当前位置:文档之家› (no.1)2013年高中数学教学论文 思想与方法函数与方程的思想方法 新人教版

(no.1)2013年高中数学教学论文 思想与方法函数与方程的思想方法 新人教版

(no.1)2013年高中数学教学论文 思想与方法函数与方程的思想方法 新人教版
(no.1)2013年高中数学教学论文 思想与方法函数与方程的思想方法 新人教版

本文为自本人珍藏版权所有仅供参考

函数与方程的思想方法概述

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。

方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个

领域,在解题中有着广泛的运用。对于函数

)

(x

f

y=,当0

=

y时,就转化为方程0

)

(=

x

f,

也可以把函数式

)

(x

f

y=看做二元方程0

)

(=

-x

f

y,函数与方程这种相互转化的关系十

分重要。

函数与表达式也可以相互转化,对于函数

)

(x

f

y=,当0

>

y时,就转化为不等式

)

(>

x

f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。

数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。

函数

)

(

)

(

)

(*

N

n

bx

a

x

f n∈

+

=与二项式定理密切相关,利用这个函数,用赋值法和比

较系数法可以解决很多有关二项式定理的问题。

解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。

立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。

函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。

高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。

第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等;

第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题;

第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等;

第四层次:构造方程或不等式求解问题。

其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。

纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

就带动起了中学数学的“目”。即使对函数极限、导数的研究,也完全是以函数为对象、为中心的。熟练掌握基本初等函数的图像和性质,是应用函数与方程思想解题的基础。善于

根据题意构造、抽象出函数关系式是用函数思想解题的关键。

经典例题:

一. 函数思想

所谓函数思想,不仅仅是使用函数的方法来研究和解决函数的问题,它的精髓是运用函数分

析问题、、解决问题的观点、方法,是通过构造函数关系,使用函数方法来解决问题的思想。

1. 构造函数,运用函数的性质

例1.(1)已知关于x 的方程0cos 222=+-a x x 有唯一解,求a 的值;

(2)解不等式0)2)1(1)(1()21(22>+++++++x x x x 。

分析:(1)构造函数22cos 2)(a x x x f +-=,则问题转化为求)(x f 的零点唯一时的a 。

(2)由观察可构造函数)21()(2++=x x x f 再利用函数的性质,解决问题。

解析:(1)令22cos 2)(a x x x f +-=,R x ∈是偶函数。)(),()(x f x f x f ∴=-

)(x f ∴的图像关于y 轴对称,而题设方程0)(=x f 由唯一解,从而此解必为0=x (否则

必有另一解),2,020)0(2±==+-=∴a a f 解得。

(2)设R x x x x f ∈++=),21()(2,易证)(x f 在区间[)+∞,0内为增函数。

)上为增函数,,在区间(是奇函数,从而∞+∞-∴-=++-=-)()().()21()(2x f x f x f x x x f 21,1),()()1(,0)1()(f -

>∴->+-=->+>++∴x x x x f x f x f x f x 即即原不等式可化为点评:有关不等式、方程及最值之类的问题,通过构造函数关系式,借助函数的图像与性质,

常可使问题简单得解。

2.选定主元,揭示函数关系

例2.对于]1,1[-∈a 的一切值,使不等式a x ax x +++<21)3

2()32

(2恒成立的x 的取值范围是 分析:从一个含有多变元的数学问题里,选定合适的主变元,从而揭示其中主要的函数关系。

解析; a x ax x +++<21)32()32

(2且13

20<<,a x ax x +>++∴212,即0)1()1(2>-+-x x a 。①

当1=x 时,不定式①不成立。

当1≠x 时,设=)(a f 2)1()1(-+-x x a 。

当0)1(0)(]1,1[)(1

>->->f a f a f x 恒成立,则只需上的增函数,欲使时时,,

即.2,01,0)1()1(2>∴>->-+-x x x x 又当, 0)1(0)(]1,1[)(1>>-

即.0,1,0)1()1(2<∴<>-+-x x x x 故x 的取值范围时),2()0,(+∞?-∞。

点评:本解的巧妙之处是“反客为主”,求x 反而以a 为主变元对x 进行讨论,这才是真正切中要害。若以x 为主元对a 进行讨论,则问题的解决就繁就难多了。

3.选取变元,确定函数关系

例3.函数x x y -+=1的值域是 。

分析:一般思路是:平方,移项,孤立根式,再平方,可以化无理式为有理式。面对这样一个低于四次的含双变量的方程,其难度真不敢想象。然而,可考虑转换选取新变元。 解析:由100

10≤≤????≥-≥x x x ,∴设θπθθ22cos 12,0,sin =-??????∈=x x ,则, 那么).4sin(2cos sin πθθθ+=

+=y 4344,2,0ππθππθ≤+≤∴??????∈ , 当[]

2,1.24;1,20max min 于是函数的值域是时,当时或====y y π

θπ

θ 点评:虽然经选取变元后的函数简洁明快,可以使人拍案叫绝,但须特别注意到:转化后的函数??

