当前位置:文档之家› 气动原理图

气动原理图

气动原理图
气动原理图

电气动系统原理

电气动系统原理 电气动系统原理的英文名是Electro-pneumatic Systems,在机械﹑电子﹑纺织﹑印刷﹑交通等行业的自动化生产和控制中,有各种各样的传动和控制系统。主要包括:气动(气压传动与控制),液动(液压传动与控制),电动(电气/电子传动与控制),电-气动,电-液动。这些系统都包括两个方面内容--传动和控制。各种系统的区别在于传输介质,控制元件,执行元件的不同。 第1章传动控制系统种类 第1节电气动系统概述 在机械﹑电子﹑纺织﹑印刷﹑交通等行业的自动化生产和控制中,有各种各样的传动和控制系统。主要包括:气动(气压传动与控制),液动(液压传动与控制),电动(电气/电子传动与控制),电-气动,电-液动。这些系统都包括两个方面内容--传动和控制。各种系统的区别在于传输介质,控制元件,执行元件的不同。表1.1a列出了上述系统的特点。 传输介质执行装置控制装置气动压缩气体气缸或气马达气动阀 液动液压油液压缸和液压马达液压阀 电动电流电机电气/电子装置 电-液动液压油液压缸和液压马达电气/电子装置 电-气动压缩气体气缸或气马达电气/电子装置根据不同的应用背景和应用环境,可以採用不同的系统,或者是几种系统的组合,实现整个控制系统优化。

第2节电气动系统产生背景 “电气动系统”是指用电子/电气设备作為控制装置﹐以气动设备驱动执行提供机械能量的综合系统。与气动系统的区别主要在控制装置的不同。 追踪溯源﹐纯气动技术在几百年之前就出现了﹐当时就出现了气动步枪。二次世界大战至六十年代中叶﹐纯气动技术有了狠大发展﹐同时﹐电气控制技术也已经產生﹐不过﹐由於当时的电磁產品相当不可靠﹐為了消除电气控制与气动控制接口的薄弱环节﹐气动(包括液动技术)是工业界应用最广泛的传动和控制技术。 气动系统在系统传动效率﹐传递讯号的速度,讯号传递的距离等方面因素的受到狠大限制﹐特别是控制系统复杂程度的增加﹐為了适应低成本﹐高生產效率的需求﹐人们考虑能否将气动和电动结合起来﹐充份发挥各自的优点﹐这就產生了“电气动”技术。随着电气控制技术发展﹐电气控制元件巳具有极高的可靠性﹐标準化程度高﹐可扩展﹐可编程﹐高度弹性。 第3节电气动系统特点 电气动系统综合了电动和气动两者的优势﹐其优点為﹕系统传动效率高﹑讯号传递速度快﹑讯号传递距离长﹑使用寿命长﹑系统尺寸小﹑控制逻辑弹性高﹑无污染。但其缺点在於执行元件运\动速度的调节范围和运\动精度要低於液压系统和电液系统﹐而且噪音较大。 第2章电气动系统组成 第1节典型电气动元件的组成 电气动系统由三部份组成: 1能量供应部份:其作用类似人的心脏。它提供气动执行元件和电气控製作用所需要的能量。如提供压缩气体的气源系统,提供电气控制元件的电源(交流电或直流电)。对於较大型的工厂,各种电气动系统往往安装在不同的车间使用,一般都採取建立一个压

