当前位置:文档之家› 第六章 钢的热处理

第六章 钢的热处理

第六章  钢的热处理
第六章  钢的热处理

第六章钢的热处理

一、名词解释

1、淬透性:钢淬火时形成马氏体的能力。

2、淬硬性:钢淬火时能够达到的最高硬度,主要决定于马氏体的碳含量。

3、临界冷却速度:奥氏体化后的钢在连续冷却过程中,只发生马氏体转变的最小冷却速度,

称为临界冷却速度。

4、马氏体:碳在α-Fe中形成的过饱和间隙固溶体。

5、调质处理:钢淬火后高温回火的热处理工艺称为调质处理。

6、珠光体:片状铁素体和片状渗碳体层间相叠构成的二相机械混合物。

7、退火:将钢加热到适当温度,保温一定时间,然后缓慢冷却,以获得接近于平衡组织的

热处理工艺。

8、正火:将钢加热到A c3或A ccm以上30~50℃,保温一定时间,然后在空气中冷却的热处

理工艺。

9、淬火:将钢加热到相变温度以上,保温一定时间,然后快速冷却以获得马氏体组织的热

处理工艺。

10、本质晶粒度:将钢加热到930±10℃,保温8小时,冷却后测得的晶粒度,称为本质晶

粒度。

11、奥氏体化过程:将钢加热到临界温度以上,获得全部或部分奥氏体组织,并使其成分均

匀化的过程,称为奥氏体化过程。

12、本质粗晶粒钢:钢中奥氏体晶粒随温度的升高迅速长大,这类钢为本质粗晶粒钢。

13、本质细晶粒钢:钢中奥氏体晶粒随温度的升高长大倾向较小,只有加热到较高温度(930~

950℃)以上,才显著长大,这类钢为本质细晶粒钢。

14、预冷淬火:为了减少工件与淬火介质之间的温差,减少内应力,将淬火工件放入淬火介

质之前,先水冷一段时间,这种方法称为预冷淬火。

15、冷处理:将淬火冷却到室温的钢继续冷却到-70℃~-80℃的热处理工艺,称为冷处理。

二、是非题

1、热处理不改变工件的形状,只改变材料内部的组织,以改变材料的性能。

2、固态下不发生相变的材料是不能用热处理的方法来强化的。

3、奥氏体化过程也是一种结晶过程,通过形核和长大两个基本过程来完成的。

4、在共析钢等温转变曲线中,曲线鼻尖处过冷奥氏体的稳定性最大。

5、C<0.77%时,随含碳量增加,C曲线右移;C>0.77%时,随含碳量增加,C曲线左移。

6、在碳钢中具有共析成分的钢,较之亚共析钢和过共析钢有更好的淬透性。

7、过冷奥氏体的冷却速度愈快,钢冷却后硬度愈高。

8、M s线随奥氏体碳浓度升高而明显下降,M f线也随之降低。

9、合金元素除Al、Co外,所有溶入奥氏体中的合金元素都增加过冷奥氏体的稳定性,使C 曲线右移。

10、除Co、Al外,合金元素均使M s和M f点下移,使钢在淬火后残余奥氏体量增多。

11、钢中加入合金元素后,使C曲线在形状和位置上都发生了改变。

12、钢在加热时,奥氏体的起始晶粒愈细,冷却后获得的组织也愈细,材料的力学性能愈高。

13、本质晶粒度表示钢的奥氏体晶粒在规定温度下长大倾向,而与具体加热条件下的奥氏体实际晶粒大下无关,本质晶粒度不是晶粒大小的实际度量。

14、晶粒度分为8级,1级最粗,8级最细。

15、本质细晶粒钢过热倾向小,有利于获得细晶组织,所以,重要的热处理零件均采用本质细晶粒钢制造。

16、珠光体的层片间距主要取决于其形成温度。在连续冷却条件下,冷却速度越大,珠光体形成温度越低,即过冷度越大,则层片间距越小。

17、珠光体中渗碳体呈层状分布在铁素体基体上。

18、过冷奥氏体向珠光体转变时伴随着铁碳原子的扩散,所以珠光体转变是扩散型相变。

19、过冷奥氏体向珠光体转变时先形成渗碳体晶核,后形成铁素体晶核。

20、奥氏体化后的共析钢缓慢冷却到室温时,其平衡组织为莱氏体。

21、过冷奥氏体向贝氏体转变时,碳原子扩散,铁原子不扩散,属半扩散型相变。

22、贝氏体是过冷奥氏体中温转变产物,在转变过程中,碳原子扩散,铁原子不扩散,属于半扩散型相变。

23、马氏体转变不能在恒温下进行,只能在M f~M s之间的温度范围内进行。

24、消除或减少化学成分偏析及显微组织的不均匀性的热处理工艺,称为扩散退火。

25、过冷奥氏体形成贝氏体时先形成铁素体晶核,后形成渗碳体晶核。

26、马氏体相变不属于等温相变,而是在M s~M f温度范围内连续冷却完成的。

27、马氏体的等温转变一般不能进行到底,完成一定的转变量后就停止了。

28、过冷奥氏体必须以大于临界冷却速度的速度连续冷却,才能获得马氏体组织。

29、过冷奥氏体向马氏体转变时,铁碳原子都不扩散,属非扩散型相变。

30、过冷奥氏体冷却速度愈快,马氏体转变点M s、M f愈低。

31、马氏体的形态主要取决于过冷奥氏体中的碳含量。

32、马氏体的硬度主要取决于马氏体中碳含量,马氏体中碳含量愈高,马氏体的硬度也愈高,与马氏体中合金元素的含量无关。

33、钢热处理后获得马氏体组织的主要目的是使钢获得高硬度。

34、马氏体强化的主要原因是过饱和碳引起晶格畸变,属于固溶强化。

35、低碳马氏体呈板条状,又称位错马氏体。

36、马氏体中碳含量大于1.0%时,马氏体呈片状,又称孪晶马氏体。

37、马氏体转变温度区的位置主要与钢的化学成分有关,而与冷却速度无关。

38、高碳马氏体具有高硬度和高耐磨性,低碳马氏体具有高塑性和高韧性。

39、过冷奥氏体转变形成马氏体时体积膨胀,导致钢中产生很大的内应力。

40、合金元素只有溶入奥氏体后才能增加过冷奥氏体的稳定性。

41、经退火后再高温回火的钢,能得到回火索氏体组织,具有良好的综合力学性能。

42、淬火钢回火后的性能主要取决于回火的冷却速度。

43、用同一种钢制造尺寸不同的两个零件,它们的淬透性相同。

44、用同一种钢制造尺寸不同的两个零件,采用相同的淬火工艺,则它们的淬硬深度相同。

45、低碳钢退火硬度太低,正火能提高硬度,改善切削性能,提高生产率。

46、中碳钢采用退火和正火均能改善组织和切削加工性能,但正火周期短,节约能源。

47、高碳钢正火是为了消除网状二次渗碳体;球化退火是为了改善切削加工性能。

48、钢的淬透性越高,则其淬透层深度也越大。

49、高合金钢既具有良好的淬透性,也具有良好的淬硬性。

50、渗氮处理是将活性氮原子渗入工件表层,然后再进行淬火和低温回火的一种热处理方法。

三、选择题

1、淬火钢低温回火的温度范围为()。

A、150℃~250℃

B、350℃~450℃

C、450℃~550℃

D、550℃~650℃

2、淬火钢中温回火的温度范围为()。

A、150℃~250℃

B、250℃~350℃

C、350℃~500℃

D、550℃~650℃

3、淬火钢高温回火的温度范围为()。

A、150℃~250℃

B、250℃~350℃

C、350℃~500℃

D、500℃~650℃

4、对于亚共析钢,适宜的淬火加热温度一般为()。

A、A c1+30~50℃

B、A ccm+30~50℃

C、A c3+30~50℃

D、A rcm+30~50℃

5、对于过共析钢,适宜的淬火加热温度一般为()。

A、A c1+30~50℃

B、A ccm+30~50℃

C、A c3+30~50℃

D、A rcm+30~50℃

6、对于亚共析钢,适宜的正火加热温度一般为()。

A、A c1+30~50℃

B、A ccm+30~50℃

C、A c3+30~50℃

D、A rcm+30~50℃

7、对于过共析钢,适宜的正火加热温度一般为()。

A、A c1+30~50℃

B、A ccm+30~50℃

C、A c3+30~50℃

D、A rcm+30~50℃

8、为消除碳素工具钢中的网状渗碳体而进行正火,其加热温度是()。

A、A ccm +(30~50)℃

B、A r cm +(30~50)℃

C、A c 1 +(30~50)℃

D、A c 3 + (30~50)℃

