当前位置:文档之家› 物理牛顿运动定律的应用专项及解析

物理牛顿运动定律的应用专项及解析

物理牛顿运动定律的应用专项及解析
物理牛顿运动定律的应用专项及解析

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

人教版高中物理第一册牛顿运动定律的应用1

牛顿运动定律的应用 教学目标: 1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤 2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解 3.理解超重、失重的概念,并能解决有关的问题 4.掌握应用牛顿运动定律分析问题的基本方法和基本技能 教学重点:牛顿运动定律的综合应用 教学难点: 受力分析,牛顿第二定律在实际问题中的应用 教学方法:讲练结合,计算机辅助教学 教学过程: 一、牛顿运动定律在动力学问题中的应用 1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题): (1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等. (2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向). 但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案. 两类动力学基本问题的解题思路图解如下: 可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。 点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如 2/2 ,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤 (1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型. (2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象. (3)分析研究对象的受力情况和运动情况. (4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上. (5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算. (6)求解方程,检验结果,必要时对结果进行讨论.

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

(完整版)牛顿运动定律解题方法总结(教师版),推荐文档

牛顿运动定律解题方法总结(教师版) 1、正交分解法:把矢量(F ,a )分解在两个互相垂直的坐标轴上的方法。 例1、如图4-45所示,一自动电梯与水平面之间的夹角θ=30°,当电梯加 速向上运动时,人对梯面的压力是其重力的6/5,试求人与梯面之间的摩擦力是其重力的多少倍?解析:在动力学的两类基本问题中,本题应属于已知物体的运动状态求解 物体的受力情况。 人受力如图4-46所示,建立直角坐标系,将a 分解在x 轴和y 轴上, 由牛顿第二定律得:f =macosθ,N -mg =masinθ,N =6mg/5联立解得f =√3mg/5 说明:可见,当研究对象所受的力都是互相垂直时,通常采用分解加速度的方法,可以使解题过程更为简化。 2、整体法和隔离法:主要对连接体问题要用整体法和隔离法。 例2、如图4-47所示,固定在水平地面上的斜面倾角为θ,斜面上放一个带有支架的木块,木块与斜面间的动摩擦因数为μ,如果木块可以沿斜面加速下滑,则这一过程中,悬挂在支架上的小球悬线和竖直方向的夹角α为多大时小球可以相对于支架静止? 解析:要使小球可以相对于支架静止,说明二者具有相同的加速度。 视小球、木块为一整体,其具有的加速度为a ,由牛顿第二定律得: a =gsinθ-μgcosθ,对小球受力分析如图4-48所示,建立水平竖直方向坐标系,由牛顿第二定律得:Tsinα=macosθmg -Tcosα=masinα消去T ,得:tanα=acosθ/(g -asinα) 将a 代入得:tanα=(sinθ-μcosθ)/(cosθ+μsinθ) 3、瞬时分析法:主要求某个力突然变化时物体的加速度时用此法。 例3、质量为m 的箱子C ,顶部悬挂质量为m 的小球B ,小球B 的下方通过一轻弹簧与质量为m 的小球A 相连,箱子C 用轻绳OO ′悬于天花 板上处于平衡状态,如图4-49所示,现剪断OO ′,在轻绳被剪断的瞬 间,小球A 、B 和箱子C 的加速度分别是多少?B 、C 间绳子的拉力T 为多少? 解析:细绳剪断瞬间,拉力消失,A 、B 间弹簧弹力未变,B 、C 间绳子 拉力发生突变,所以A 仍受重力mg 和弹簧拉力F =mg 作用而平衡, 故a A =0。 剪断OO ′时,B 、C 间拉力也要突变,但B 、C 将同步下落,所以: a B =a C =3mg/2m =1.5g 。 对C 由牛顿第二定律得:T +mg =ma C ,∴T =0.5mg 。 4、程序法:按时间先后顺序对题目给出的物体运动过程(或不同状态)进行分析计算的解 题方法叫做程序法。 图4- 图4- 图4-图 4-图4-

