Hall-Petch relationship in a nanotwinned nickel alloy
- 格式:pdf
- 大小:301.77 KB
- 文档页数:4
Hall–Petchrelationshipinananotwinnednickelalloy
LeonL.Shaw,a,*AngelL.OrtizbandJuanC.Villegasc
aDepartmentofChemical,MaterialsandBiomolecularEngineering,UniversityofConnecticut,Storrs,CT06269,USAbDepartamentodeIngenierı´aMeca´nica,Energe´ticaydelosMaterialesUniversidaddeExtremadura,06071Badajoz,SpaincIntelCorporation,Chandler,AZ85226,USA
Received5November2007;revised4January2008;accepted14January2008Availableonline26January2008
TheHall–Petchrelationshipinananotwinnedalloywithabsenceofdislocationpile-upsisinvestigatedforthefirsttime.Itisshownthat,whenthetwinspacingislarge(d>150nm),thehardnessexhibitsadÀ1/2dependence.However,whenthetwinspacingissmall(d<100nm),adÀ1dependenceresults.Thesephenomenaareinterpretedbasedondislocation-mediatedmechanismscorroboratedbytheanalysisofelectronmicroscopyandX-raydiffractometry.Ó2008ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.
Keywords:Hardness;Plasticdeformation;Twinning;Nanocrystallinemicrostructure;Hall–Petchrelation
Grainrefinementhasbeenatopicofintensivere-
searchforseveraldecades.Thedrivingforcebehind
theseenduringeffortsistheenhancementofstrength
asthegrainsizedecreases,asdescribedbytheempirical
Hall–Petch(H–P)relationship[1,2]
ry¼riþkyDÀ1=2ð1Þ
whereryistheyieldstrengthofapolycrystallinemate-
rial,Distheaveragegraindiameter,riistheoverall
resistanceoflatticetodislocationmovementandkyis
theH–Pslopemeasuringtherelativestrengtheningcon-
tributionofgrainboundaries(GBs).Eq.(1)hasbeen
foundtobeapplicabletoawiderangeofcoarse-grained
materials(DP$1lm),includingapplicationstothe
flowstressatagivenstrainandthehardnessofthe
material[3],thedislocationcellsofheavilydeformed
materials[4],thematerialswithseverallevelsofsub-
structures,e.g.theco-presenceoflow-anglecellbound-
ariesandhigh-anglecellblockboundaries[5],and
materialswithmicrosizedtwins[6,7].
Recently,theapplicabilityoftheH–Prelationto
ultrafine-grainedmaterials(100nm andnanograinedmaterials(D<100nm)[10–12]has beenstudiedextensivelybecauseoftheirpotentialsto offersubstantialimprovementsinmechanicalproperties overcoarse-grainedmaterials.Manyofthestudiesin thisareahavebeensummarizedinarecentreviewarticle[13],whereacomprehensivelistofreferencescanbe found.However,studiesontheH–Prelationinnano- twinnedmaterialsareextremelyscarce,withonlyone investigationonsingle-phasenanotwinnedmaterialsre- portedintheopenliterature[14].Inthatstudy,Eq.(1)is foundtobevalidforelectrodepositedCuwithtwin thicknessassmallas13nm.Furthermore,theHall– Petchslopeisnearlythesameasthatdeterminedfrom coarse-grainedCu,suggestingthatthestrengtheningef- fectoftwinboundaries(TBs)isanalogoustothatof conventionalGBseveninthenanometerscale[14]. TheapplicabilityoftheH–Prelationtothenanotwin- nedCuhasbeenexplainedbydislocationpile-ups againstTBs[14].However,itiswellknownthatmany materialsdonotexhibitdislocationpile-ups[15],and theirH–Prelationshavebeenexplainedbytheactiva- tionofGBdislocationsources[16]orotheralternative mechanisms[17–19].Inthisstudywehaveinvestigated, forthefirsttime,thedependenceofthehardnessof nanotwinnedmaterialsonthetwinspacingwithabsence ofdislocationpile-ups.Theabsenceofdislocation pile-upscanbeattainedfromlowstackingfaultenergy materialswhenthetwinthicknessistoosmalltosupport dislocationpile-ups,asrevealedinthisstudy. Anickel-baseHASTELLOYC-2000Òalloy1witha lowstackingfaultenergy(1.22mJmÀ2)[20]waschosen forthisstudyinordertoproduceagradientof 1359-6462/$-seefrontmatterÓ2008ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved. doi:10.1016/j.scriptamat.2008.01.025*Correspondingauthor.Tel.:+18604862592;fax:+18604864745;e-mail: leon.shaw@uconn.edu1HASTELLOYandC-2000areregisteredtrademarksofHaynesInternational, Inc.Available online at www.sciencedirect.com ScriptaMaterialia58(2008) 951–954www.elsevier.com/locate/scriptamathigh-densitynanotwinsinthesample.TheC-2000alloy isacorrosion-resistancealloywithasingle-phase,face- centered-cubic(fcc)structureandanominalchemical composition(inwt.