9、正火是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是()。

A、随炉冷却

B、在油中冷却

C、在空气中冷却

D、在水中冷却

10、完全退火主要用于()。

A、亚共析钢

B、共析钢

C、过共析钢

D、所有钢种

11、共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是()。

A、珠光体

B、索氏体

C、贝氏体

D、马氏体

12、退火是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是()。

A、随炉冷却

B、在油中冷却 、在空气中冷却 、在水中冷却

13、马氏体的硬度主要取决于()。

A、冷却速度

B、转变温度

C、含碳量

D、合金元素含量

14、完全退火主要适用于()。

A、亚共析钢

B、共析钢

C、过共析钢

D、合金钢

15、45钢为获得回火索氏体组织,应进行()。

A、淬火+低温回火

B、淬火+中温回火

C、淬火+高温回火

D、等温淬火

16、对于形状复杂、截面变化大的零件进行淬火时,应采用()。

A、水中淬火

B、油中淬火

C、盐水中淬火

D、盐浴等温淬火

17、为了细化高速钢铸态组织中粗大的碳化物,应进行()。

A、完全退火

B、正火

C、球化退火

D、锻造加工

18、为了改善高速钢铸态组织中碳化物的不均匀性,应进行()。

A、完全退火

B、等温退火

C、球化退火

D、去应力退火

19、可逆回火脆性的温度范围是()。

A、150℃~200℃

B、250℃~400℃

C、400℃~550℃

D、550℃~650℃

20、不可逆回火脆性的温度范围是()。

A、150℃~200℃

B、250℃~400℃

C、350℃~500℃

D、500℃~650℃

21、钢的淬火工艺是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是()。

A、随炉冷却

B、在风中冷却

C、在空气中冷却

D、在水中冷却

22、40Cr 与40 钢相比较,其热处理工艺参数特点()。

A、C曲线左移,M s 点上升

B、C曲线左移,M s 点下降

C、C曲线右侈,M s 点下降

D、C曲线右移,M s 点上升

23、T8 钢与60钢相比较,T8钢的热处理工艺参数特点是()。

A、M s 点低,C 曲线靠左

B、M s 点低,C 曲线靠右

C、M s 点高,C 曲线靠左

D、M s 点高,C 曲线靠右

24、40CrNiMoA 钢与40钢相比,40CrNiMo钢的热处理工艺参数特点是()。

A、M s点低,淬火后残余奥氏体量少

B、M s 点低,淬火后残余奥氏体量多

C、M s 点高,淬火后残余奥氏体量少

D、M s 点高,淬火后残余奥氏体量多

25、钢淬火后获得的马氏体晶粒的大小主要取决于奥氏体的()。

A、本质晶粒度

B、实际晶粒度

C、起始晶粒度

D、理论晶粒度

26、过冷奥氏体向珠光体转变是()。

A、扩散型转变

B、非扩散型转变

C、半扩散型转变

D、无扩散型转变

27、钢经调质处理后获得的组织是()。

A、回火马氏体

B、回火托氏体

C、回火索氏体

D、回火珠光体

28、真空热处理、可控气氛热处理、辉光离子热处理和()等热处理技术是当代发

展起来的具有广泛应用前景的新技术。

A、表面淬火

B、复合热处理

C、化学热处理

D、表面热处理

四、改正题

1、临界冷却速度是指过冷奥氏体向马氏体转变的最快的冷却速度。

2、弹簧经淬火和中温回火后的组织是回火索氏体。

3、低碳钢和低碳低合金钢,经球化退火后能适当提高硬度,改善切削加工。

4、完全退火主要应用于过共析钢。

5、去应力退火是将工件加热到A c3线以上,保温后缓慢冷却下来的热处理工艺。

6、降低硬度的球化退火主要适用于亚共析钢。

7、在生产中,习惯把淬火和高温回火相结合的热处理方法称为预备热处理。

8、除钴、铝外,其它合金元素溶于奥氏体后,均能增加过冷奥氏体的稳定性,使C曲线左移。

9、马氏体硬度主要取决于马氏体中的合金元素含量。

10、晶粒度是用来表示晶粒可承受最高温度的一种尺度。

11、钢热处理后的最终性能,主要取决于钢的化学成分。

12、钢的热处理是通过加热,保温和冷却,以改变钢的形状、尺寸,从而改善钢的性能的一

种工艺方法。

13、热处理的加热,其目的是使钢件获得表层和心部温度均匀一致。

14、过共析钢完全退火后能消除网状渗碳体。

15、淬火钢随回火温度的升高,钢的硬度显著降低,这种现象称为回火脆性。

16、调质钢经淬火和高温回火后的组织是回火马氏体。

17、马氏体转变M s和M f温度线,随奥氏体含碳量增加而上升。

18、共析钢加热到奥氏体化后,以连续冷却的方式可获得贝氏体组织。

19、马氏体的碳含量愈高,马氏体的硬度也愈低。

20、过冷奥氏体向马氏体转变时,原奥氏体中含碳量越高,转变后残余奥氏体量越低。

五、填空题

1、钢的热处理工艺由()、()和()三个阶段组成。

2、通过热处理可以改变工件的(),但不改变工件的()和()。

3、根据热处理在工艺过程中的位置和作用,可分为()和()两种。

4、热处理是改善金属材料()和()的基本途径之一。

5、热处理的主要工艺参数是()、()、()和()。

6、预备热处理常采用的热处理工艺有()、()或()。

7、最终热处理常采用的热处理工艺有()、()、()、()等。

8、经奥氏体化的钢冷却到室温的冷却方式有()和()两种。

9、钢的整体普通热处理工艺包括()、()、()和()四种。

10、奥氏体晶粒度为1~4级的钢为(),5~8级的钢为()。

11、钢加热时奥氏体晶粒度包括()、()和

()。

13、共析钢奥氏体化的过程包括()、()、()和()四个过程。

14、除()、()元素外,其它所有的合金元素都使C曲线向()移动,使钢的临界冷却速度()、淬透性()。

15、按层片间距不同,珠光体型组织分为(珠光体)、(索氏体)和(屈氏体)三种。

16、上贝氏体组织的形态为(),下贝氏体组织的形态为()。

17、上贝氏体的力学性能表现为(),下贝氏体的力学性能表示为

()。

18、马氏体相变的特点是()、()、

()。

19、马氏体的晶格结构为(),晶格常数c/a的比值称为()。

20、马氏体的形态一般分为()和()两种。

21、冷处理的目的是彻底消除残留奥氏体,提高()、()和()。

22、低碳马氏体的形态为(),又称();高碳马氏体

的形态为(),又称()。

23、钢的退火可分为()、()、()、

()和()。

24、球化退火的目的是(),它主要适用的钢是()。

25、淬火应力包括()和()两种。

26、常用的淬火方法有()、()、()和()。

27、淬火+中温回火主要用于处理(),回火后得到的组织是()。

28、淬火+高温回火主要用于处理(),回火后得到的组织是()。

29、淬火+低温回火主要用于处理(),回火后得到的组织是()。

30、影响淬透性的因素有()、()、()、()。

31、根据回火温度不同,回火分为()、()和()。

32、回火脆性分为()和()两种。

33、化学热处理的基本过程分为()、()和()三个阶段。

34、根据渗入原子的不同,化学热处理分为()、()、()等。

35、渗碳后的零件采用的热处理工艺是()。

36、零件的渗碳温度为(),渗碳后表层的碳含量为()。

37、根据渗碳剂在渗碳过程中聚集状态的不同,渗碳方法可以分为()、()和()三种。

38、根据渗氮剂在渗氮过程中聚集状态的不同,渗氮方法可以分为()

