当前位置:文档之家› Dexmedetomidine Infusion During Laparoscopic Bariatric Surgery The Effect on Recovery Outcome

Dexmedetomidine Infusion During Laparoscopic Bariatric Surgery The Effect on Recovery Outcome

Dexmedetomidine Infusion During Laparoscopic Bariatric Surgery The Effect on Recovery Outcome
Dexmedetomidine Infusion During Laparoscopic Bariatric Surgery The Effect on Recovery Outcome

Anesthetic Pharmacology

Preclinical Pharmacology Section Editor:Marcel E.Durieux Clinical Pharmacology Section Editor:Tony Gin

Dexmedetomidine Infusion During Laparoscopic Bariatric Surgery:The Effect on Recovery Outcome Variables

Burcu Tufanogullari,MD* Paul F.White,PhD,MD* Mariana P.Peixoto,MD* Daniel Kianpour,MS*

Thomas Lacour,MD*

James Griffin,MD*

Gary Skrivanek,MD*

Amy Macaluso,MD*

Mary Shah,MD* David A.Provost,MD?BACKGROUND:Dexmedetomidine(Dex),an?

2

agonist,has well-known anesthetic and analgesic-sparing effects.We designed this prospective,randomized,double-blind,and placebo-controlled dose-ranging study to evaluate the effect of Dex on both early and late recovery after laparoscopic bariatric surgery.

METHODS:Eighty consenting ASA II–III morbidly obese patients were randomly assigned to1of4treatment groups:(1)control group received a saline infusion during surgery,(2)Dex0.2group received an infusion of0.2?g?kg?1?h?1IV,(3) Dex0.4group received an infusion of0.4?g?kg?1?h?1IV,and(4)Dex0.8group received an infusion of0.8?g?kg?1?h?1IV.Mean arterial blood pressure values were maintained within?25%of the preinduction baseline values by varying the inspired desflurane concentration.Perioperative hemodynamic variables,postop-erative pain scores,and the need for“rescue”analgesics and antiemetics were recorded at specific intervals.Follow-up evaluations were performed on postop-erative days(PODs)1,2,and7to assess severity of pain,analgesic requirements, patient satisfaction with pain management,quality of recovery,as well as resump-tion of dietary intake and recovery of bowel function.

RESULTS:Dex infusion,0.2,0.4,and0.8?g?kg?1?h?1,reduced the average end-tidal desflurane concentration by19,20,and22%,respectively.However,it failed to facilitate a significantly faster emergence from anesthesia.Although the intra-operative hemodynamic values were similar in the four groups,arterial blood pressure values were significantly reduced in the Dex0.2,0.4,and0.8groups compared with the control group on admission to the postanesthesia care unit (PACU)(P?0.05).The length of the PACU stay was significantly reduced in the Dex groups(81?31to87?24vs104?33min in the control group,P?0.05).The amount of rescue fentanyl administered in the PACU was significantly less in the Dex 0.2,0.4,and0.8groups versus control group(113?85,108?67,and120?78vs 187?99?g,respectively,P?0.05).The percentage of patients requiring antiemetic therapy was also reduced in the Dex groups(30,30,and10%vs70%in the control group).However,the patient-controlled analgesia morphine require-ments on PODs1and2were not different among the four groups.Pain scores in the PACU,and on PODs1,2,and7,in the three Dex groups were not different from the control group.Finally,quality of recovery scores and times to recovery of bowel function and hospital discharge did not differ among the four groups. CONCLUSIONS:Adjunctive use of an intraoperative Dex infusion(0.2–0.8?g?kg?1?h?1)decreased fentanyl use,antiemetic therapy,and the length of stay in the PACU.However,it failed to facilitate late recovery(e.g.,bowel function)or improve the patients’overall quality of recovery.When used during bariatric surgery,a Dex infusion rate of0.2?g?kg?1?h?1is recommended to minimize the risk of adverse cardiovascular side effects.

(Anesth Analg2008;106:1741–8)

D exmedetomidine(Dex)is a highly selective?2-adrenoreceptor agonist,which possesses hypnotic,sedative,anxiolytic,sympatholytic,and analgesic properties without producing significant respiratory depression.1–4Its sympatholytic effect decreases mean arterial blood pressure(MAP)and heart rate(HR)by reducing norepinephrine release.5,6In addition,Dex has the ability to reduce both the anesthetic and opioid analgesic requirements during the perioperative period.7–9 As a result of the prevalence of obesity in modern societies,bariatric surgery continues to grow throughout

From the Departments of*Surgery,?Anesthesiology and Pain Management,University of Texas Southwestern Medical Center at Dallas,Dallas,Texas.

Accepted for publication February8,2008.

This investigator–initiated,Food and Drug Administration-approved study was supported,in part,by an unrestricted educa-tional grant from Hospira,Inc.(Lake Forest,IL),endowment funds from the Margaret Milam McDermott Distinguished Chair in An-esthesiology,and the White Mountain Institute,a non-profit private

foundation(Paul F.White,President).

Address correspondence and reprint requests to Dr.Paul F. White,Professor and Holder of the Margaret Milam McDermott Distinguished Chair in Department of Anesthesiology and Pain Management,University of Texas Southwestern Medical Center at Dallas,5323Harry Hines Boulevard,Dallas,TX75390-9068.Ad-dress e-mail to paul.white@https://www.doczj.com/doc/d36665811.html,.

Copyright?2008International Anesthesia Research Society DOI:10.1213/ane.0b013e318172c47c

the world.Morbidly obese patients are at an increased risk of developing postoperative obstructive sleep apnea and opioid-induced ventilatory depression.Since Dex possesses an opioid-sparing effect without causing respi-ratory depression,it has been increasingly used“off-label”during bariatric surgery.10,11However,there is only one study describing the use of an arbitrarily chosen Dex infusion rate in this patient population.12 In this prospectively randomized,double-blind, placebo-controlled,dose-ranging study,we tested the hypothesis that Dex infusion would produce dose-related reductions in the anesthetic and analgesic requirements in patients undergoing laparoscopic bariatric surgery.The secondary objectives were to determine if the use of Dex facilitated the recovery process and improved patient outcome. METHODS

After obtaining IRB approval at the University of Texas Southwestern Medical Center at Dallas,and written informed consent,80morbidly obese patients, aged22–66-yr-of-age,scheduled for laparoscopic bari-atric surgery(either gastric banding or gastric bypass) were studied according to a randomized,double-blind,placebo-controlled protocol.This investigation was registered with https://www.doczj.com/doc/d36665811.html,(NCT00363935). Patients were excluded if they had:(1)an allergy to?2 adrenergic agonist or sulfa drugs,(2)a history of uncontrolled hypertension,(3)heart block greater than first degree,(4)a history of alcohol or drug abuse, (5)clinically significant neurologic,cardiovascular, renal,hepatic,or gastrointestinal diseases,(6)received an opioid analgesic medication within a24h period before the operation,(7)were pregnant or breast-feeding,and(8)were unable to speak and read English.