????+=20)4sin(ππ,在x y 上没有单调性,故最大值不能在其右端点取得。 4.利用二项式定理构造函数

例4:求证:k n m n k m k n m k n m C C C C C C C +-=+++011 。

分析:构造函数n m n m x x x x f ++=++=)

1()1()1()(,比较两个展开式中k x 的系数。 解析:令n m x x f ++=)1((,n m k n m x C +++)是(

1展开式中k x 的系数,又 ),)(()1()1()(102210n n n n n m n m m m m n m x C x C C x C x C x C C x x x f +++++++=++= 其

中k

x 的系数为0110n k m k n m k n m C C C C C C +++- ,故0110n k m k n m k n m C C C C C C +++- =k n m C +。 点评:利用函数)()()(*N n b ax x f n ∈+=,用赋值法或“二项”展开来比较系数可以解决许多二项式定理有关的问题。

5.用函数的思想方法解数列题

例5.已知不定式12

7)1(log 1212121112+->+++++a n n n 对一切大于1的自然数n 都成立,求实数a 的取值范围。

分析:n

n n 21211

++++ 无法求和,常规数列的方法就不起作用了,故必须用函数的思想,用研究函数单调性的方法研究这个数列,求出最小值。 解析:令时,有当且2),2(21211)(≥≥∈++++=

n n N n n n n n f 0)

12)(1(2111221121)()1(f >++=+-+++==-+n n n n n n f n , 所以)(),()1(n f n f n f ∴>+为增函数,且,127)2()(min =

=f n f 由题意得21,0)1(log ,12

7)1(log 12112722<<<-∴+->a a a 解得。 点评:利用数列的函数性质(本例为单调性)求出)(n f 的最小值。用函数方法解决问题,正是函数思想的核心。

6.建立函数关系解应用题

例6.用总长为14.8m 的钢条制成一个长方体容器的框架,要求底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积。

分析:这里有四个变量:底面的长、宽、长方体的体积和高。设长、高可用x 表示,容积y 是x 的函数。运用长方体的体积公式,建立目标函数表达式,再求函数的最大值。

解析:设容器底面宽为x(m),则长为x+0.5(m),高为).(22.34

)5.0(448.14m x x x -=+-- 由6.100022.3<<>>-x x x 得和,设容器的容积为y(m 3),则有

),6.10)(22.3)(5.0(<<-+=x x x x y 整理得x x x y 6.12.2223++-=,求导,得 6.14.462++-='x x y ,令,06.14.46,02=++-='x x y 有即,0411152=--x x 解得)(15

4,121不合题意,舍去-==x x 。从而,在定义域),(6.10内只有在01='=y x 处使。因此,当1=x 时,y 取得最大值,8.16.12.22max =++-=y 这时,高为)(2.1122.3m =?-。

答:当容器的高为1.2m 时,容积最大,最大容积是1.8(m 3

)。

点评:此题容易忽视的时自变量x 的取值范围,缺少它,很难判断求出的最大值是否符合题意。另外,适当设出自变量,建立函数关系是解此类题的关键。本题在求函数最大值时,是用求导的方法求出极值点,再根据实际情况判断是最大值还是最小值。 二. 方程的思想

方程与函数密切相关,在解题中,方程的思想占有重要的地位,也是近年来高考所重点考查的数学思想方法之一。

1. 解方程或分析方程的解

例7.已知实数c b a ,,成等差数列,4,1,1+++c b a 成等比数列,且.15=++c b a 求c b a ,,。

分析:利用数列的有关公式,列出方程组求解。

解析:由题意得??