和()两种。

39、渗氮的目的是()。

40、氰化处理是将()和()同时渗入工件表面的一种化学热处理方法。

41、根据气体氰化温度不同,碳氮共渗分为()和()两种。

42、中温气体氰化温度为(),低温气体氰化温度为()。

第五章钢热处理

第五章钢的热处理 本章重点: 热处理工艺主要介绍钢的普通常见的热处理方法, 1.退火 2.正火 3.淬火 4.回火。 难点:各种热处理方法的区别和应用 §5.3 钢的退火和正火 退火和正火是应用最为广泛的热处理工艺。在机械零件和工、模具的制造加工过程中,退火和正火往往是不可缺少的先行工序,具有承前启后的作用。机械零件及工、模具的毛坯退火或正火后,可以消除或减轻铸件、锻件及焊接件的内应力与成分、组织的不均匀性,从而改善钢件的机械性能和工艺性能,为切削加工及最终热处理(淬火)作好组织、性能准备。一些对性能要求不高的机械零件或工程构件,退火和正火亦可作为最终热处理。 一. 退火目的及工艺 退火是钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织、提高加工性能的一种热处理工艺。其主要目的是减轻钢的化学成分及组织的不均匀性,细化晶粒,降低硬度,消除内应力,以及为淬火作好组织准备。 退火工艺种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火及再结晶退火等。不同退火工艺的加热温度范围如图5.25所示,它们有的加热到临界点以上,有的加热到临界点以下。对于加热温度在临界点以上的退火工艺,其质量主要取决于加热温度、保温时间、冷却速度及等温温度等。对于加热温度在临界点以下的退火工艺,其质量主要取决于加热温度的均匀性。 1. 完全退火 完全退火是将亚共析钢加热到A C3以上20~30℃,保温一定时间后随炉缓慢冷却至500℃左右出炉空冷,以获得接近平衡组织的一种热处理工艺。它主要用于亚共析钢,其主要目的是细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性能。 低碳钢和过共析钢不宜采用完全退火。低碳钢完全退火后硬度偏低,不利于切削加工。过共析钢完全退火,加热温度在A cm以上,会有网状二次渗碳体沿奥氏体晶界析出,造成钢的脆化。

第六章 钢的热处理参考答案

第六章钢的热处理 习题参考答案 一、解释下列名词 答: 1、奥氏体:碳在γ-Fe中形成的间隙固溶体。 过冷奥氏体:处于临界点A1以下的不稳定的将要发生分解的奥氏体称为过冷奥氏体。 残余奥氏体:M转变结束后剩余的奥氏体。 2、珠光体:铁素体和渗碳体的机械混合物。 索氏体:在650~600℃温度范围内形成层片较细的珠光体。 屈氏体:在600~550℃温度范围内形成片层极细的珠光体。 贝氏体:过饱和的铁素体和渗碳体组成的混合物。 马氏体:碳在α-Fe中的过饱和固溶体。 3、临界冷却速度V K:淬火时获得全部马氏体组织的最小冷却速度。 4、退火:将工件加热到临界点以上或在临界点以下某一温度保温一定时间后,以十分缓慢的冷却速度(炉冷、坑冷、灰冷)进行冷却的一种操作。 正火:将工件加热到A c3或A ccm以上30~80℃,保温后从炉中取出在空气中冷却。 淬火:将钢件加热到Ac3或Ac1以上30~50℃,保温一定时间,然后快速冷却(一般为油冷或水冷),从而得马氏体的一种操作。 回火:将淬火钢重新加热到A1点以下的某一温度,保温一定时间后,冷却到室温的一种操作。 冷处理:把冷到室温的淬火钢继续放到深冷剂中冷却,以减少残余奥氏体的操作。 时效处理:为使二次淬火层的组织稳定,在110~150℃经过6~36小时的人工时效处理,以使组织稳定。 5、调质处理:淬火后再进行的高温回火或淬火加高温回火 6、淬透性:钢在淬火后获得淬硬层深度大小的能力。 淬硬性:钢在淬火后获得马氏体的最高硬度。 7、回火马氏体:过饱和的α固溶体(铁素体)和与其晶格相联系的ε碳化物组成的混合物。 回火索氏体:在F基体上有粒状均匀分布的渗碳体。 回火屈氏体:F和细小的碳化物所组成的混合物。 8、第一类回火脆性:淬火钢在250℃~400℃间回火时出现的回火脆性。 第二类回火脆性:淬火钢在450℃~650℃间回火时出现的回火脆性。 10、表面淬火:采用快速加热的方法,将工件表层A化后,淬硬到一定深度,而心部仍保持未淬火状态的一种局部淬火法。

第五章钢铁热处理

第五章钢铁热处理 将钢在固态下,加热到一定温度,经过保温,适当的冷却速度冷却,以改变其内部组织,从而获得所需性能的工艺方法。 调整钢的化学成分或对其实施改性处理是改善钢的使用性能和工艺性能的主要途径。利用加热、保温、冷却的方法,改变材料的组织与结构,达到改变材料性能的工艺过程称为热处理。 意义:合适的热处理是让材料达到希望的性能,有时是为了便于进行加工,有时让材料满足工作条件的要求。它是合理使用材料、充分发挥材料潜力必不可少方法。热处理过程中材料处于固态下,但内部都有不同程度的固态转变发生。 根据加热和冷却及应用特点的不同,常用的热处理方法的大致分类有: 第一节钢在加热时的组织转变 一、转变温度相变点

二、奥氏体的形成过程及影响因素 1、奥氏体形成的基本过程 (1)奥氏体晶核的形成 (2)奥氏体晶核的长大 (3)剩余渗碳体的溶解 (4)奥氏体晶核的均匀化 1.奥氏体是同时消耗两相来长大; 2.实际上总是铁素体先消失,随后残余渗碳体的溶解; 3.奥氏体的均匀化,各处的碳浓度都达到平均成分,随后所含其它合金元素经扩散达到成分均匀; 4.在铁素体和渗碳体的交界处形成奥氏体的核心; 5.亚(过)共析钢中过剩相的溶解(温度达到AC3或Accm以上)。 2、影响奥氏体转变的因素