2019绘制液压系统原理图

第5章绘制液压系统原理图 本章导读 液压系统是根据液压设备的工作要求,选用适当的基本回路构成的能满足某些具体要求的液压装置。组成液压系统工作原理图的多个相关液压元件的图形符号,均按国标GB/T786.1—1993《液压及气动图形符号》画出。本章以组合机床动力滑台液压系统为例说明液压系统原理图的绘制、液压元件明细表的自动生成方法及用Excell 文档统计AutoCAD图块属性数据的方法。 5.1 绘制组合机床动力滑台的液压系统原理图 5.1.1 启动【液压气动】工作界面 1.选取样板图 选择下拉菜单【文件】│【新建】命令,打开【创建新图形】对话框。单击【从草图开始】选项卡,选取【公制】,单击【确定】按钮。如图2-1所示。 2.选择【液压气动】工作空间 选择下拉菜单【工具】│【工作空间】│【液压气动】命令,选择【液压气动】工作空间。 3.启动【工具选项板】 选择下拉菜单【工具】│【选项板】│【工具选项板】命令,启动【工具选项板】。 4. 启动【设计中心】 选择下拉菜单【工具】│【选项板】│【设计中心】命令,启动【设计中心】。 5.1.2 绘制液压系统原理图 组合机床动力滑台液压系统的组成元件如图5-24所示。 1.绘制变量泵2图形符号 利用【工具选项板】插入变量泵图形符号,打开“泵和马达”模块选项卡,选择“单向变量泵”,鼠标在绘图区选择合适的插入点位置,打开【编辑属性】对话框,如图5-1所示,在【style】文本框内输入YB,在【price】文本框内输入500,在【number】文本框内输入2。 图5-1 【编辑属性】对话框 2.绘制过滤器1和油箱8图形符号 利用【设计中心】插入过滤器、油箱图形符号。打开“辅助元件”模块文件夹,选中【设计中心】右边内容框的“过滤器”,用鼠标拖动至绘图区,如图5-7所示。命令行显示如下: 命令: _-INSERT 输入块名或[?] <单向变量泵>: "D:\液压气动元件图形符号\辅助元件\过滤器.dwg"

气动系统图实例

气动系统图实例 如图13—42所示,识读气液动力滑台气压传动系统图。 气液动力滑台是采用气液阻尼缸作为执行元件。由于它的上面可安装单轴头、动力箱或工件,因而在机床上常用来作为实现进给运动的部件。图13—42为气液动力滑台的回路原理图,读图步骤如下。 图中阀l、2、3和阀4、5、6实际上分别被组合在一起,成为两个组合阀。完成下面两种工作循环。 (1)快进、慢进、快退、停止 当图13—42中阀4处于图示状态时,就可实现上述循环的进给程序,其动作原理为:当手动阀3切换至右位时,实际上就是给予进刀信号,在气压作用下,汽缸中活塞开始向下运动,液压缸中活塞下腔的油液经行程阀6的左位和单向阀7进入液压缸活塞的上腔,实现了快进;当快进到活塞杆上的挡铁B切换行程阀6(使它处于右位)后,油液只能经节流阀5进入活塞上腔,调节节流阀的开度,即可调节气液阻尼缸运动速度,所以,这时才阡始慢进,工作进给;当慢进到挡铁c使行程阀2切换至左位时,输出气信号使手动阀3切换至左位,这时汽缸活塞开始向上运动。液压缸活塞上腔的油液经行程阀8的左位和手动阀4的单向阀进入液压缸的下腔,实现了快退;当快退到挡铁A切换行程阀8至图示位置而使油液通道被切断时,活塞就停止运动。所以改变挡铁A的位置,就能改变“停”的位置。 (2)快进、慢进、慢退、快退、停止 把手动阀4关闭(处于左位)时,就可实现上述的双向进给程序,其动作原理为:动作循环中的快进、慢进的动作原理与上述相同;当慢进至挡铁C切换行程阀2至左位时,输出气信号使手动阀3切换至左位,汽缸活塞开始向上运动,这时液压缸活塞上腔的油液经行程阀8的左位和节流阀5进入液压缸活塞下腔,即实现了慢退(反向进给);当慢退到挡铁B离开行程阀6的顶杆而使其复位(处于左位)后,液压缸活塞上腔的油液就经行程阀8的左位、再经行程阀6的左位而进入液压缸活塞下腔,开始快退;快退到挡铁A切换行程阀8至图示位置时,油液通路被切断,活塞就停止运动。 图13—42中补油箱10和单向阀9仅仅是为了补偿系统中漏油而设置的,因而一般可用油杯来代替。 如图13—44所示,识读气动机械手气压传动系统图。如图13—44所示,识读气动机械手气压传动系统图。 图13-43是用于某专用设备上的气动机械手的结构示意图,它由4个汽缸组成,11丁在三个坐标内工作。图中A为夹紧缸,其活塞退回时夹紧工件,活塞杆伸出时松开工件。B缸为长臂伸缩缸,可实现伸出和缩回动作。C缸为立柱升降缸。D缸为立柱回转缸,若要求该汽缸有两个活塞,分别转带齿条的活塞杆两头,齿条的往复运动带动立柱上的齿轮旋转.从而实现立柱的回转。 图13-44是气动机械手的回路原理图,若要求该机械手的动作顺序为:立柱下降C一伸臂B一夹紧工件A。一缩臂B0一澎柱顺时针转D。一立柱上升C.一放开工件A,一立柱逆时针转D0,则该传动系统的工作顺换分析如下: ①按下气动阀q,主控阀C将处于C。位,活塞杆退回,即得到C; ②当C缸活塞杆上的挡铁碰到c。则控制气将使主控阀B处于B。位,使B缸活塞杆伸出,即得到B,; ③当B缸活塞杆上的挡铁碰到b。,则控制气将使主控阀A处于A。,位,A缸活塞杆退回,即得到A。;