???+=++=+=++3)1()4)(1(221152 b c a c c a c b a 由1、2两式,解得5=b ,将a c -=10带入

3式,整理得.11,2.022132===+-a a a a 或解得

故1,5,11,8,5,2-======c b a c b a 或。经验算,上述两组数符合题意。

点评:本题的列方程组和求解的过程,体现的就是方程的思想。

2通过换元构成新的方程

例8.关于x 的方程043)4(9=+++x x a 恒有解,求a 的取值范围。 分析:通过换元将方程变为二次方程恒有正根,同时利用根与系数的关系。

解析:(法一)设.0,3>=t t x 则原方程有解即方程04)4(2=+++t a t 有正根, ?????>=?>+-=+≥?∴,040)4(02

121x x a x x 即???-<≥-+,4,016)4(2a a ???-<-≤≥∴4,80a a a 或,

解得.8-≤a

(方法二)设,4)4()(2+++=t a t t f

①当.80,016)4(02-==∴=-+=?a a a 或时,即

不符合题意得时,02,0)2()(,02<-==+==t t t f a ;

符合题意。

得时,02,0)2()(,82>==-=-=t t t f a 8-=∴a ②

8.4,02

4,4)0(0,8,0-<∴-<>+-=>-<>?a a a f a a 即故只需对称轴时或即 . 综上可得,8-≤a 。

点评:对于多元方程(含参数)通常有两类办法:一是换元,将问题转化为二次方程,利用根与系数的关系或判别式,或者利用三角函数的有界性加以解决;二是分离变量构造函数,把方程有解转化为求函数的值域,再根据函数的图像和性质来解决。

3.构造方程求解

例9.设函数)0()(2>++=a c bx ax x f ,且存在,,R n m ∈使得

0])([])([22=-+-n n f m m f 成立。

⑴若的大小;

与时,试比较且当m t f m t m n a )(1,1<>-= ⑵若直线)(x f n x m x 分别与与==的图像交与M,N 两点,且M,N 两点的连线被直线01)1()1(322=++++y a x a 平分,求出b 的最大值。

分析:对于⑴小题,由题设条件易得n c bn an m c bm am =++=++2

2和,由方程根的意义可构造一个根为n m ,的一元二次方程,再借助韦达定理发现m 与对称轴的关系。最后运用二次函数的单调性可判断出的大小与m t f )(;第⑵小题可先建立a b 与的函数关系式,再运用均值不等式可求得b 的最大值。

解析:⑴由题意,)(,)(n n f m m f ==

?????=++=++∴n c bn an m c bm am 22?????=+-+=+-+?0)1(0)1(22c n b an c m b am 1,1,1,0)1(,2>--=+==+-+∴m n b n m a c x b ax n m 而时当的两根是方程

c bx x x f b m m b ++=-<∴>-∴2)(.2,2 的图像的对称轴为2

b x -=, .)()(2

m m f t f b m t =>∴-<< ⑵),,(),,(n n N m m M

)2,2(n m n m P MN ++∴为的中点。由,1a b n m -=+)21,21(a b a b P MN --∴为的中点,代入直线方程,得)0(12

21

1222>++=++=a a a a a b 4

51221=+?≤ 当且仅当4

5,1max ==b a 时。 点评:若没有方程的思想意识,则不能从,)(,)(n n f m m f ==中观察出m,n 是某一个一元二次方程的两根,从而也就无法得出,1a

b n m -=+这样有用的关系式,使解答陷入困境。因此,由根的意义或韦达定理构造一元二次方程是最常见的思路,不可忽视。 三. 函数与方程相互转化的思想

解题时,不能局限于函数思想或方程思想,而应该根据两者之间的相互关系,使其能相互转化,以达到快速解题之目的。

例10.已知抛物线)(1)2()1(2

R m x m x m y ∈--+-=

⑴当m 为何值时,抛物线与x 轴有两个交点?

⑵若关于x 的方程01)2()1(2=--+-x m x m 的两个不等实根的倒数平方和不大于2,求m 的取值范围;

⑶如果抛物线与x 轴相交于A,B 两点,与y 轴交于C 点,且ABC ?的面积等于2,试确定m 的值。

分析:⑴令函数0=y ,则转化为求方程有两个不等的实根时m 的值;

⑵利用根与系数的关系转化成解不等式; ⑶建立面积的函数关系式,再求函数值为2时方程的解。

解析:⑴令,01)2()1(,02=--+-=x m x m y 则据题意,须0,1>?≠且m ,

即01,0,0)1(4)2(22≠≠∴>?>-+-m m m m m 且。 ⑵在,11,121,02121m x x m m x x m ---=+≠的条件下,得,2112

1-=+m x x .20,02,2)1(2)2(11

222221≤≤∴≤-≤-+-=+∴m m m m m x x 得

所以m 的取值范围是{}2110|≤<<

434,1421121,22121或解得得得=-==-?-?=?-m m m m m y x x c 。 点评:c bx ax y ++=2型的抛物线,二次方程以及二次不等式之间相互关联,应特别关注

它们相互转化时的等价性和互补性。

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

高中数学四大思想

高中数学四大思想 1.数形结合思想 数形结合,“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 实质:将抽象的数学语言与直观图形结合起来;将抽象思维和形象思维结合起来。抽象问题具体化,复杂问题简单化。 应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 2.分类讨论思想 分类讨论思想,即根据所研究对象的性质差异,分各种不同的情况予以分析解决. 原则:化整为零,各个击破。无重复、无遗漏、最简。 步骤: 1)明确讨论对象,确定对象范围; 2)确定分类标准,进行合理分类,做到不重不漏; 3)逐类讨论,获得阶段性结果; 4)归纳总结,得出结论。 常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.