(1)加热温度; (2)加热速度; (3)化学成分; (4)原始组织。 (二)影响奥氏体晶粒长大的因素 1、加热温度 2、化学成分 1)保温温度愈高,保温时间长,奥氏体长大速度快,长大的时间多,晶粒变粗; 2)原始组织,固相转变组织的遗传性,珠光体细小,奥氏体的晶粒也细小;片状比球状细小,非平衡组织往往也可得到细小的奥氏体晶粒。 3)合金元素(成分)①含碳量增加,奥氏体转变加快,生长时间多,奥氏体晶粒的长大倾向增加; ②碳化物形成元素(Ti、V、Ta、Nb、Zr、W、Mo、Cr)和碳结合力强,阻碍碳的扩散可阻碍奥氏体晶粒生长;③不和碳作用而溶入基体元素(Si、Ni、Cu)对奥氏体晶粒生长无明显的影响;④Co、P、Mn对奥氏体晶粒的长大有加速作用。 4)加热速度速度快用的时间少,转变在较高温度,形核率高,最终晶粒尺寸较细小。 第二节钢在冷却时的组织转变一、过冷奥氏体的等温冷却转变 过冷奥氏体:钢奥氏体化后,从高温冷却到A1以下,此时奥氏体并不立即转变,而处于热力学不稳定状态,把这种存在于A1温度以下暂未发生转变的不稳定奥氏体称为过冷奥氏体。 等温冷却:将钢迅速过冷到临界点(Ar1)以下某一温度,使奥氏体保持在该温度下进行转变。连续冷却:将钢以某一固定速度不停顿地冷却(到室温),使奥氏体在连续降温的过程种转变。(一)共析钢过冷奥氏体等温转变图的建立 等温转变曲线;C曲线TTT曲线 Temperature Time Transformation 孕育期

第六章钢的热处理

第六章钢的热处理 一、名词解释 1热处理: 2等温转变: 3连续冷却转变: 4马氏体: 5退火: 6正火: 7淬火: 8回火: 9表面热处理: 10渗碳: 二、填空题 1、整体热处理分为、、、和等。 2、根据加热方法的不同,表面淬火方法主要有表面淬火、 表面淬火、表面淬火、表面淬火等。 3、化学热处理方法很多,通常以渗入元素命名,如、、、和等。 4、热处理工艺过程由、和三个阶段组成。 5、共析钢在等温转变过程中,其高温转变产物有、和。 6、贝氏体分和两种。 7、淬火方法有、、和淬火等。 8、常用的退火方法有、和等。 9、常用的冷却介质有、和等。 10、常见的淬火缺陷有与,与,与, 与等。 11、按电流频率的不同,感应加热表面淬火法可分为、和、三种,而且感应加热电流频率越高,淬硬层越。 12、按回火温度范围可将回火分为、和三种。 13、化学热处理由、和三个基本过程组成。 14、根据渗碳时介质的物理状态不同,渗碳方法可分为渗碳、渗碳和渗碳三种。 15、过共析钢经奥氏体化后,在650-600℃范围内等温时,其转变产物是, 用符号表示是;在600-550℃范围内等温时,其转变产物是,用符号表示是。 16、钢件淬火+ 回火的符合热处理工艺称为调质,钢件调质后的组织是。 17、退火和正火通常称为预备热处理工序,一般安排在之后,之前。 18、当合金冷却到此线时(727℃)将发生,从奥氏体中同时析出和的,即。 19、亚共析钢的正常淬火温度范围是。 20、过共析钢的正常淬火温度范围是。 21、钢经__ ___淬火可获得下贝氏体组织,使钢具有良好的__ _性能。 22、淬火钢的回火温度越高,钢的抗拉强度和硬度越。 23、淬火+高温回火称处理。 24、为改善钢的耐磨性能,常采用的热处理方法为:淬火+ 回火。

第四章 金属材料和热处理基本知识(答案)

第四章金属材料的基础知识和热处理的基本知识 第一部分:学习内容 1、钢的分类:|(1)-碳钢:含碳量低于2%的铁碳合金;-合金钢:在钢中特意加入一种或几种其它合金元素组成的钢;-生铁:含碳量高于2%的铁碳合金.,可通过铸造方法制造零件,所以又称铸铁. (2)按化学成分分类: 碳钢-低碳钢:含碳量小于0.25%;-中碳钢:含碳量为0.25~0.55%;-高碳钢:含碳量大于0.55%. 合金钢-低合金钢:合金元素总含量小于3.5%;-中合金钢:合金元素总含量3.5~10%;-高合金钢:合金元素总含量大于10%; 2、洛氏硬度与布氏硬度值近似关系: HRC≈1/10HB 3、热处理及其常用工艺方法 热处理的定义-利用钢在固态下的组织转变,通过加热和冷却获得不同组织结构,从而得到所需性能的工艺方法统称热处理. 常用热处理工艺方法:退火-将钢加热到一定温度,保温一段时间,然后随炉一起缓慢冷却下来,以期得到接近平衡状态组织的一种热处理方法. 4、完全退火:AC3以上30~50℃,用于消除钢的某些组织缺陷和应力,改善切削加工性能; 等温退火:加热到AC3,以上30~50℃,较快的冷却到略低于Ar1的温度,并在此温度下等温到奥氏体全部分解为止,然后出炉空冷.适用于亚共析钢、共析钢,尤其广泛用于合金钢的退火。优点是周期短,组织和硬度均匀。 5、正火-正火和退火加热方法相似,只是冷却速度比退火稍快(空冷),得到的是细片状珠光体(索氏体),强度、硬度比退火的高,与退火相比,工艺周期短,设备利用率高。主要用于低碳钢获得满意的机械性能和切削性能、过共析工具钢消除网状渗碳体、中碳钢代替退火或作为淬火前的预先热处理。 6、淬火-将钢加热到AC1以上30~50℃(共析钢、过共析钢)或AC3以上30~50℃(亚共析钢),保温一段时间,然后快冷得到高硬度的马氏体组织的工艺方法。用以提高工件的耐磨性。 7、回火-将淬火后的工件加热到A1以下某一温度,保温一段时间,然后以一定的方式冷却(炉冷、空冷、油冷、水冷等) -目的:1)降低淬火工件的脆性,消除内应力(热应力和组织应力),使淬火组织趋于稳定,同时也使工件尺寸趋于稳定;2)获得所需的硬度和综合机械性能。 8、焊后消除应力热处理(PWHT、ISR):目的是消除应力、降低硬度、改善组织、稳定尺寸,避免制造和使用过程产生裂纹; 9、试述T8A的含义:含碳量为8‰的高级优质碳素工具钢。 10、怎样区别无螺纹的黑铁管与直径相似的无缝钢管? 答:无缝钢管是用优质碳钢、普通低合金钢、高强耐热钢、不锈钢等制成。不镀锌的瓦斯管习惯上称为黑铁管,从管子内壁有无焊缝和管子直径来判断。 11、何谓钢的热处理? 答:所谓钢的热处理就是在规定范围内将钢加热到预定的温度,并在这个温度保持一定的时间,然后以预定的速度和方法冷下来的一种生产工艺。 12、试述T7的含义。 答:T7的含义为:含碳量为7‰的碳素工具钢。 13,退火:将钢加热到一定的温度,保温一段时间,随后由炉中缓慢冷却的一种热处理工序。其作用是:消除内应力,提高强度和韧性,降低硬度,改善切削加工性。应用:高碳钢

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、为何新相形成时往往呈薄片状或针状? 4、说明相界面结构在金属固态相变中的作用,并讨论它们对新相形状的影响。 5、固-固相变的等温转变动力学图是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

第五章钢的热处理(含答案)

