxy-X-rhodamine, succinimidyl ester 6-羧基-X-罗丹明琥珀酰亚胺酯 5-Carboxy-X-rhodamine, succinimidyl ester 5-羧基-X-罗丹明琥珀酰亚胺酯 6-Carboxy-X-rhodamine 6-羧基-X-罗丹明 5-TAMRA, 5-Carboxytetramethylrhodamine, succinimidyl ester 5-羧基四甲基罗丹明琥珀酰亚胺酯 6-TAMRA, 6-Carboxytetramethylrhodamine 6-羧基四甲基罗丹明 5-TAMRA, 5-Carboxytetramethylrhodamine 5-羧基四甲基罗丹明 6-CR6G, 6-Carboxyrhodamine 6G 6-羧基罗丹明6G 5-FITC, luorescein-5-isothiocyanate 异硫氰酸荧光素 6-FAM,succinimidyl ester 6-羧基荧光素琥珀酰亚胺酯 5-FAM,succinimidyl ester 5-羧基荧光素琥珀酰亚胺酯 5-FAM 5-羧基荧光素 6-FAM 6-羧基荧光素 Rhodamine B 罗丹明B Rhodamine 6G 罗丹明6G AMC, 7-Amino-4-methylcoumarin 7-氨基-4-甲基香豆素 Cy3,succinimidyl ester Cy3,succinimidyl ester Cy3 Cy3 AP2635 Cy5,,succinimidyl ester Cy5,,succinimidyl ester Cy5 Cy5

荧光猝灭类型

荧光猝灭一般有静态猝灭和动态猝灭。可以通过测定猝灭常数与温度的关系来区分。静态猝灭是由于猝灭剂与荧光基团发生了结合生成不发荧光的物质,因而当温度升高的时候,体系紊流程度增加,导致猝灭常数减小;而动态猝灭是由于猝灭剂与荧光基团发生碰撞导致荧光强度减少,因而当温度升高,进而体系紊流增大是碰撞加剧,从而猝灭常数增大。你可以查找相关文献比如Y.-Q. Wang, H.-M. Zhang, G.-C. Zhang, W.-H. Tao, S.-H. Tang, Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study, Journal of Luminescence, 126 (2007) 211-218. 无论是动态猝灭还是静态猝灭,F0/F与之间均存在着线性关系,单独通过测量荧光强度所得到的荧光猝灭数据而没有提供其他信息的情况下,是很难判断所发生的猝灭现象究竟属于动态猝灭还是静态猝灭。通常需要提供猝灭现象与寿命、温度和粘度的关系及吸收光谱的变化情况等信息。 (1) 变温实验动态猝灭由于与扩散有关,而温度升高时溶液的粘度下降,同时分子的运动加速,其结果将使分子的扩散系数增大,从而增大双分子猝灭常数。反之,温度升高可能引起配合物的稳定度下降,从而减小静态猝灭的程度。根据Stern-V olmer方程作图,如果高温的斜率大于低温的斜率,则为动态猝灭;反之,则为静态猝灭。 (2) 测量吸收光谱动态猝灭只影响到荧光分子的激发态,因而并不改变荧光物质的吸收光谱;而在静态猝灭中,基态配合物的生成往往

相关主题
文本预览
相关文档 最新文档