The patients were randomly assigned using a computer-generated random number table to one of the following four treatment groups:(1)control group received saline,(2)Dex0.2group received0.2?g?kg?1?h?1IV,(3) Dex0.4group received0.4?g?kg?1?h?1IV,and(4)

Dex0.8group received0.8?g?kg?1?h?1IV.The study medication was prepared by the operating room (OR)pharmacist in identical60-mL syringes.Dex0, 200,400,or800?g was added to saline to achieve a total volume of40mL,resulting in concentrations of0?g/mL(control),5?g/mL,(Dex0.2),10?g/mL,(Dex 0.4),and20?g/mL,(Dex0.8),for the4study groups. The weight-adjusted doses of all study medications were based on the patient’s actual body weight.The investigators,attending anesthesiologists,OR,recov-ery and ward nurses,as well as the patients were blinded to the computer-generated randomization schedule.

In the preoperative holding area,the patients used 11-point verbal rating scales(VRS)to assess their baseline pain and nausea levels,with0?none to10?maximum.Celecoxib,400mg orally,was given30–60min before induction of anesthesia.Immediately be-

fore entering the OR,patients were premedicated with

midazolam,20?g/kg IV.Intraoperative monitoring devices included noninvasive arterial blood pressure,

electrocardiography,capnography,and pulse oxim-

etry,as well as the cerebral state monitor(Danmeter,

Odense,Denmark).

After obtaining baseline measurement of HR and

MAP,an infusion of the study medication was started

at0.04mL?kg?1?h?1.Anesthesia was induced3–5 min after starting the study drug infusion with propo-

fol,1.25mg/kg IV,in combination with lidocaine,0.75

mg/kg IV.Rocuronium,0.6mg/kg IV,and4mL of

topical4%lidocaine were administered before tra-

cheal intubation.Anesthesia was initially maintained

with4%inspired concentration of desflurane in com-

bination with air(1L/min)and oxygen(1L/min)

mixture.

The intraoperative HR,MAP,end-tidal desflurane

concentration,and cerebral state index(CSI)values

were recorded at5min intervals for30min,and

subsequently at10min intervals until discontinuation

of the anesthetic drugs.Hemodynamic values were

also recorded at specific end-points(e.g.,induction of

anesthesia,1min after induction,tracheal intubation,

5min after tracheal intubation,at skin incision,at5

and10min after the skin incision).After induction of

anesthesia,MAP values were maintained within ?25%of the baseline values by varying the inspired desflurane concentration.Hypotension(defined as MAP value?25%of the baseline value on two con-secutive readings within2–3min),not responding to a 2%(vol%)decrease in the inspired desflurane con-centration and a200mL fluid bolus,was treated with phenylephrine,100?g IV,boluses.The infusion of study medication was discontinued if the hypotension persisted?2min after these interventions.Upon return of the MAP to?25%of the baseline value,the study medication infusion was resumed at50%of the initial infusion rate.In the presence of hypertension (defined as MAP value?25%of the baseline value on two consecutive readings within2–3min)and/or tachycardia(defined as HR value?25%of the base-line value?2min)despite a2%(vol%)increase in the inspired desflurane concentration,labetalol,5mg IV, boluses were administered.Bradycardia(HR?45) persisting for?2min was treated with glycopyrrolate, 0.2mg IV,boluses.

During the operation,patients received similar

amounts of IV crystalloid solutions(namely,25

mL/kg during gastric bypass and10mL/kg during

gastric banding procedures).Ondansetron,4mg IV,

was given for prevention of postoperative nausea and

vomiting when the laparoscope was withdrawn.Be-

fore wound closure,bupivacaine0.25%was infiltrated

at the fascial level of all portals,and residual neuro-

muscular block was reversed with neostigmine,40?g/kg IV,and glycopyrrolate,5?g/kg IV.The infu-sion of study medication was discontinued at the start

of the wound closure.Upon completion of wound closure,desflurane was discontinued and the inspired oxygen flow rate was increased to5L/min.Times from discontinuation of desflurane to eye opening, obeying simple commands(e.g.,open mouth,squeeze hand)and tracheal extubation were recorded.After emergence from anesthesia,patients were adminis-tered fentanyl,25–50?g IV,boluses to control acute pain in the early postoperative period.

After arrival in the postanesthesia care unit (PACU),patients were connected to a patient-controlled analgesia(PCA)delivery system that was programmed to deliver morphine,2mg IV,boluses on demand with a lockout interval of10min.When patient’s VRS pain score was?7and they were judged to be recovered from anesthesia by the PACU staff,they were allowed to self-administer morphine using the PCA delivery system.The par-enteral opioid analgesic requirements were deter-mined in the PACU,as well as on postoperative day (POD)1and2(with the exception of the patients who had been discharged home on POD1).Hemo-dynamic values and VRS pain scores were recorded at5min intervals for the first15min after arrival in the PACU,and subsequently at15min intervals until discharge.The VRS nausea scores and epi-

sodes of emesis,as well as the need for rescue antiemetic therapy,were recorded at30min inter-vals until PACU discharge.Patients reporting a VRS nausea score?3on two consecutive evaluations were administered promethazine,6.25mg IV.VRS pain and nausea scores,quality of recovery scores [using a validated9-item questionnaire13],and pa-tient satisfaction with their pain management(on a 100-point scale with1?completely dissatisfied to 100?completely satisfied)were recorded on PODs 1,2,and7.Finally,recovery times from tracheal extubation to ambulation without assistance,toler-ating liquids,and passage of flatus were also noted. Patients were asked to note the time they were able to tolerate liquids and their first passage of flatus (“gas”)in a diary.

Data are expressed as mean?sd,medians(and interquartile ranges),percentages(%),and numbers(n). The statistical analysis was performed using a standard SPSS software package(Chicago,IL).For continuous variables,one-way analysis of variance(ANOVA)and repeated measures of ANOVA(RMANOVA)were used to evaluate changes among the groups.Student’s t-test was used to analyze the parametric data,and discrete (categorical)variables were analyzed using the?2test, with a P?0.05was considered statistically significant. Bonferonni corrections were performed for variables with multiple comparisons over time(i.e.,RMANOVA). The group sizes(n?20)were calculated to detect a ?40%reduction in the volatile anesthetic7,8and/or postoperative opioid analgesic requirement9with

a Figure1.(a)Perioperative cerebral state index(CSI)values and(b)end-tidal concentration of desflurane[EtDes(%)] following the start of the study drug infusion.Values are means?standard deviations.*P?0.05versus placebo.