第五章钢的热处理(含答案) 一、填空题(在空白处填上正确的内容) 1、将钢加热到________,保温一定时间,随后在________中冷却下来的热处理工艺叫正火。 答案:Ac 3或Ac cm 以上50℃、空气 2、钢的热处理是通过钢在固态下________、________和________的操作来改变其内部________,从而获得所需性能的一种工艺。 答案:加热、保温、冷却、组织 3、钢淬火时获得淬硬层深度的能力叫________,钢淬火时获得淬硬层硬度的能力叫 ________。 答案:淬透性、淬硬性 4、将________后的钢加热到________以下某一温度,保温一定时间,然后冷却到室温,这种热处理方法叫回火。 答案:淬火、Ac 1 5、钢在一定条件下淬火时形成________的能力称为钢的淬透性。淬透层深度通常以工件________到________的距离来表示。淬透层越深,表示钢的________越好。 答案:马氏体(M)、表面、半马氏体区、淬透性 6、热处理之所以能使钢的性能发生变化,其根本原因是由于铁具有________转变,从而使钢在加热和冷却过程中,其内部________发生变化的结果。 答案:同素异构、组织 7、将钢加热到________,保温一定时间,随后在________中冷却下来的热处理工艺叫正火。 答案:Ac 3或Ac cm 以上30℃~50℃、空气 8、钢的渗碳是将零件置于________介质中加热和保温,使活性________渗入钢的表面,以提高钢的表面________的化学热处理工艺。 答案:渗碳、碳原子、碳含量 9、共析钢加热到Ac 1 以上时,珠光体开始向________转变,________通常产生于铁素体和渗碳体的________。 答案:奥氏体(A)、奥氏体晶核、相界面处 10、将工件放在一定的活性介质中________,使某些元素渗入工件表面,以改变化学成分和________,从而改善表面性能的热处理工艺叫化学热处理。 答案:加热和保温、组织 11、退火是将组织偏离平衡状态的钢加热到适当温度,保温一定时间,然后________冷却,以获得接近________组织的热处理工艺。 答案:缓慢(随炉)、平衡状态 12、将钢加热到________温度,保温一定时间,然后 ________冷却到室温,这一热处理工艺叫退火。 答案:适当、缓慢(随炉) 13、V 临 是获得________的最小冷却速度,影响临界冷却速度的主要因素是________。

金属学与热处理课后习题答案第六章

第六章金属及合金的塑性变形和断裂6-1 锌单晶体试样截面积A=,经拉伸试验测定的有关数据如下表: 1)根据以上数据求出临界分切应力τk并填入上表 2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。 答: 1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积 需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。 当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。 2)cosφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。cosφcosλ的最大值是φ、λ均为45度时,数值为,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。 6-2 画出铜晶体的一个晶胞,在晶胞上指出: 1)发生滑移的一个滑移面 2)在这一晶面上发生滑移的一个方向

3)滑移面上的原子密度与{001}等其他晶面相比有何差别 4)沿滑移方向的原子间距与其他方向有何差别。 答: 解答此题首先要知道铜在室温时的晶体结构是面心立方。 1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方晶格中的密排面是{111}晶面。 2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。 3){111}晶面的原子密度为原子密度最大的晶面,其值为a2,{001}晶面的原子密度为a2 4)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为a。 6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向施加应力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌。 答: 对受力后的晶体表面进行抛光,在金相显微镜下可以观察到在抛光的表面上出现许多相互平行的滑移带。在电子显微镜下,每条滑移带是由一组相互平行的滑移线组成,这些滑移线实际上是晶体中位错滑移至晶体表面产生的一个个小台阶,其高度约为1000个原子间距。相临近的一组小台阶在宏观上反映的就是一个大台阶,即滑移带。所以晶体表面上的滑移线形貌是台阶高度约为1000个原子间距的一个个小台阶。 6-4 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因?

第五章 钢的热处理

一、名词解释 1.过冷:结晶只有在理论结晶温度以下才能发生,这种现象称为过冷。 2.枝晶偏析:在一个枝晶范围内或一个晶粒范围内不均匀的现象叫做枝晶偏析。 3.二次相:由已有固相析出的新固相称为二次相或次生相。 4.铁素体:碳在α—Fe中的固溶体称为铁素体。 5.奥氏体:碳在γ—Fe中的固溶体称为奥氏体。 6.莱氏体:转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体。 7.珠光体:转变产物为铁素体和渗碳体的机械混合物,称为珠光体。 8.变质处理:又称为孕育处理,是一种有意向液态金属中加入非自发形核物质从而细化晶粒的方法。 9.共晶转变:在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程。 10.包晶转变:在一定温度下,由一定成分的液相包着一定成分的固相,发生反应后生成另一一定成分新固相的反应。 二、填空题 1、金属的结晶过程由晶核形成和晶核长大两个基本过程组成。 2、金属结晶过程中,细化结晶晶粒的主要方法有控制过冷度、变质处理和振动、搅拌 3、当固溶体合金结晶后出现枝晶偏析时,先结晶出来的枝晶轴含有较多的高熔点 组元。 4、在实际生产中,若要进行热锻或热轧时,必须把钢加热到奥氏体相区。 5、在缓慢冷却条件下,含碳0.8%的钢比含碳1.2%的钢硬度低强度低。 三、选择题 1.铸造条件下,冷却速度越大,则(A.过冷度越大,晶粒越小) 2.金属在结晶时,冷却速度越快,其实际结晶温度(B.越低) 3.如果其他条件相同,下列各组铸造条件下,哪种铸锭晶粒细?(A.金属模铸造 B.低温铸造A.铸成薄片A.浇注时振动) 4.同素异构体转变伴随着体积的变化,其主要原因是(致密度发生变化) 5.实际金属结晶时,可通过控制形核N和长大速度G的比值来控制晶粒大小,要获得细晶粒,应采用(A.增大N/G值) 6.二元合金在发生共晶转变时,各相组成是(D.三相共存) 7.二元合金在发生共析转变时,各相的(B.质量固定,成分发生变化) 10.产生枝晶偏析的原因是由于(D.液、固相线间距大,冷却速度也大) 11.二元合金中,铸造性能最好的是(B.共晶合金) 14.在下列方法中,可使晶粒细化的方法是(D.变质处理) 四、判断题 1。凡是液体凝固为固体的过程是结晶过程。( x ) 2.评定晶粒度的方法 :在相同放大倍数的条件下,将晶粒组织图像或显微照片与标准晶粒评级图进行比较。晶粒度级别数越高,晶粒越细。(√) 3。在铁碳合金中,凡具有E点与F点之间成分的合金换冷到1148C时都将发生共晶转变。(√) 4。纯金属的实际结晶温度与其冷却速度有关。(√) 5。Pb-Sn合金结晶时析出的一次相、二次相和共晶相均具有相同的晶体结构,但忽悠不同组织形态。(√) 6。杠杆定律只适用于两相区。(√)

工程材料及热处理 第5章作业题答案

1.奥氏体晶粒大小与哪些因素有关?为什么说奥氏体晶粒大小直接 影响冷却后钢的组织和性能? 奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小。(1)加热温度和保温时间。加热温度越高,保温时间越长,奥氏体晶粒越粗大。(2)加热速度。加热速度越快,过热度越大,奥氏体的实际形成温度越高,形核率和长大速度的比值增大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大。(3)钢的化学成分。 在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小。(4)钢的原始组织。 钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小。 传统多晶金属材料的强度与晶粒尺寸的关系符合Hall-Petch关系,即σs=σ0+kd-1/2,其中σ0和k是细晶强化常数,σs是屈服强度,d是平均晶粒直径。显然,晶粒尺寸与强度成反比关系,晶粒越细小,强度越高。然而常温下金属材料的晶粒是和奥氏体晶粒度相关的,通俗地说常温下的晶粒度遗传了奥氏体晶粒度。 所以奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响。奥氏体晶粒度越细小,冷却后的组织转变产物的也越细小,其强度也越高,此外塑性,韧性也较好。