液压与气动技术课程设计精选文档

液压与气动技术课程设 计精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

液压气动课程设计 目录 一.液压系统原理图设计计算 (3) 二.计算和选择液压件 (8) 三.验算液压系统性能 (12) 四.液压缸的设计计算 (15) 五.设计总结 (17) 参考文献 (18)

一.液压系统原理图设计计算 技术参数和设计要求 设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统,其工作循环是:快进→工进→快退→停止。主要参数:轴向切削力为30000N,移动部件总重力为10000N,快进行程为150mm,快进与快退速度均为min。工进行程为30mm,工进速度为min,加速、减速时间均为,利用平导轨,静摩擦系数为,动摩擦系数为。要求活塞杆固定,油缸与工作台联接。设计该组合机床的液压传动系统。 一工况分析 首先,根据已知条件,绘制运动部件的速度循环图(图1-1):

图1-1 速度循环图 其次,计算各阶段的外负载并绘制负载图,根据液压缸所受外负载情况,进行如下分析: 启动时:静摩擦负载 0.210002000fs s F f G N ? ==?= 加速时:惯性负载 10000 4.2350100.260a G v F N g t ??= ?==??? 快进时:动摩擦负载 0.1100001000fd d F f G N ? ==?= 工进时:负载 10003000031000fd e F F F N =+=+= 快退时:动摩擦负载 0.1100001000fd d F f G N ? ==?= 其中,fs F 为静摩擦负载,fd F 为动摩擦负载,F 为液压缸所受外加负载,a F 为 运动部件速度变化时的惯性负载,e F 为工作负载。 根据上述计算结果,列出各工作阶段所受外载荷表1-1,如下:

液压与气动技术课程设计

液压气动课程设计 目录 一.液压系统原理图设计计算 (3) 二.计算和选择液压件 (8) 三.验算液压系统性能 (12) 四.液压缸的设计计算 (15) 五.设计总结 (17) 参考文献 (18)

一.液压系统原理图设计计算 技术参数和设计要求 设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统,其工作循环是:快进→工进→快退→停止。主要参数:轴向切削力为30000N,移动部件总重力为10000N,快进行程为150mm,快进与快退速度均为4.2m/min。工进行程为30mm,工进速度为0.05m/min,加速、减速时间均为0.2s,利用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。要求活塞杆固定,油缸与工作台联接。设计该组合机床的液压传动系统。 一工况分析 首先,根据已知条件,绘制运动部件的速度循环图(图1-1):

图1-1 速度循环图 其次,计算各阶段的外负载并绘制负载图,根据液压缸所受外负载情况,进行如下分析: 启动时:静摩擦负载 0.210002000fs s F f G N ? ==?= 加速时:惯性负载 10000 4.2350100.260a G v F N g t ??= ?==??? 快进时:动摩擦负载 0.1100001000fd d F f G N ? ==?= 工进时:负载 10003000031000fd e F F F N =+=+= 快退时:动摩擦负载 0.1100001000fd d F f G N ? ==?= 其中,fs F 为静摩擦负载,fd F 为动摩擦负载,F 为液压缸所受外加负载,a F 为 运动部件速度变化时的惯性负载,e F 为工作负载。 根据上述计算结果,列出各工作阶段所受外载荷表1-1,如下: 工作外负载(N) 工作外负载(N)