Table1.Demographic Characteristics,the Type of Laparoscopic Surgical Procedures,Durations of Anesthesia,Surgery,and the Study Medication Infusion

Control (n?20)Dex0.2

(n?20)

Dex0.4

(n?20)

Dex0.8

(n?20)

Age(yr)43?1647?1048?940?10 Gender(male/female)(n)3/173/174/169/11 Weight(kg)127?25127?20138?41151?36 Height(cm)165?12169?10169?8172?13 ASA(II/III)(n)6/146/142/184/16 Type of laparoscopic surgery(n)12

Gastric banding8999 Gastric bypass111111 Duration of surgery(min)116?52110?62107?35111?56 Duration of anesthesia(min)153?54145?63143?51145?55 Duration of infusion(min)137?53126?57124?35130?55 Data are displayed as means?standard deviations and numbers(n).

No signi?cant differences were noted among the four treatment groups.

power of80%[assuming a variability(sd)of?20%]and a significance level of0.05.

RESULTS

A total of125patients were screened for eligibility to participate in the study,and80patients were subse-quently enrolled(n?20per group).Three patients(one from each of the Dex0.2,0.4,and0.8groups)were admitted to the intensive care unit from the postsurgical ward because of surgical complications at the gastroin-testinal anastomosis site(e.g.,bleeding,obstruction)and their postoperative data were excluded from the final analysis.There were no significant differences among the four groups with respect to age,gender,weight, height,ASA physical status,type of laparoscopic bariat-ric surgery,perioperative CSI values,and the durations of study medication infusion,surgery,and anesthesia times(Table1and Fig.1).Recovery times after discon-tinuation of the study medication and desflurane to tracheal extubation,spontaneous eye opening,and obey-ing simple commands did not differ among the four groups(Table2).

End-tidal concentrations of desflurane during the operation were significantly lower in the Dex0.2,0.4, and0.8groups compared with the control group during surgery(?30min after induction)(Fig.1,P?0.05).In addition,the percentage of patients who required rescue treatment with phenylephrine for persistent hypoten-sion during surgery was significantly higher in the Dex 0.8group compared with the control group(50%vs20%,

P?0.05).The study medication infusion was transiently discontinued(?10min)in2(10%),2(10%),3(15%),and 3(15%)patients in the control,Dex0.2,Dex0.4,and Dex 0.8groups,respectively,because of an inability to maintain the MAP values in the desired range (?25%of the baseline values)under the conditions of the study[i.e.,ensuring that the patients CSI values were in a range consistent with a“state of unconsciousness”(?60)].

Compared with the control group,MAP values at the time of skin incision were significantly reduced in the Dex0.2,Dex0.4,and Dex0.8groups(Fig.2a). However,the HR values were not different(Fig.2b). Although the MAP values at70and100min after the start of the study drug infusion were significantly lower in the Dex0.4and Dex0.8groups compared with the control group(86?15and81?16vs97?12and85?11and84?14vs96?14,respectively, P?0.05,Fig.2c),these minor differences were not clinically significant.However,the MAP values dur-ing the first45min in the PACU were significantly lower in the Dex0.2,0.4,and0.8groups compared with the control group(Fig.3a).The perioperative HR values did not differ among the four study groups (Figs.2d and3b).

Pain scores in the PACU,as well as the average pain scores on POD1,2,and7,did not differ signifi-cantly among the four groups.However,the

amount Figure2.Mean arterial blood pressure(MAP)values:(a)at induction of anesthesia,1min after the induction,tracheal intubation,5min after intubation,skin incision,5and10 min after incision,and(b)at10min intervals following the start of the study drug infusion until the end of anesthesia. Values are means?standard deviations.*P?0.05versus placebo.

Table2.Perioperative Need for Phenylephrine,?-Blocker and Discontinuation of Study Medication Infusion,Time from Turning Off the Des?urane to Patients’Extubation,First Spontaneous Eye Opening,Following Simple Commands,Tracheal Extubation,and the Duration of the Postanesthesia Care Unit(PACU)Stay

Control (n?20)Dex0.2

(n?20)

Dex0.4

(n?20)

Dex0.8

(n?20)

Rescue phenylephrine?n(%)?4(20)2(10)4(20)10(50)* Rescue?-blocker?n(%)?5(25)3(15)1(5)0(0)* Transient discontinuation of study drug?n(%)?2(10)2(10)3(15)3(15) Time to eye opening(min)6?35?36?48?6 Time to follow simple commands(min)6?36?36?49?6 Time to tracheal extubation(min)7?35?36?49?6 Duration of the PACU stay(min)104?3381?31*82?24*87?24* Data are displayed as means?standard deviations,numbers,and percentages.

*P?0.05compared with the control group.

of fentanyl administered in the PACU after emergence from anesthesia was significantly reduced in the Dex 0.2,0.4,and 0.8groups compared with the control group (113?85,108?67,120?78vs 187?99?g,respectively,P ?0.05).The total amount of PCA morphine self-administered on PODs 1and 2did not differ among the four treatment groups (Table 3).The overall incidences of postoperative emetic symptoms during the first 24h after surgery were reduced in the Dex 0.2,0.4,and 0.8groups compared with the control group (25,30,and 45vs 65%,respec-tively).The VRS nausea scores on arrival in the PACU and at 30min were also significantly lower in the Dex 0.2,0.4,and 0.8groups compared with the control group (Table 4).Similarly,the need for rescue anti-emetic drugs in the PACU was significantly reduced in all three Dex groups (Table 4).The durations of the PACU stay were significantly reduced in the three Dex groups compared with the control group (81?31,82?24,87?24vs 104?33,respectively,P ?0.05).However,the time to hospital discharge did not differ among the four groups (Table 4).

Finally,quality of recovery scores,patient satisfaction with their pain management on POD 1,2,and 7,as well as times to ambulation without assistance,tolerating oral liquids,and resumption of bowel function,did not differ among the four treatment groups (Table 4).

DISCUSSION

Dex infusion,0.2–0.8?g ?kg ?1?h ?1,produced anesthetic-sparing effects and a reduction in the need for opioid analgesics and antiemetic drugs,as well as lower

MAP values in the early postoperative period in this laparoscopic bariatric surgery patient population.How-ever,the anesthetic and analgesic-sparing effects of Dex were not strictly dose-related over the four-fold drug concentration range studied.Although Dex facilitated the early recovery (e.g.,PACU stay),later recovery events (e.g.,hospital discharge,resumption of oral intake and bowel function)were similar in all four groups.The reduced need for potent opioid analgesics and less severe emetic symptoms in the Dex groups probably contributed to the reduced PACU stay.