3.函数与方程思想 函数思想,即将所研究的问题借助建立函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; 方程思想,即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到: (1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质。 (2)密切注意一元二次函数、一元二次方程、一元二次不等式等问题;掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略。 4.转化与化归思想 转化与化归思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。 转化,是将数学命题由一种形式向另一种形式的变换过程; 化归,是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化有等价转化与不等价转化。等价转化后的新问题与原问题实质是一样的;不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正。 原则:化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与数的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

高中数学常见思想方法总结

高中常见数学思想方法 方法一 函数与方程的思想方法 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的. 【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><. (1)求公差d 的取值范围; (2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由. 【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题. 【解】(1) 由3a =12a d +=12,得到1a =12-2d , 所以12S =121a +66d =12(12-2d )+66d =144+42d >0, 13S =131a +78d =13(12-2d )+78d =156+52d <0. 解得:2437 d -<<-. (2)解法一:(函数的思想) n S =21115(1)(12)222 na n n d dn d n ++=+- =22 124124552222d d n d d ????????---- ? ????????????? 因为0d <,故212452n d ????-- ???????最小时,n S 最大.

高一数学函数与方程知识点整理

高一数学函数与方程知识点整理在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。精品小编准备了高一语文函数与方程知识点,希望你喜欢。 1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内() A.可能有3个实数根 B.可能有2个实数根 C.有唯一的实数根 D.没有实数根 解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数, f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根. 答案:C 2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表: x123456 f(x)136.1315.552-3.9210.88-52.488-232.064 则函数f(x)存在零点的区间有 A.区间[1,2]和[2,3] B.区间[2,3]和[3,4] C.区间[2,3]、[3,4]和[4,5] D.区间[3,4]、[4,5]和[5,6]

解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号, f(x)在区间[2,3],[3,4],[4,5]上都存在零点. 答案:C 3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是 A.(3.5,+) B.(1,+) C.(4,+) D.(4.5,+) 解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为 (n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则 1n+1m1. 答案:B 4.(2019昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x) 的零点所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B. 答案:B

数学七大思想方法

数学七大思想方法 1 函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。高考把函数与方程思想作为七种重要思想方法重点来考查。 2 数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面。 (2)在一维空间,实数与数轴上的点建立一一对应关系; 在二维空间,实数对与坐标平面上的点建立一一对应关系。 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 3 分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 4 化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 5 特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 6 有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 7 或然与必然的思想 (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性。 (2)偶然中找必然,再用必然规律解决偶然。 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

高中数学--函数与方程

函数与方程 一、函数的零点概念 教材中具体的定义:对于函数)(x f y =,我们把使 0)(=x f 的实数x 叫做函数0)(=x f 的零点。 可以这样理解:① 函数)(x f y =的零点就是 方程0)(=x f 的实数根 ② 函数)(x f y =的零点就是 函数)(x f y =的图象与X 轴交点的横坐标 二、用二分法求方程的近似解 二分法 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 举例理解: 二次函数f (x )=x 2-2x -3的图象(如下图),函数f (x )=x 2-2x -3在区间[-2,1]上有零点. 计算f (-2)×f (1) (> 还是 < ) 0 在区间[2,4]的端点上,即f (2)·f (4)<0,函数f (x )=x 2-2x -3在(2,4)内有零点。

例1 下列函数中,不能用二分法求零点的是( ) 例2 下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( ) 三、零点分类:不变号零点和变号零点 不变号零点 )(x f y ==函数2)(x x f =在下列区间是否存在零点?( ) (A )(-3,-1) (B )(-1,2) (C )(2,3) (D )(3,4) 变号零点 函数零点的存在性定理(仅适合变号零点):

应用:仅能判断零点的存在性,或者判断零点所在的区间命题方法判断零点的个数及所在的区间 典例(1)已知函数f(x)=6 x-log2 x,在下列区 间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)(2)函数f(x)=2x- 2 x- a的一个零点在区间(1,2)内,则实数a的取值范围是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2) 【解题法总结】函数零点问题的解题方法 (1)判断函数在某个区间上是否存在零点的方法 ①解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上. ②利用零点存在性定理进行判断. ③画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断. (2)判断函数零点个数的方法

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、

高中数学函数与方程知识点总结 经典例题及解析 高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有 1个零点?0)(=x f 有两个相等实根; 0?