应用牛顿运动定律解题的方法和步骤

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有 两种方法,一种是将两物体隔离,得方程为 ma T mg =- Ma Mg T =-μ 另—种方法是将整个系统作为研究对象,得方 程为 a M m Mg mg )(+=-μ 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢 图3-4-1

掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能 同时取而说它受到三个力的作用。一般情况下选取合Array力,如物体在斜面上受到重力,一般不说它受到下滑力 和垂直面的两个力。在—些特殊情况下,物体其合力不 图3-4-2 能先确定,则可用两分力来代替它,如图3-4-2横杆左 端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分 清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处

高中物理牛顿运动定律的应用解题技巧及练习题(1)

高中物理牛顿运动定律的应用解题技巧及练习题(1) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求: (1)m 、M 之间的动摩擦因数; (2)M 的质量及它与水平地面之间的动摩擦因数; (3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】 (1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有: 11mg ma μ= 由乙图知 214m /s a = 解得 10.4μ= (2)对M 由牛顿第二定律有 122()F mg M m g Ma μμ--+= 即 12122()()F mg M m g mg M m g F a M M M μμμμ--+--+= =+ 乙图知 11 4 M = 12()9 4 mg M m g M μμ--+=- 解得 M = 4 kg μ2=0. 1

(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左, 设m 运动t 1时间速度减为零,则 11 1s v t a = = 位移 2101111 2m 2 x v t a t =-= M 的加速度大小 2122()5m /s F mg M m g a M μμ--+= = 方向向左, M 的位移大小 2 2211 2.5m 2 x a t = = 此时M 的速度 2215m /s v a t == 由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落, 设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律 23F Mg Ma μ-= 可得 2325 m /s 4 a = 在t =2s 时m 与M 右端的距离 2321311 ()()8.125m 2 x v t t a t t =-+-=. 2.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37o=0.6,cos37o=0.8,求:

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

《牛顿运动定律的运用》教案

牛顿运动定律的应用 教学目标 一、 知识目标 1. 知道运用牛顿运动定律解题的方法 2. 进一步学习对物体进行正确的受力分析 二、 能力目标 1. 培养学生分析问题和总结归纳的能力 2. 培养学生运用所学知识解决实际问题的能力 三、 德育目标 1. 培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、 导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、 新课教学 (一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况

高中物理牛顿运动定律的应用试题类型及其解题技巧

高中物理牛顿运动定律的应用试题类型及其解题技巧 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求: (1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】 (1)滑块在平板上做匀减速运动,加速度大小:a 1=1mg m μ=3 m/s 2 由于μ1mg>2μ2mg 故平板做匀加速运动,加速度大小:a 2= 122mg mg m μμ-?=1 m/s 2 设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分) L 2+x =vt -12 a 1t 2 对平板:v′=a 2t x = 12 a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3= mg m μ=5 m/s 2

最新高中物理牛顿运动定律的应用题20套(带答案)

最新高中物理牛顿运动定律的应用题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求: (1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t . 【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】 (1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】 (1)在水平面上,根据牛顿第二定律得:1F mg ma μ-= 代及数据解得:2 14/a m s = (2)根据运动学公式:2 102B v a s = 代入数据解得:8/B v m s = (3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得: 23737mgsin mgcos ma μ?+?=① 物体沿斜面向上运动的时间:22 B v t a = ② 物体沿斜面向上运动的最大位移为:2 22212 s a t = ③ 因3737mgsin mgcos μ?>?,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动 根据牛顿第二定律得:33737mgsin mgcos ma μ?-?=④ 物体沿斜面下滑的时间为:22331 2 s a t = ⑤ 物体在斜面上运动的时间:23t t t =+⑥ 联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