Dex is only Food and Drug Administration-approved for sedation of initially intubated and me-chanically ventilated patients by continuous infusion for ?24h in the intensive care setting.There are numerous clinical reports describing the “off label”use of Dex infusion as an adjuvant during and/or after surgery.7–12,14–18,19A previous study evaluated different bolus doses of Dex for premedication 20;however,dose-ranging studies are lacking for when the drug is administered as a continuous infusion during surgery.Given the propensity of the drug to produce hypotension and/or bradycardia when it is administered to volunteers or patients,15–17,21–23it was important to determine an infusion rate that would maximize the anesthetic and analgesic-sparing effect while minimizing the occurrence of adverse cardio-vascular side effects requiring therapeutic interven-tions (e.g.,phenylephrine,labetalol).

In several reports,Dex infusion rates ranging from 0.4to 10?g ?kg ?1?h ?1have been used during bari-atric surgery.10–12In contrast to the case report 19in which a high-dose infusion (?1?g ?kg ?1?h ?1)of Dex was administered as the primary drug in a total IV anesthetic technique,we used Dex as an adjuvant to the volatile anesthetic desflurane.Therefore,in our prospective dose-ranging study,we evaluated Dex infusion rates of 0.2,0.4,and 0.8?g ?kg ?1?h ?1during anesthesia.Patients assigned to the control group required more frequent use of antihypertensive rescue medication,and the high-dose Dex group required greater use of cardiovascular medication to treat hy-potensive episodes during surgery.Hence,these data would suggest that the selected infusion rates of Dex (0.2–0.8?g ?kg ?1?h ?1)were in the appropriate thera-peutic range when it is used as part of a “balanced”anesthetic technique.10

Analogous to the findings of Feld et al.12when Dex,0.4?g ?kg ?1?h ?1,was administered during bariatric surgery as an alternative to fentanyl,we found statis-tically significant reductions in the volatile anesthetic requirement and the need for potent opioid analgesics in the PACU.The use of Dex infusion,0.2–0.8?g ?kg ?1?h ?1,reduced the end-tidal desflurane con-centration by 19%–22%during surgery and the fentanyl requirement by 36%–42%in the PACU,contributing to a reduction in postoperative nausea and in the need for rescue antiemetic therapy in the early

postoperative

Figure 3.(a)Mean arterial blood pressure (MAP)and (b)

heart rate (HR)values in the postanesthesia care unit (PACU).Values are means ?standard deviations.*P ?0.05versus placebo.

period.The failure of Dex to produce a sustained opioid-sparing effect in the later postoperative periods was probably related to its short elimination half-life of 2h.2–4These data also support the findings of Angst et al.,24which suggested that systemic administra-tion of Dex lacks significant preemptive analgesic activity with respect to minimizing postoperative pain.

Table3.Pain Scores and the Amounts of“Rescue”Fentanyl Used in Postanesthesia Care Unit(PACU),Patient-controlled Analgesia(PCA)Morphine,and Oral Solution of Hydrocodone-acetaminophen Used on the Day of Surgery,as well as on Postoperative Days(PODs)1and2

Control (n?20)Dex0.2

(n?19)

Dex0.4

(n?19)

Dex0.8

(n?19)

Pain scores following arrival in PACU a

At0min5?35?35?34?3

At15min7?25?26?35?3

At30min6?25?26?34?3

At60min6?35?25?34?3

At90min5?34?36?36?2

At POD14?34?35?34?3

At POD24?32?23?33?3

At POD73?21?12?13?2 Fentanyl use in PACU(?g)187?99113?85*108?67*120?78* Pain medication on POD1

Morphine(mg)(n)49?26(20)37?26(19)38?34(19)39?27(19) Hydromorphone(2.5mg/mL)–acetaminophen

(167mg/mL)(mL)(n)

48?23(6)28?23(8)35?28(8)43?25(3)

Pain medication on POD2

Morphine(mg)(n)16?14(6)12?7(6)24?37(4)24?28(8) Hydromorphone(2.5mg/mL)––acetaminophen

(167mg/mL)(mL)(n)

36?23(7)39?16(12)57?33(8)39?45(9)

Data are displayed as means?standard deviations and numbers.

a Verbal rating scale:0?no pain to10?maximal pain.

*P?0.05compared with the control group.

Table4.Quality of Recovery(QoR)Scores,Postoperative Nausea and Primary Outcome Variables and Patient Satisfaction with Their Pain Management in the Four Study Groups

Control (n?20)Dex0.2

(n?19)

Dex.04

(n?19)

Dex0.8

(n?19)

QoR scores a

POD113?314?313?314?3 POD213?316?315?416?2 POD716?211?117?116?2 Nausea/vomiting in PACU?n(%)?13/3(65/15)5/1(25/5)*6/0(30/0)*9/2(45/11) Required antiemetic therapy?n(%)?14,706,30*6,30*2,10* Nausea score b

Upon arrival in PACU3?31?1*2?31?2

At30min3?31?2*1?2*1?2* At60min3?32?31?2*1?3 Time to ambulation(h)10?712?98?79?6 Time to oral intake(h)17?1313?1016?1218?9 Time to passing flatus(h)32?2231?1241?1938?20 Discharged on POD1?n(%)?9(45)12(60)11(58)11(58) Hospital discharge(d)

Overall 1.5(3)1(1)1(3)1(1) Gastric bypass2(3)2(1)2(1)2(1) Gastric banding1(3)1(1)1(3)1(1) Patient satisfaction with pain management c

POD189?1786?2087?1686?11 POD289?1690?1692?1190?13 POD783?2597?686?2389?14 Data are shown in mean?standard deviations,numbers(n),percentages(%),medians,and interquartile ranges.

POD?postoperative day;PACU?postanesthesia care unit.

a QoR score:0?worst to16?best.

b Verbal rating scale:0?no nausea to10?severe nausea.

c Verbal rating scale:1?completely dissatis?e

d to100?completely satis?ed.

*P?0.05compared with the control group.