2.过冷奥氏体在不同的温度等温转变时,可得到哪些转变产物?试列表比较它们的组织和性能。 3.共析钢过冷奥氏体在不同温度的等温过程中,为什么550℃的孕育期最短,转变速度最快? 因为过冷奥氏体的稳定性同时由两个因素控制:一个是旧与新相之间的自由能差ΔG;另一个是原子的扩散系数D。等温温度越低,过冷度越大,自由能差ΔG也越大,则加快过冷奥氏体的转变速度;但原子扩散系数却随等温温度降低而减小,从而减慢过冷奥氏体的转变速度。高温时,自由能差ΔG起主导作用;低温时,原子扩散系数起主导作用。处于“鼻尖”温度时,两个因素综合作用的结果,使转变孕育期最短,转变速度最大。

工程材料第四章习题答案

工程材料作业(4)答案 1.解释下列现象: (1) 在相同含碳量下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高。 奥氏体形成分为形核、长大、残余渗碳体溶解,奥氏体均匀化4阶段。多数合金元素减缓A形成,Cr、Mo、W、V等强碳化物形成元素与碳亲和力大,形成的合金元素的碳化物稳定、难溶解,会显著减慢碳及合金元素的扩散速度。但为了充分发挥合金元素的作用,又必须使其更多的溶入奥氏体中,合金钢往往需要比含碳量相同的碳钢加热到更高的温度,保温更长时间。 Co、Ni等部分非碳化物形成元素,因增大碳的扩散速度,使奥氏体的形成速度加快。而Al、Si、Mn等合金元素对奥氏体形成速度的影响不大。 阻碍晶粒长大,合金钢需要更高的加热温度,更长的保温时间,才能保证奥氏体均匀化。 (加热温度升高了,但一般不会引起晶粒粗大:大多数合金元素都有阻碍奥氏体晶粒长大的作用。碳化物形成元素的作用最明显,因其形成的碳化物高温下稳定性高,很难完全溶入奥氏体,未溶的细小碳化物颗粒,分布在奥氏体晶界上,有效的阻止晶粒长大,起到细化晶粒的作用。所以,合金钢虽然热处理加热温度高,但一般不用担心晶粒粗大。 强烈阻碍晶粒长大的元素:V、Ti、Nb、Zr;中等阻碍的:W、Mo、Cr;影响不大的:Si、Ni、Cu;促进晶粒长大的:Mn、P、B) (2) 在相同含碳量下,含碳化物形成元素的合金钢比碳钢具有较高的回火稳定性。

回火过程一般分为:马氏体分解、残余奥氏体转变、碳化物类型转变和碳化物长大。 合金元素在回火过程中,推迟马氏体的分解和残余奥氏体的转变(即在较高温度才出现分解和转变),提高铁素体的再结晶温度,使碳化物难以聚集长大而保持较大的弥散度。因此,提高了钢对回火软化的抗力,即提高了钢的回火稳定性。使得合金钢在相同温度下回火时,比同样质量分数的碳钢具有更高的硬度和强度(对工具钢,耐热钢更重要),或在保证相同强度的条件下,可在更高的温度下回火,而韧性更好(对结构钢更重要。) (3) 为何含C大于0.4%,含Cr大于12%的Cr钢属于过共析钢,含碳1.5%,含Cr12%的钢属于莱氏体钢。 在合金元素的作用下,使得铁碳相图的S点(即﹤﹤0.77%)和E点(即﹤﹤2.11%)因此,C大于0.4%,含Cr大于12%的Cr钢属于过共析钢,含碳1.5%,含Cr12%的钢属于莱氏体钢。 (4) 高速钢在热轧或锻造后,经空冷获得马氏体组织。 高速钢由于合金元素含量高,使得C曲线右移很多,即过冷奥氏体区很大,淬火临界冷却速度大为降低,因此采取空冷即可获得马氏体组织。高速钢俗称“风钢”(锋钢) 2.何谓合金渗碳钢?为何渗碳钢的含碳量都较低?合金渗碳钢常用的合金元素有哪些及其主要作用?为何渗碳后要进行淬火和低温回火? 经过渗碳热处理后使用的低碳合金结构钢。 含碳量低是为了保证零件心部有足够的塑性和韧性。 渗碳钢常用的合金元素是:Cr,Ni,Mn,B,主要目的是提高淬透性。还

工程材料与热处理 第6章作业题参考答案

1.从力学性能、热处理变形、耐磨性和热硬性几方面比较合金钢和 碳钢的差异,并简单说明原因。 为提高钢的机械性能、工艺性能或物化性能,在冶炼时有意往钢中加入一些合金元素而形成新的合金,这种合金称为合金钢。 合金钢与碳钢比较,合金钢的力学性能好,热处理变形小,耐磨性好,热硬性好。 因为合金钢在化学成分上添加了合金元素,可形成合金铁素体、合金渗碳体和合金碳化物,产生固溶强化和弥散强化,提高材料性能;加入合金元素可提高钢的淬透性,降低临界冷却速度,可减少热处理变形;碳钢虽然价格低廉,容易加工,但是淬透性低、回火稳定性差、基本组成相强度低。 2.解释下列钢的牌号含义、类别及热处理方法:20CrMnTi,40Cr, 16Mn,T10A,Cr12MoV,W6Mo5Cr4V2,38CrMoAlA,5CrMnMo,GCr15,55S i2Mn。 20CrMnTi的含碳量为0.17%-0.24%,Cr,Mn,Ti<1.5%,是渗碳钢,热处理方法是在渗碳之后进行淬火和低温回火。 40Cr的含碳量为0.37~0.45%,Cr <1.5%,是调质钢,热处理方法是淬火加高温回火。 16Mn中碳的含量在0.16%左右,锰的含量大约在1.20%-1.60%左右,属于低合金钢,热处理方法是:热轧退火(正火)。 T10A为含碳量在0.95~1.04的高级优质碳素工具钢,热处理方法

是淬火和低温回火。 Cr12MoV碳 C :1.45~1.70,铬 Cr:11.00~12.50,Mo,V<1.5%,是冷作模具钢,热处理方法是淬火和低温回火。 W6Mo5Cr4V2碳 C :0.80~0.90,钼 Mo:4.50~5.50,铬 Cr: 3.80~ 4.40,钒 V :1.75~2.20,是高速钢,热处理方法是淬火 +高温回火。 38CrMoAlA碳 C :0.35~0.42,Cr,Mo,Al<1.5%,是高级优质合金渗氮钢,热处理方法是:调质处理+渗氮。 5CrMnMo碳 C :0.50~0.60,Cr,Mn,Mo<1.5%,是热作模具钢,热处理方法是搓火加中高温回火。 GCr15:C:0.95-1.05,Cr:1.30-1.65,是滚动轴承钢,热处理方法是:淬火+低温回火。 55Si2Mn碳 C :0.52~0.60,硅 Si:1.50~2.00,Mn<1.5%,是弹簧钢,热处理方法是淬火加中温回火。 3.比较9SiCr,Cr12MoV,5CrMnMo,W18Cr4V等四种合金工具钢的成分、 性能和用途差异。 9SiCr的成分:相当于在T9钢的基础上加入1.2%-1.6%的Si和 0.95%-1.25%的Cr。 性能:硬度和耐磨性良好,无热硬性。 用途:适用于截面较厚要求淬透的或截面较薄要求变形小的、形状较复杂的工模具。