专题三 五大数学思想方法 第四节

专题三5大数学思想方法 第四节方程思想与函数思想 类型十五方程思想在实际生活中的应用 (2018·台湾中考)某商店将巧克力包装成方形、圆形礼盒出售,且每盒 方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?( ) A.360 B.480 C.600 D.720 【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变列出方程,再根据阿郁最后购买10盒方形礼盒求解即可. 【自主解答】 17.(2018·新疆中考)某商店第一次用600元购进2B铅笔若干支,第二次又用 600元购进该款铅笔,但这次每支的进价是第一次进价的5 4 倍,购进数量比第一 次少了30支.则该商店第一次购进的铅笔,每支的进价是______元.

类型十六 方程思想在几何中的应用 (2018·湖南湘潭中考)如图,AB 是以O 为圆心的半圆的直径,半径 CO⊥AO,点M 是AB ︵ 上的动点,且不与点A ,C ,B 重合,直线AM 交直线OC 于点D ,连结OM 与CM. (1)若半圆的半径为10. ①当∠AOM=60°时,求DM 的长; ②当AM =12时,求DM 的长. (2)探究:在点M 运动的过程中,∠DMC 的大小是否为定值?若是,求出该定值;若不是,请说明理由. 【分析】(1)①当∠AOM=60°时,△AMO 是等边三角形,从而可知∠MOD=30°,∠D=30°,所以DM =OM =10; ②过点M 作MF⊥OA 于点F ,设AF =x ,OF =10-x ,利用勾股定理即可求出x 的值.易证明△AMF∽△ADO,从而可知AD 的长度,进而可求出MD 的长度. (2)根据点M 的位置分类讨论,然后利用圆周角定理以及圆内接四边形的性质即可求出答案. 【自主解答】

高中数学必修-函数与方程

高中数学必修 函数与方程 1.函数零点的概念 对于函数y=f(x),x∈D,我们把使f(x)=0的实数x叫作函数y=f(x),x∈D的零点. 注意:函数的零点是实数,而不是点;并不是所有的函数都有零点,若函数有零点,则零点一定在函数的定义域内. 2.函数的零点与方程根的联系 由函数零点的概念可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 3.二次函数的零点 对于二次函数y=ax2+bx+c(a≠0),其零点个数可根据一元二次方程ax2+bx+c=0(a≠0)根的判别式来确定,具体情形如下表: Δ>0Δ=0Δ<0 方程ax2+bx+c=0(a≠0)的根的个数有两个不相等的实数 根 有两个相等的实数根无实数根 函数y=ax2+bx+c(a≠0)的零点个数有两个零点有一个零点无零点 函数y=ax2+bx+c(a≠0)的图象 a>0 a<0 函数y=ax2+bx+c(a≠0)的图象与轴的 交点个数 有两个交点有一个交点无交点 4.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 注意:在上述定理的条件下,只能判断出零点存在,不能确定零点的个数.

【辨析比较】f (a )·f (b )<0与函数f (x )存在零点的关系 ①.若函数y =f (x )在闭区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,则函数y =f (x )一定有零点. 图1 ②.由函数y =f (x )在闭区间[a ,b ]上有零点不一定能推出f (a )·f (b )<0,如图1.所以f (a )·f (b )<0是y =f (x )在闭区间[a ,b ]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶次零点)时,函数值才变号,即相邻两个零点之间的函数值同号. 注意:若函数f (x )在[a ,b ]上单调,且f (x )的图象是连续不断的一条曲线,则f (a )·f (b )<0?函数f (x )在[a ,b ]上只有一个零点. 5.二分法的概念 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫作二分法. 6.用二分法求函数零点近似值的步骤 给定精确度ε,用二分法求函数f (x )零点近似值的步骤如下: 第一步:确定区间[a ,b ],验证f (a )·f (b )<0,给定精确度ε. 第二步:求区间(a ,b )的中点x 1. 第三步:计算f (x 1). (1)若f (x 1)=0,则x 1就是函数的零点; (2)若f (a )·f (x 1)<0,则令b =x 1(此时零点x 0∈(a ,x 1)); (3)若f (x 1)·f (b )<0,则令a =x 1(此时零点x 0∈(x 1,b )). 第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二、三、四步. 7.常见的几种函数模型 (1)一次函数模型:y =kx +b (k ≠0). (2)反比例函数模型:y =k x +b (k ,b 为常数且k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).

相关主题
文本预览
相关文档 最新文档