Preliminary clinical reports10,12have suggested that a continuous infusion of Dex,0.4–0.7?g?kg?1?h?1, may be a useful anesthetic adjunct for morbidly obese patients undergoing bariatric surgery.Our findings would suggest that the modest anesthetic-sparing effect was of little(if any)clinical significance because dexmedtomidine failed to facilitate a faster emergence from desflurane anesthesia after bariatric surgery. Although the intraoperative use of Dex decreased the amount of fentanyl used in the early postopera-tive period,it only reduced the length of stay in the PACU by an average of15–https://www.doczj.com/doc/d36665811.html,e of Dex failed to reduce the length of the hospital stay after either gastric bypass or banding procedures.Therefore, the primary benefit of Dex in this study appeared to be related to its ability to reduce emetic sequelae by decreasing the need for the desflurane during the operation and fentanyl immediately after surgery. The anesthetic and opioid-sparing effects of Dex in the early postoperative period may decrease the risk of respiratory depression in the PACU for morbidly obese patients who are at greater risk for obstructive sleep apnea and oxygen desaturation.

This study can be criticized because a constant infusion was used.However,the administration of an initial loading bolus of Dex(0.5?g/kg IV)resulted in a high incidence of hypotension immediately after tracheal intubation in a“pilot”experience before initiating the current protocol.Although use of a variable-rate infusion may minimize both hypo-and hypertensive responses during surgery,it would have confounded our findings and precluded a direct com-parison of the four treatment groups.Another criti-cism of this study relates to our failure to continue the infusion of the study medication into the postopera-tive period to achieve a more sustained opioid-sparing effect.17However,the use of a Dex infusion is not recommended outside of closely monitored areas(e.g., intensive care unit).Finally,the use of noninvasive blood pressure(vs intraarterial)monitoring for titrat-ing the volatile anesthetic,and fentanyl for pain control in the early postoperative period before initiating maintenance PCA therapy,were intended to mimic standard clinical practice for this surgical procedure.

It has been suggested that Dex infusion is a useful alternative to opioid analgesics,despite its high cost because it lacks the respiratory-depressant effects pro-duced by opioid compounds.12,19In an editorial by Ebert and Maze,25it was suggested that?2adrenergic receptor agonists may also be useful in the perioper-ative period because of their sedative/hypnotic,anxi-olytic,and sympatholytic properties.Although we did not assess Dex’s anxiety-relieving properties,our data would suggest that a pharmacoeconomic analysis of the cost:benefit ratio of Dex in this patient population is clearly needed.Given the growing importance of multimodal analgesia in facilitating the recovery pro-cess,26,27Dex may prove to be a cost-effective adjuvant in morbidly obese patients who are at increased risk for respiratory complications in the early postopera-tive period.

In summary,the anesthetic and analgesic-sparing effects of Dex infusion,0.2–0.8?g?kg?1?h?1,facili-tated early but not late recovery of morbidly obese patients undergoing bariatric surgery.When using a Dex infusion as an anesthetic adjuvant,an infusion rate of0.2?g?kg?1?h?1is recommended to facilitate early recovery while minimizing adverse periopera-tive cardiovascular side effects.

REFERENCES

1.Hall JE,Uhrich TD,Barney JA,Arain SR,Ebert TJ.Sedative,

amnestic,and analgesic properties of small-dose Dex infusions.

Anesth Analg2000;90:699–705

2.Talke P,Richardson CA,Scheinin M,Fisher DM.Postoperative

pharmacokinetics and sympatholytic effects of dexmedetomi-dine.Anesth Analg1997;85:1136–42

3.Paris A,Tonner PH.Dexmedetomidine in anaesthesia.Curr

Opin Anaesthesiol2005;18:412–8

4.Ebert TJ,Hall JE,Barney JA,Uhrich TD,Colinco MD.The effects

of increasing plasma concentrations of dexmedetomidine in humans.Anesthesiology.2000;93:382–94

5.Talke P,Chen R,Thomas B,Aggarwall A,Gottlieb A,Thorborg

P,Heard S,Cheung A,Son SL,Kallio A.The hemodynamic and adrenergic effects of perioperative dexmedetomidine infusion after vascular surgery.Anesth Analg2000;90:834–9

6.Guler G,Akin Z,Tosun E,Eskitascoglu,Mizrak A,Boyaci A.

Single-dose dexmedetomidine attenuates airway and circula-tory reflexes during extubation.Acta Anaesthesiol Scand 2005;49:1088–91

7.Aantaa R,Jaakola ML,Kallio A,Kanto J.Reduction of the

minimum alveolar concentration of isoflurane by dexmedeto-midine.Anesthesiology1997;86:1055–60

8.Aho M,Erkola O,Kallio A,Scheinin H,Korttila K.Dexme-

detomidine infusion for maintenance of anesthesia in patients undergoing abdominal hysterectomy.Anesth Analg1992;

75:940–6

9.Gurbet A,Basagan-Mogol E,Turker G,Ugun F,Kaya FN,

Ozcan B.Intraoperative infusion of dexmedetomidine re-duces perioperative analgesic requirements.Can J Anaesth 2006;53:646–52

10.Hofer RE,Sprung J,Sarr MG,Wedel DJ.Anesthesia for a patient

with morbid obesity using dexmedetomidine without narcotics.

Can J Anaesth2005;52:176–80

11.Ramsay MA,Saha D,Hebeler RF.Tracheal resection in the

morbidly obese patient:the role of dexmedetomidine.J Clin Anesth2006;18:452–4

12.Feld JM,Hoffman WE,Stechert MM,Hoffman IW,Ananda RC.

Fentanyl or dexmedetomidine combined with desflurane for bariatric surgery.J Clin Anesth2006;18:24–8

13.Myles PS,Hunt JO,Nightingale CE,Fletcher H,Beh T,Tanil D,

Nagy A,Rubinstein A,Ponsford JL.Development and psycho-metric testing of a quality of recovery score after general anesthesia and surgery in adults.Anesth Analg1999;88:83–90 14.Talke P,Li J,Jain U,Leung J,Drasner K,Hollenberg M,

Mangano DT.Effects of perioperative dexmedetomidine infu-sion in patients undergoing vascular surgery.The Study of Perioperative Ischemia Research Group.Anesthesiology1995;

82:620–33

15.Jalonen J,Hynynen M,Kuitunen A,Heikkila H,Perttila J,

Salmenpera M,Valtonen M,Aantaa R,Kallio A.Dexmedetomi-dine as an anesthetic adjunct in coronary artery bypass grafting.

Anesthesiology1997;86:331–45

16.Arain SR,Ebert TJ.The efficacy,side effects,and recovery

characteristics of dexmedetomidine versus propofol when used for intraoperative sedation.Anesth Analg2002;95:461–6

17.Arain SR,Ruehlow RM,Uhrich TD,Ebert TJ.The efficacy of

dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery.Anesth Analg2004;98:153–8

18.Tanskanen PE,Kytta JV,Randell TT,Aantaa RE.Dexmedeto-

midine as an anaesthetic adjuvant in patients undergoing intracranial tumour surgery:a double-blind randomized and placebo-controlled study.Br J Anaesth2006;97:658–65

19.Ramsay MA,Luterman DL.Dexmedetomidine as a total intra-

venous anesthetic agent.Anesthesiology2004;101:787–90

20.Aantaa RE,Kanto JH,Scheinin M,Kallio AM,Scheinin H.