第六章 钢的热处理

第六章钢的热处理 一、解释下列名词 1、奥氏体、过冷奥氏体、残余奥氏体 2、珠光体、索氏体、屈氏体、贝氏体、马氏体 3、临界冷却速度 4、退火、正火、淬火、回火、冷处理、时效 5、调质处理 6、淬透性、淬硬性 7、回火马氏体、回火索氏体、回火屈氏体 8、第一类回火脆性、第二类回火脆性 10、表面淬火、化学热处理 二、填空题 1、钢的热处理是通过钢在固态下、和的操作来改变其,从而获得所需性能的一种工艺。 2、钢在加热时P→A 的转变过程伴随着铁原子的,因而是属于型相变。 3、钢加热时的各临界温度分别用、和表示;冷却时的各临界温度分别用、和表示。 4、加热时,奥氏体的形成速度主要受到、、和的影响。 5、在钢的奥氏体化过程中,钢的含碳量越高,奥氏体化的速度越,钢中含有合金元素时,奥氏体化的温度要一些,时间要一些。 6、一般结构钢的A晶粒度分为级, 级最粗,级最细。按930℃加热保温 3~8h 后,晶粒度在级的钢称为本质粗晶粒钢,级的钢称为本质细晶粒钢。 7、珠光体、索氏体、屈氏体均属层片状的和的机械混合物,其差别仅在于。 8、对于成分相同的钢,粒状珠光体的硬度、强度比片状珠光体,但塑性、韧性较。 9、影响C曲线的因素主要是和。 10、根据共析钢相变过程中原子的扩散情况,珠光体转变属转变,贝氏体转变属转变,马氏体转变属转变。 11、马氏体的组织形态主要有两种基本类型,一种为马氏体,是由含碳量的母相奥氏体形成,其亚结构是;另一种为马氏体,是由含碳

量的母相奥氏体形成,其亚结构是。 12、上贝氏体的渗碳体分布在,而下贝氏体的渗碳体较细小,且分布在,所以就强韧性而言,B下比B上。 13、钢的 C 曲线图实际上是图,也称图,而CCT曲线则为。 14、过冷奥氏体转变成马氏体,仅仅是的改变,而没有改变,所以马氏体是碳在α-Fe 中的。 15、其他条件相同时,A中的C% 愈高,A→M的Ms温度愈,A 量也愈。 16、马氏体晶格的正方度( c/a )表示了,c/a的值随而增大。 17、目前生产上,在选择淬火冷却介质时,通常是碳素钢零件淬,合金钢零件淬。 18、称为淬火临界冷却速度 Vk。Vk 愈小,钢的淬透性愈。 19、钢的淬硬性主要决定于,钢的淬透性主要决定于和。 20、淬火钢在 150~250℃回火称为回火;在 100~150℃进行长时间加热(10~50 小时 ), 称为处理,目的是。 21、通常利用淬火获得以下贝氏体为主的组织。 22、所谓正火就是将钢件加热至或以上30~50℃,保温后冷却的一种操作。 23、J 是的符号,它表示。 24、称为调质,组织是。 25、感应加热淬火用钢的含碳量以为宜。 26、化学热处理的基本过程是、和。 27、工件淬火时先在水中冷却一定时间后再放至油中冷却的方法叫做。 28、低碳钢渗碳后缓冷到室温的渗层组织,最外层应是层,中间是层,再往里是层。 29、氮化层厚度一般不超过 mm,所以氮化零件留磨量在直径方向不应超过mm。 30、习惯上中温碳氮共渗又称,低温碳氮共渗又称。 三、简答题 1、钢的热处理操作有哪些基本类型?试说明热处理同其它工艺过程的关系及其在机械制造中的地位和作用。

第四章、钢的热处理

第四章钢的热处理 热处理是采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。 热处理工艺方法较多,但其过程都是由加热、保温、冷却三个阶段组成,如图4--1 热处理的分类见表4--1。 第一节钢在加热时的组织转变 大多数零件的热处理都是先加热到临界点以上某一温度区间,使其全部或部分得到均匀的奥氏体组织,然后采用适当的冷却方法,获得所需要的其它组织结构,如马氏体、贝氏体等。 金属或合金在加热或冷却过程中,发生相变的温度称为相变点或临界点,如图4—2。 在铁碳合金状态图中,A 1、A 3 、A c m 是平衡条件下的临界点; 实际加热时的临界点标为A c1、A c3 、A c c m ; 冷却时的临界点标为A r1、A r3 、A r c m 。 一、奥氏体的形成 以共析钢为例来分析共析钢奥氏体的形成过程。珠光体向奥氏体的转变,是由化学成分和晶格都不相同的两相,转变为另一种化学成分和晶格的过程,因此,在转变过程中必须进行碳原子的扩散和铁原子的晶格重构,即发生相变。 研究发现:奥氏体的形成是通过形核和核长大过程来实现的。珠光体向奥氏体转变可以分为四个阶段:①奥氏体晶核形成;②奥氏体晶核长大;③残余渗碳体溶解;④奥氏体化学成分的均匀化,如图4—3。 钢在热处理时之所以需要一定的保温时间,不仅是为了把零件热透,而且也是为了获得化学成分均匀的奥氏体,以便在冷却时得到良好的组织和性能。 由铁碳合金状态图可以看出,亚共析钢需加热到A c3 以上,并保温适当时 间,才能得到化学成分均匀单一的奥氏体组织;过共析钢需加热到A c c m 以上,并保温适当时间,才能得到化学成分均匀单一的奥氏体组织。 二、奥氏体晶粒长大及其控制措施 钢中奥氏体晶粒的大小直接影响到冷却后的组织和性能。奥氏体晶粒细小,则其转变产物的晶粒也较细小,其性能也较好;反之,转变产物的晶粒则粗大,其性能则较差。

机械制造基础第五章碳素钢与钢的热处理习题解答

第五章碳素钢与钢的热处理 习题解答 5-1 在平衡条件下,45钢、T8钢、T12钢的硬度、强度、塑性、韧性哪个大、哪个小? 变化规律是什么? 原因何在? 答:平衡条件下,硬度大小为:45钢T8钢>T12钢。 变化规律为:随着碳含量的增加钢的硬度提高,塑性和韧性则下降,因为随着含量的增加组织中硬而脆的渗碳体的量也在增加;随碳含量增加,强度也会增加,但当碳含量到了0.9%后,强度则会随碳含量的增加而下降,因为碳含量超过0.9%后,钢的平衡组织中出现了脆而硬的网状二次渗碳体,导致了强度的下降。 5-2 为什么说碳钢中的锰和硅是有益元素? 硫和磷是有害元素? 答:锰的脱氧能力较好,能清除钢中的FeO,降低钢的脆性;锰还能与硫形成MnS,以减轻硫的有害作用。硅的脱氧能力比锰强,在室温下硅能溶人铁素体,提高钢的强度和硬度。 硫在钢中与铁形成化合物FeS,FeS与铁则形成低熔点(985℃) 的共晶体分布在奥氏体晶界上。当钢材加热到1100~1200℃进行锻压加工时,晶界上的共晶体己熔化,造成钢材在锻压加工过程中开裂,这种现象称为“热脆”。磷可全部溶于铁素体,产生强烈的固溶强化,使钢的强度、硬度增加,但塑性、韧性显著降低。这种脆化现象在低温时更为严重,故称为“冷脆”。磷在结晶时还容易偏析,从而在局

部发生冷脆。 5-3 说明Q235A、10、45、65Mn、T8、T12A各属什么钢? 分析其碳含量及性能特点,并分别举一个应用实例。 答:Q235A属于碳素结构钢中的低碳钢;10钢属于优质碳素结构钢中的低碳钢;45钢属于优质碳素结构钢中的中碳钢;65Mn属于优质碳素结构钢中的高碳钢且含锰量较高;T8属于优质碳素工具钢;T12A属于高级优质碳素工具钢。 Q235A的w C =0.14% ~ 0.22%,其强度、塑性等性能在碳素结构钢中居中,工艺性能良好,故应用较为广泛,如用于制造机器中受力不大的螺栓。 10钢的w C =0.07% ~ 0.14%,其强度、硬度较低,塑性、韧性良好,用作焊接件、冲压件和锻件时的工艺性能良好,可用于制造机器中的垫圈、销钉等零件。 45钢的w C =0.42% ~ 0.50%,其力学性能在优质碳素结构钢中居中,具有良好的综合力学性能,应用广泛,如可用于制造内燃机的曲轴等零件。 T8钢的w C =0.75% ~ 0.84%,其强度、硬度和耐磨性较高,塑性、韧性较低,可用于制造承受冲击的冲头等零件。 T12A钢的w C =1.15% ~ 1.24%,其强度、硬度和耐磨性较高,塑性、韧性比T8钢低,可用于制造不受冲击的铰刀或丝锥等工具。 5-4 什么是热处理? 它由哪几个阶段组成? 热处理的目的是什么?