%)of23Cr,16Mo,1.6Cu,0.01C, 0.08SiandbalanceNi.Theas-receivedC-2000plates wereinanannealedcondition.Theseannealedplates weresubjectedtoasurfacesevereplasticdeformation (S2PD)treatmenttocreateasurfaceregioncontaining nanograinsfollowedbyagradientofhigh-density nanotwinswithacontinuousincreaseinthetwinthick- nessasthepositionmovesawayfromthetreatedsurface oftheplate[21].TheS2PDmethodusedinthisstudy, similartothesurfacemechanicalattritiontreatment [22,23],entailsimpactingthesurfaceoftheplatewith high-energyballs(e.g.WC/Coballs)repeatedlyunder anargonatmospherefor30min[24,25].Thedetailof otherexperimentalconditionsforS2PDcanbefound elsewhere[21]. Themicroscopyanalysis(Fig.1)revealsthatamicro- structuralgradienthasbeenproducedviatheS2PDpro- cesswithagradualdecreaseinthedeformationtwin densityasthepositionmovesawayfromtheimpacted surface.Parallelnanotwins(3–8nmthick)withand without60°unitdislocationsinbetweenarepresentnear theimpactedsurface(Fig.1b),whereastwin–twininter- sectionswithhigh-densitydislocationentanglementin betweenarepresentbelowthenanotwinnedsurfacere- gion(Fig.1c).Furtherawayfromtheimpactedsurface isthedeformationregion,withsmallplasticstrains exhibitingdislocationemissionfromtwinboundaries (Fig.1d).BasedonthepeakbroadeninganalysisofX- raydiffraction(XRD)patterns,thecrystallitesizeand dislocationdensityasfunctionsofthepositionmeasured fromtheimpactedsurfacehavebeenquantified[21].Be- causeoftheabsenceofdislocationcellsintheS2PD-pro-cessedC-2000alloy,thecrystallitesizemeasuredvia XRDreflectsthesizeofthesubstructuresmainlysepa- ratedbytwinboundarieswithonlyasmallproportion offaultandgrainboundaries,andthuscanbeapprox- imatelyregardedasthetwinspacing[21].Furthermore, itisfoundthatthetwinspacingdecreasesastheposition becomesclosertotheimpactedsurface.Figure2shows thedislocationdensityandtheaveragenumberofdislo- cationswithineachtwinned(oruntwinned)regionasa functionofthetwinspacing.Notethatalthoughthedis- locationdensityincreasesasthetwinspacingbecomes smaller(i.e.asthepositionbecomesclosertotheim- pactedsurface),thenumberofdislocationspertwinned (oruntwinned)regionactuallydecreases.Thisisin excellentagreementwiththetransmissionelectron microscopy(TEM)analysis,asrevealedbycomparing Figure1bandc. Figure3presentstheH–Prelationshipbetweenthe Vickershardness,HV,andthetwinspacing,d,revealing thattheHVÀdÀ1/2relationshipisnotlinear,butis concavetowardsthedÀ1/2axis.Furthermore,thetrend shownbythenanoindentationhardnessisidenticalto thatexhibitedbytheVickershardness.However,the nanohardnessdatahaveallowedthevalidmeasurement ofthehardnessatlocations10lmawayfromtheim- pactedsurface[25],andthusextendedtheevaluation oftheeffectofthetwinspacingdownto30nm.Wepro- posethatthenon-linearHÀdÀ1/2relationshipisdueto thechangeinthedeformationmechanismasthe twin Figure1.MicrostructuresoftheC-2000alloyafterS2PDprocessing.(a)Anoverallviewofthecross-sectionfromtheimpactedsurface(indicated)tothenearlyundeformedinterior,showingagradualincreaseinthedeformationtwindensity(asindicatedbythedeformationmarkingdensity)whenthepositionbecomesclosertotheimpactedsurface.(b)AFourier-filteredlatticeimageneartheimpactedsurface,showingthepresenceofparallelnanotwinswithandwithoutdislocationsinbetween.(c)TEMbright-fieldimageatalocation$100lmfromtheimpactedsurface,showingthetwin–twinintersectionwithdislocationentanglementinbetween.(d)TEMbright-fieldimagefromalocationneartheundeformedinterior,showingemissionofdislocationsfromatwin boundary.Figure2.Thedislocationdensityandtheaveragenumberofdisloca-tionspertwinned(oruntwinned)regionasafunctionofthetwinspacing.Notethatwhenthetwinspacingdecreasesfrom750to34nm,thepositionmeasuredfromtheimpactedsurfacechangesfrom500to10lm,respectively. Figure3.Thehardness,H,asafunctionoftheinverseofthesquarerootofthetwinspacing,dÀ1/2.NotethattheHÀdÀ1/2relationshipisnotlinear,butisconcavetowardsthedÀ1/2axis.952L.L.Shawetal./ScriptaMaterialia58(2008)951–954