Dexmedetomidine premedication for minor gynecologic sur-gery.Anesth Analg1990;70:407–13

21.Kallio A,Scheinin M,Koulu M,Ponkilainen R,Ruskoaho H,

Viinamaki O,Scheinin H.Effects of dexmedetomidine,a selec-tive alpha2-adrenoceptor agonist on hemodynamic control mechanisms.Clin Pharmacol Ther1989;46:33–42

22.Erkola O,Korttila K,Aho M,Haasio J,Aantaa R,Kallio A.

Comparison of intramuscular dexmedetomidine and midazo-lam premedication for elective abdominal hysterectomy.Anesth Analg1994;79:646–53

23.Ingersoll-Weng E,Manecke GR Jr,Thistlethwaite PA.Dexme-

detomidine and cardiac arrest.Anesthesiology2004;100:738–924.Angst MS,Ramaswamy B,Davies MF,Maze https://www.doczj.com/doc/d36665811.html,parative

analgesic and mental effects of increasing plasma concentra-tions of dexmedetomidine and alfentanil in humans.Anesthe-siology2004;101:744–52

25.Ebert T,Maze M.Dexmedetomidine:another arrow for the

clinician’s quiver.Anesthesiology2004;101:568–70

26.Bisgaard T.Analgesic treatment after laparoscopic cholecystec-

tomy:A critical assessment of the evidence.Anesthesiology 2006;104:835–46

27.White PF,Kehlet H,Neal JM,Schricker T,Carr DB,Carli F.The

expanding role of anesthesiology in fast-track surgery:From multimodal analgesia to perioperative medical care.Anesth Analg2007;104:1380–96

28.Aho M,Lehtinen AM,Erkola O,Kallio A,Korttila K.The effect

of intravenously administered dexmedetomidine on periopera-tive hemodynamics and isoflurane requirements in patients undergoing abdominal hysterectomy.Anesthesiology199;

74:997–1002

简易瞬态工况法操作规程

汽油车简易瞬态工况法操作规程 1、检测前注意做好测试前的准备工作,确保被检车辆符合上线检测要求。 2、车辆驱动轮停在转鼓上,根据系统提示将分析仪取样探头插入排气管中,深度400mm以上,并固定于排气管上。 3、按照试验运转循环开始进行试验 4、启动发动机 a)按照制造厂试验说明书的规定,使用启动装置,启动发动机。 b)发动机保持怠速运转40s。在40s终了时开始循环,并同时开始取样。 5、怠速 a)手动或半自动变速器 1、怠速期间,离合器接合,变速器置空挡。 2、为了按正常循环进行加速,车辆应在循环的每个怠速后 期,加速开始前5s离合器脱开,变速器置一档。 b)自动变速器:在试验开始时,放好选择器后,在试验期间,任 何时候不得再操作选择器。 6、加速 a)进行加速时,在整个工况过程中,应尽可能地使加速度恒定。 b)若加速度未能在规定时间内完成,如有可能,超出的时间应从工况改变的复合公差允许的时间中扣除,否则,必须从下一等速工

况的时间内扣除。 c)自动变速器若加速不能在规定时间内完成,则应按手动变速器的要求,操作档位选择器。 7、减速 a)在减速工况时间内,应使加速踏板完全松开,离合器接合,当车速降至10km/h时,离合器脱开,但不操作变速杆。 b)如果减速时间比响应工况规定的时间长,则应使用车辆的制动器,以使循环按照规定的时间进行。 c)如果加速时间比响应工况规定的时间短,则应在下一个等速或怠速工况时间中恢复至理论循环规定的时间。 8、等速 a)从加速过渡到下一等速工况时,应避免猛踏加速踏板或关闭节气门。 b)等速工况应采用保持加速踏板位置不变的方法实现。 c)循环终了时(车辆停在在转鼓上),变速器置于空挡,离合器接合。同时停止取样。 9、重新开始测试 在测试期间,若分析仪检测到样气中CO和CO2的浓度之和小于规定值,测试中止,该次排放测试结果无效,需重新开始测试。或者由于引车员操作不当车速超差导致测试中止,则测试需重新进行。再次开始测试前,必须是底盘测功机滚筒完全处于静止。 10、测试结束

软件操作说明书

智能蓝精灵 门禁考勤管理软件 使 用 说 明 书

软件使用基本步骤

一.系统介绍―――――――――――――――――――――――――――――2二.软件的安装――――――――――――――――――――――――――――2三.基本信息设置―――――――――――――――――――――――――――2 1)部门班组设置 -------------------------- 3 2)人员资料管理 -------------------------- 3 3)数据库维护 ---------------------------- 3 4)用户管理 ------------------------------ 3 四.门禁管理―――――――――――――――――――――――――――――4 1)通迅端口设置―――――――――――――――――――――――――4 2)控制器管理――――――――――――――――――――――――――4 3)控制器设置 ---------------------------- 6 4)卡片资料管理―――――――――――――――――――――――――11 5)卡片领用注册 ------------------------- 12 6)实时监控 ----------------------------- 13 五.数据采集与事件查询――――――――――――――――――――――――13六.考勤管理―――――――――――――――――――――――――――――14 1 )班次信息设置――――――――――――――――――――――――――14 2 )考勤参数设置--------------------------------------------------------- 15 3 )考勤排班------------------------------------------------------------- 15 4 )节假日登记―――――――――――――――――――――――――――16 5 )调休日期登记――――――――――――――――――――――――――16 6 )请假/待料登记―――――――――――――――――――――――――17 7 )原始数据修改――――――――――――――――――――――――――17 8 )考勤数据处理分析――――――――――――――――――――――――17 9 )考勤数据汇总―――――――—――――――――――――――――――18 10 )考勤明细表—―――――――――――――――――――――――――18 11 )考勤汇总表――――――――――――――――――――――――――18 12 )日打卡查询――――――――――――――――――――――――――18 13 )补卡记录查询—――――――――――――――――――――――――19