绘制液压系统原理图

绘制液压系统原理图

3.启动【工具选项板】 选择下拉菜单【工具】│【选项板】│【工具选项板】命令,启动【工具选项板】。 4. 启动【设计中心】 选择下拉菜单【工具】│【选项板】│【设计中心】命令,启动【设计中心】。 5.1.2 绘制液压系统原理图 组合机床动力滑台液压系统的组成元件如图5-24所示。 1.绘制变量泵2图形符号 利用【工具选项板】插入变量泵图形符号,打开“泵和马达”模块选项卡,选择“单向变量泵”,鼠标在绘图区选择合适的插入点位置,打开【编辑属性】对话框,如图5-1所示,在【style】文本框内输入YB,在【price】文本框内输入500,在【number】文本框内输入2。 图5-1 【编辑属性】对话框

2.绘制过滤器1和油箱8图形符号 利用【设计中心】插入过滤器、油箱图形符号。打开“辅助元件”模块文件夹,选中【设计中心】右边内容框的“过滤器”,用鼠标拖动至绘图区,如图5-7所示。命令行显示如下: 命令: _-INSERT 输入块名或[?] <单向变量泵>: "D:\液压气动元件图形符号\辅助元件\ 过滤器.dwg" 单位: 毫米转换: 1.0000 指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: //在绘图区选择合适的插入点位置 输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>: //回车 输入Y 比例因子或<使用X 比例因子>: //回车 指定旋转角度<0>: //回车 输入属性值 style : //回车,不输入型号属性 price : 300 //输入300 number : 1 //输入序号1 命令: _-INSERT 输入块名或[?] <油箱>: "D:\液压气动元件图形符号\辅助元件\油箱.dwg" 单位: 毫米转换: 1.0000 指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: 输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>: 输入Y 比例因子或<使用X 比例因子>: 指定旋转角度<0>: 输入属性值 style : //回车 price :200 //输入200 number : 8 //输入序号8 3.绘制单向阀3图形符号 利用【设计中心】插入单向阀图形符号,打开“单向型阀”模块文件夹,选择【设计中心】右边内容框的“单向阀”,用鼠标拖动至绘图区,源图块如图5-2(a)所示,命令行显示如下:命令: _-INSERT 输入块名或[?] <单向阀>: "D:\液压气动元件图形符号\单向型阀\单向阀.dwg" 单位: 毫米转换: 1.0000 指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: r

气动系统的基本原理和维修要点

第八讲气动系统及其使用维护简介 本讲介绍四个内容: z 气动技术概述 z 气动元件z 气动回路与系统z 气动系统的安装调试 与使用维护

8.1 气压传动概述 一、定义: 以压缩空气作为工作介质来传递动力和实现控制的技术称为气压传动。

二、气动系统的组成(五个部分) z能源元件:机械能→气压能:空压机(产生压缩空气)。 z执行元件:气压能→机械能:气缸和气马达。 z控制元件:控制气体压力、流量及流向:压力阀、流量阀及方向阀与气动逻辑元件。 z辅助元件:存储\净化压缩空气,为系统提供符合质量要求的工作介质:分水滤气器、干燥器、消声器、管道、接头等。 z工作介质:系统的工作媒介(干空气;可压缩性较液体大的多)。

三、气压传动特点及应用 &优点(5个): 工作介质经济易取,方便使用,不回收; 传输压损小,速度快,效率高,适用集中远距离 供气,动作速度快; 反应迅速,调节方便、维护简单,故障率低; 环境适应性好,污染少,防火防爆,安全性好; '缺点(3个):压力低(目前,气动系统常用的工作压力为0.1MPa~0.8MPa),故传力较小;噪 声较大;速度负载特性差,运动精度较低。 z应用广泛(几乎涵盖了液压技术涉足的各领域)

8.2 气动元件 一、空气压缩机 作用:将机械能转变成气压力能 分类(3种分类方式): z按结构分:活塞式、罗滋式;蜗杆式;离心式 z按输出压力:低压0.2~1MPa;中压1~10MPa; 高压10~100MPa;超高压≥100MPa z按流量分:微型<1m3/min ;小型1~10m3/min; 中型10 ~100m3/min;大型≥100m3/min

相关主题
文本预览