第四章 金属学与热处理答案

第4章 习题 4-1 分析w C =0.2%、w C =0.6%、w C =1.2%的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物和组织组成物的含量。 解:在室温下,铁碳合金的平衡相是α-Fe(碳的质量分数是0.008%)和Fe 3C(碳的质量分数是 6.69%),故 (1) w C =0.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为 3 6.690.2%100%97.13%6.690.008 %197.13% 2.87% Fe C α-=?=-=-= w C =0.2%的合金在室温下平衡态下的组织是α-Fe 和P ,其组织可近似看做和共析转变完时一样,在共析温度下α-Fe 碳的成分是0.0218%,P 的碳的成分为0.77%,故w C =0.2%的合金在室温时组织中P 和α的相对量分别为 0.20.0218%100%23.82%0.770.0218 %123.82%76.18%P α-= ?=-=-= (2) w C =0.6%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为 3 6.690.6%100%91.14%6.690.008 %191.14%8.86% Fe C α-=?=-=-= w C =0.6%的合金在室温下平衡态下的组织是α-Fe 和P ,在室温时组织中P 和α的相对量为 0.60.0218%100%77.28%0.770.0218 %177.28%22.72%P α-= ?=-=-= (3) w C =1.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为 3 6.69 1.2%100%82.16%6.690.008 %182.16%17.84% Fe C α-=?=-=-= w C =1.2%的合金在室温下平衡态下的组织是P 和Fe 3C ,在室温时组织中P 的相对量为 3 6.69 1.2%100%92.74%6.690.77 %192.74%7.3%P Fe C -= ?=-=-= 4-2 分析w C =3.5%、w C =4.7%的铁碳合金从液态平衡冷却至室温的平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物的含量。

工程材料第四章习题答案

工程材料作业(4)答案 1.解释下列现象: (1) 在相同含碳量下,除了含Ni与Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高。 奥氏体形成分为形核、长大、残余渗碳体溶解,奥氏体均匀化4阶段。多数合金元素减缓A形成,Cr、Mo、W、V等强碳化物形成元素与碳亲与力大,形成的合金元素的碳化物稳定、难溶解,会显著减慢碳及合金元素的扩散速度。但为了充分发挥合金元素的作用,又必须使其更多的溶入奥氏体中,合金钢往往需要比含碳量相同的碳钢加热到更高的温度,保温更长时间。 Co、Ni等部分非碳化物形成元素,因增大碳的扩散速度,使奥氏体的形成速度加快。而Al、Si、Mn等合金元素对奥氏体形成速度的影响不大。 阻碍晶粒长大,合金钢需要更高的加热温度,更长的保温时间,才能保证奥氏体均匀化。 (加热温度升高了,但一般不会引起晶粒粗大:大多数合金元素都有阻碍奥氏体晶粒长大的作用。碳化物形成元素的作用最明显,因其形成的碳化物高温下稳定性高,很难完全溶入奥氏体,未溶的细小碳化物颗粒,分布在奥氏体晶界上,有效的阻止晶粒长大,起到细化晶粒的作用。所以,合金钢虽然热处理加热温度高,但一般不用担心晶粒粗大。 强烈阻碍晶粒长大的元素:V、Ti、Nb、Zr;中等阻碍的:W、Mo、Cr;影响不大的:Si、Ni、Cu;促进晶粒长大的:Mn、P、B) (2) 在相同含碳量下,含碳化物形成元素的合金钢比碳钢具有较高的回火稳定性。 回火过程一般分为:马氏体分解、残余奥氏体转变、碳化物类型转变与碳化物长大。 合金元素在回火过程中,推迟马氏体的分解与残余奥氏体的转变(即在较高温度才出现分解与转变),提高铁素体的再结晶温度,使碳化物难以聚集长大而保持较大的弥散度。因此,提高了钢对回火软化的抗力,即提高了钢的回火稳定性。使得合金钢在相同温度下回火时,比同样质量分数的碳钢具有更高的硬度与强度(对工具钢,耐热钢更重要),或在保证相同强度的条件下,可在更高的温度下回火,而韧性更好(对结构钢更重要。)

钢的热处理(答案)

钢的热处理 一、选择题 1.加热是钢进行热处理的第一步,其目的是使钢获得(B )。 A.均匀的基体组织 B.均匀的A体组织 C.均匀的P体组织 D.均匀的M体组织2.下列温度属于钢的高、中、低温回火温度范围的分别为(A )(D )(B )。 A.500℃ B.200℃ C.400℃ D.350℃ 3.碳钢的淬火工艺是将其工件加热到一定温度,保温一段时间,然后采用的冷却方式是(D )。 A.随炉冷却 B.在风中冷却 C.在空气中冷却 D.在水中冷却 4.正火是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是(C )。 A.随炉冷却 B.在油中冷却 C.在空气中冷却 D.在水中冷却 5.完全退火主要用于(A )。 A.亚共析钢 B.共析钢 C.过共析钢 D.所有钢种 6.共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是( C)。 A.P B.S C.B D.M 7.退火是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是(A )。 A.随炉冷却 B.在油中冷却 C.在空气中冷却 D.在水中冷却 二、是非题 1. 完全退火是将工件加热到Acm以上30~50℃,保温一定的时间后,随炉缓慢冷却的一种热处理工艺。√ 2. 合金元素溶于奥氏体后,均能增加过冷奥氏体的稳定性。× 3. 渗氮处理是将活性氮原子渗入工件表层,然后再进行淬火和低温回火的一种热处理方法。× 4. 马氏体转变温度区的位置主要与钢的化学成分有关,而与冷却速度无关。× 三、填空题 1. 共析钢中奥氏体形成的四个阶段是:(奥氏体晶核形成),(奥氏体晶核长大),残余Fe3C溶解,奥氏体均匀化。 2. 化学热处理的基本过程,均由以下三个阶段组成,即(介质分解),(工件表面的吸收),活性原子继续向工件内部扩散。 3. 马氏体是碳在(α-Fe)中的(过饱和溶液)组织。 4. 在钢的热处理中,奥氏体的形成过程是由(加热)和(保温)两个基本过程来完成的。 5. 钢的中温回火的温度范围在(350~500 ℃),回火后的组织为(回火托氏体)。 6. 钢的低温回火的温度范围在(150~250 ℃),回火后的组织为(回火马氏体)。 7. 在钢的回火时,随着回火温度的升高,淬火钢的组织转变可以归纳为以下四个阶段:马氏体的分解,残余奥氏体的转变,(铁素体中析出 Fe3C ),(铁素体多边形

相关主题
文本预览
相关文档 最新文档