牛顿运动定律应用

高考第一轮复习---牛顿运动定律考点例析 牛顿三个运动定律是力学的基础,对整个物理学也有重大意义。本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定律的应用中得到了完美的体现。从近几年高考看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分析能力。如:2000年上海物理试题第21题(风洞实验)、2001年全国物理试题第8题(惯性制导系统)、2001年上海物理试题第8题(升降机下落)、2001年上海物理试题第20题(轻绳和轻弹簧的辩析纠错题)、2002年理科综合全国卷第26题(蹦床运动)、2003年全国春季理综第16题(滑冰运动)、2004年全国理综四第19题(猫在木板上跑动)等等。同学们只要把任何一套高考试题拿来研究,总会发现有与牛顿定律有关的试题。 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x, F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互

应用牛顿运动定律解题的方法和步骤

应用牛顿运动定律解题 的方法和步骤 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有两种方法,一种是 将两物体隔离,得方程为 另—种方法是将整个系统作为研究对象,得方程为 显然,如果只求系统的加速度,则第二种方法好;如果 还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这m 图3-4-1

就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。一般情况下选取合力,如物体在斜面上 受到重力,一般不说它受到下滑力和垂直面的两个力。在—些特 殊情况下,物体其合力不能先确定,则可用两分力来代替它,如 图3-4-2横杆左端所接铰链对它的力方向不能明确之前,可用水 平和竖直方向上的两个分力来表示,最后再求出这两个分力的合 力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处理,经过不计摩擦的定滑轮改变了方向后,我们一般仍将绳对两个物体的拉力当作一对相互作用力处理。 (3)分析物体运动状态及其变化 ①运用牛顿定律解题主要是分析物体运动的加速度a ,加速度是运动学和动力学联系的纽带,经常遇到的问题是已知物体运动情况通过求a 而求物体所受的力。 图3-4-2

最新高考物理牛顿运动定律的应用试题经典

最新高考物理牛顿运动定律的应用试题经典 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 21 2 B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =, 15m B h =,10m/s A V =,15m/s B V = A 、 B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有: 21()2 kA A A A A E m v m g H h = +- 400J kA E =

高一物理牛顿运动定律的应用

第三章 D 牛顿运动定律的应用 一、教学任务分析 本节内容是对牛顿运动定律的综合提高和延伸,也为学习以后的物理学习打好力学基础。 学习本节内以受力分析、力的合成与分解、匀加速直线运动规律、牛顿运动定律等基础知识和相应的技能为基础。 通过实例情景和学生活动,了解建立国际单位制的重要性和必要性,介绍用国际单位制及其应用。 通过对典型示例的分析和讨论,归纳出用牛顿运动定律解决力学问题的一般规律和方法。 通过对观察录像、演示实验和学生小实验,感受超重、失重现象,应用牛顿第二定律分析、探究超重、失重现象的本质与规律。 二、教学目标 1、知识与技能 (1)知道国际单位制。知道基本单位和导出单位。理解力学中的三个基本单位。 (2)学会导出单位的推演方法并能进行单位换算。 (3)掌握用牛顿运动定律解决力学问题的一般规律和方法。 (4)知道超重和失重现象。 (5)学会用牛顿第二定律分析超重、失重现象。 2、过程与方法 (1)通过创设情景、实例分析和练习的过程,认识引入国际单位制的重要性和必要性。 (2)通过对典型示例的分析、讨论过程,认识分析、比较、等效、演绎、归纳、验证等科学方法。 (3)通过对电梯中进行的超重失重实验的定性观察和学生小实验,感受用牛顿运动定律解决实际问题的一般规律和方法。 3、情感、态度与价值观 (1)通过阅读关于“火星探测器失事原因”的STS材料,在了解统一单位重要性的同时,感悟严谨的治学态度对科学发展的重大意义。 (2)通过应用牛顿运动定律解决实际问题的过程,感悟物理学在社会发展中的重要作用。 (3)通过学生实验的过程,激发求知欲,获得成就感。 (4)通过观察神舟六号飞船录像片段,了解我国航天事业的发展,激发民族自豪感。三、教学重点与难点 重点:怎样应用牛顿运动定律解决力学问题。 难点:对超重失重视现象的认识。 四、教学资源 1、器材:多媒体投影仪,演示超重、失重的DIS实验器材,改锥,饮料瓶(人手一个)。

相关主题
文本预览
相关文档 最新文档