软件操作说明书

门禁考勤管理软件 使 用 说 明 书

软件使用基本步骤

一.系统介绍―――――――――――――――――――――――――――――2二.软件的安装――――――――――――――――――――――――――――2 三.基本信息设置―――――――――――――――――――――――――――2 1)部门班组设置―――――――――――――――――――――――――3 2)人员资料管理―――――――――――――――――――――――――3 3)数据库维护――――――――――――――――――――――――――3 4)用户管理―――――――――――――――――――――――――――3 四.门禁管理―――――――――――――――――――――――――――――4 1)通迅端口设置―――――――――――――――――――――――――42)控制器管理――――――――――――――――――――――――――43)控制器设置――――――――――――――――――――――――――64)卡片资料管理―――――――――――――――――――――――――11 5)卡片领用注册―――――――――――――――――――――――――126)实时监控―――――――――――――――――――――――――――13 五.数据采集与事件查询――――――――――――――――――――――――13 六.考勤管理―――――――――――――――――――――――――――――14 1)班次信息设置――――――――――――――――――――――――――14 2)考勤参数设置――――――――――――――――――――――――――15 3)考勤排班――――――――――――――――――――――――――――15 4)节假日登记―――――――――――――――――――――――――――16 5)调休日期登记――――――――――――――――――――――――――16 6)请假/待料登记―――――――――――――――――――――――――17 7)原始数据修改――――――――――――――――――――――――――17 8)考勤数据处理分析――――――――――――――――――――――――17 9)考勤数据汇总―――――――—――――――――――――――――――18 10)考勤明细表—―――――――――――――――――――――――――18 11)考勤汇总表――――――――――――――――――――――――――18 12)日打卡查询――――――――――――――――――――――――――18 13)补卡记录查询—――――――――――――――――――――――――19

FANUC机器人仿真软件操作手册

FANUC机器人仿真软件操作手册

2008年10月第1版ROBOGUIDE 使用手册(弧焊部分基础篇)

目录 目录 (1) 第一章概述 (2) 1.1. 软件安装 (2) 1.2. 软件注册 (3) 1.3. 新建Workcell的步骤 (4) 1.3.1. 新建 (4) 1.3.2. 添加附加轴的设置 (11) 1.4. 添加焊枪,TCP设置。 (16) 1.5. Workcell的存储目录 (20) 1.6.鼠标操作 (22) 第二章创建变位机 (25) 3.1.利用自建数模创建 (25) 3.1.1.快速简易方法 (25) 3.1.2.导入外部模型方法 (42) 3.2.利用模型库创建 (54) 3.2.1.导入默认配置的模型库变位机 (54) 3.2.2.手动装配模型库变位机 (58) 第三章创建机器人行走轴 (66) 3.1. 行走轴-利用模型库 (66) 3.2. 行走轴-自建数模 (75) 第四章变位机协调功能 (82) 4.1. 单轴变位机协调功能设置 (82) 4.2. 单轴变位机协调功能示例 (96) 第五章添加其他外围设备 (98) 第六章仿真录像的制作 (102)

第一章概述 1.1. 软件安装 本教程中所用软件版本号为V6.407269 正确安装ROBOGUIDE ,先安装安装盘里的SimPRO,选择需要的虚拟机器人的软件版本。安装完SimPRO后再安装WeldPro。安装完,会要求注册;若未注册,有30天时间试用。

如果需要用到变位机协调功能,还需要安装MultiRobot Arc Package。 1.2. 软件注册 注册方法:打开WeldPRO程序,点击Help / Register WeldPRO 弹出如下窗口,

变工况操作及其对制氩系统工况的影响(精)

变工况操作及其对制氩系统工况的影响 摘要:简介液体空分设备变工况操作的要点以及变工况操作对制氩系统工况的影响;并阐述了变工况操作时氮塞发生的原因,调整手段及预防措施。 关键词:变工况操作;制氩系统;氮塞 前言 气体市场对空分产品的需求是动态的,随着销售区域产业结构的变化,对液氧、液氮、气氧和气氮等产品的需求比例也在发生变化。为满足不同客户群体不同时期对产品的需求,更好地适应不断变化的市场,有些设计、开发的空分设备,具有变工况能力。针对市场需求的变化,对生产负荷和液氧、液氮生产比例进行调节。变工况操作是一项比较复杂的空分工况调节,操作不当,极易造成产品纯度、供气压力波动。尤其对带制氩系统的空分设备,稍有不慎,就会引起制氩系统工况波动,轻者减产,严重时还会发生氮塞。 1 变负荷操作及其对制氩系统的影响 1.1 变负荷操作 空分设备的变负荷操作,主要指加工空气量的变化,包括加负荷操作和减负荷操作两个主要方面。无论向哪个方向调整,在具体实施过程中,都应该缓慢进行,稳中求变,尤其对于现场供气装置,不可操之过急,否则会使工况产生波动,影响产品质量和供气压力。调整过程中为保持系统工况的相对稳定,负荷的调整是通过若干次加、减量来完成的。究竟每次加减量以多少为宜,要根据装置不同,灵活掌握一般每次加减量控制在设备加工空气量的0.5% ~1%范围内,以主塔物料纯度不发生较大的波动为原则。另外,还要注意加量的时间间隔,例如:每5min 加一次,或每3min 加一次。但必须满足在下一次加量前,空分设备已充分消化了上一次加量从空压机、增压机、膨胀机、主塔液体节流阀、制氩系统到气液态产品取出、输出值已经达到设定值要求,且气氧、液氧、压力氮、低压氮、氩馏分和精氩等主要分析指标不产生较大波动。为确保产品纯度不产生较大波动,加量时一般采取从空压机到制氩系统由前向后的顺序,减量时则相反。在调整过程中,可以充分利用系统DCS提供的产品纯度分析趋势记录。由于纯度检测本身滞后比较严重,操作员可以根据变化的趋势,对操作幅度做相应的调整。理想的加、减量操作,各流量趋势图是一条平滑的上升或下降的直线。 1.2 变负荷操作对制氩系统的影响 在变负荷操作过程中,上塔液氮、液空回流量,气氧、气氮取出量和氩馏分抽取量都会发生变化,对制氩系统的影响十分明显。众所周知,氩在上塔分布是有规律的。在上塔提馏段(液空进料口以下)形成一个富氩区,最高氩含量可达到15% 。但由于此处氮含量较高,

ERP系统操作说明书(完整版)

在使用本软件时,需要对IE作如下设置: 1)需设置工具->Internet属性->浏览历史记录->设置->设置检查所存网页的较新 2)把“格安信息协同工作”网站加入可信任站点:工具->Internet属性->安全->可信站点->站点->加入该站点IP,如图所示: 系统使用流程 1.立项:市场部人员点击导航栏->项目管理->填写立项选项,申请一个新的项目立项,下 面的附件管理可以添加该项目立项所需附件,在确认立项前可以修改相关内容,如图所示:

注意:在填写新的立项时一定要设置状态为“立项”,否则该项目无法进行确认。 2.确认立项:填写完立项后,执行部门的部门经理就可以对项目进行确认了。如果没有问 题,点击导航栏->项目管理->确认立项选项,然后点击提交审批,在审批过程中,可以 3.审批:总经办人员对项目进行审批,点击导航栏->项目管理->立项审批或从首页提示中 直接点击进入,如图所示,同意立项则点击审批按钮。

4.财务审核:财务人员点击导航栏->项目管理->立项财务审核或从首页提示中直接点击进 入,财务人员可以根据项目情况选择下面的修改项目信息对该项目进行修改,该项目无问题后,点击下方“财务审批”按钮进行审核。 5.部门经理制作预算:首先点击导航栏->项目管理->收入预算,对该项目预计收入进行添 加, 注意:此处预算与员工报销时的费用密切相关,必须仔细且与财务名目一致,如果细类不准确,如办公费预算不足了,即使总预算未超,员工也无法进行该项费用报销 然后点击导航栏->项目管理->估算经费,对该项目预计花费进行添加,

最后点击导航栏->项目管理->提交预算审批,对该项目预算进行提交,等待审批。 6.预算审批:预算审批人员对预算进行审批。 7.预算财务审核:财务人员对预算进行审核。 8.指定项目经理:该项目承接部门负责人指定项目经理, 点击导航栏->项目管理->指定项 目经理,选中被批准过的项目,点击选中该项目,在弹出的界面选择下面的添加,指定项目经理及其任职时间。

DMI仿真软件操作说明书(doc 11页)

DMI仿真软件操作说明书(doc 11页)

DMI仿真软件使用说明书 DMI仿真软件,让你更快的掌握DMI的使 用,熟悉DMI的功能… 制作小组:21组 组长: 黄鸿珺 20088525 组员: 魏红燕 20088510 王珂麟 20088520 高正乾 20088524

目录

产品说明书 使用须知: 由于该系统完全模拟CTCS功能所以读者需要了解CTCS的功能。CTCS系统描述 CTCS基本功能:在不干扰机车乘务员正常驾驶的前提下有效地保证列车运行安全。 1.安全防护: 在任何情况下防止列车无行车许可运行。防止列车超速运行。包括:列车超过进路允许速度;列车超过线路结构规定的速度;列车超过机车车辆构造速度;列车超过铁力有关运行设备的限速; 防止列车溜逸。 2.人机界面: 为乘务员提供的必须的显示,数据输出及操作装置。能够以字符,数字及图形等方式显示列车运行速度,允许速度,目标速度和目标距离。能够实现给出列车超速,制动,允许缓解等表示以及设备故障状态的报警。 3.检查功能: 具有开机自检和动态检测功能。具有关键动作的记录功能及监测接口。 4.可靠性和安全性: 按照信号故障导向安全原则进行系统设计,采用冗余结构,满足电磁兼容性相关标准。

DMI人机界面 DMI是列控车载设备的显示和操作界面,安装在便于司机操作和观察的位置。相关规定应符合有关标准和技术条件的要求 1.报警功能 人机界面应设有声报警功能,能够及时给出列车超速,切除牵引力,制动,允许缓解或故障状态等的报警和表示。 2.人机界面应有数据功能 输出列车参数有关的信息,输入操作应简明并有清晰的表示。对机车乘务员输入的数据和操作应进行合理性判断。 3.设置位置: 应设置在机车乘务员便于观察及可接近的区域,符合标准化安装尺寸要求。显示部分要便于观察,常用按钮,开关应易于机车乘务员操作。 4.DMI的显示与操作标准统一 文字及语音信息采用中文,用双针速度表,数字,图形显示相结合的方式提供运行速度,允许速度,目标速度和目标距离。 软件设计原理及实现的功能: 根据CTCS系统的功能要求,设计出符合要求的CTCS系统DMI界面的B,D区域,由visual c #2008编写的,制作DMI界面的B,D区,实现列车速度与目标距离的显示情况,以及相关的功能部件的显示。大致有两部分构成,实现两个区域的相互关联。 根据需求分析,运用软件编写符合要求的DMI界面相应区域,实现

软件系统需求说明书

专 组号:小组成员: 完成时间:

目录 1.系统概述 (3) 1.1. 系统功能简介 (3) 1.2 系统用户角色 (3) 2.理由 (3) 3.项目范围 (3) 4.系统假设 (3) 5.系统定义 (4) 6.用户场景 (5) 7.用户用例 (5) 7.1 用户用例步骤 (5) 7.2系统需求 (9) 7.2.1 功能需求 (9) 7.2.2 非功能需求 (12) 8.文档历史 (14)

1.系统概述 1.1. 系统功能简介 教务处工作人员根据设置的用户名和密码,登录到学生信息管理系统,并对学生提交的信息修改进行审核,,系统优先级高; 档案管理员添加、查看、删除、修改学生的基本信息, 系统优先级高; 老师查看自己所管班级的学生的信息, 系统优先级高; 学生修改、查看自己的某些信息, 系统优先级高; 1.2 系统用户角色 2.理由 由于现在的学校规模在逐渐的扩大,设置的专业类别、分支机构及老师、学生人数越来越多,对于过去的学生信息管理系统,不能满足当前学生信息管理的服务性能要求。本报告对于开发新的<<学生信息管理系统>>面临的问题及解决方案进行初步的设计与合理的安排,对用户需求进行了全面细致的分析,更清晰的理解学生信息管理系统业务需求,深入描述软件的功能和性能与界面,确定该软件设计的限制和定义软件的其他有效性需求,对开发计划进行了总体的规划确定开发的需求与面临困难的可行性分析。 3.项目范围 学生信息管理系统是典型的信息管理系统,其开发主要包括后台数据库的建立、维护以及前端应用程序的开发两个方面。对于前者要求建立起数据一致性和完整性强、数据安全性好的数据库。而对于后者则要求应用程序具有功能完备,易使用等特点。学生信息管理系统对全校学生实行统一的管理,可以方便的进行增添、查询、修改、删除学生信息的工作。为了使本系统成功达到用户的要求,需要在2012.12.28之前完成本系统的开发测试,并写提交相关的技术文档。通过与用户的沟通,及时获得用户的最新需求以便于本系统的完善。 4.系统假设 本项目的开发时间为2012.9.9—2012.12.28 开发人员人数:3人 技术文档写作人员人数3人

软件使用说明书模板

(仅供内部使用) 文档作者:_____________________ 日期:___/___/___ 说明书校对:_____________________ 日期:___/___/___ 产品经理:_____________________ 日期:___/___/___ 请在这里输入公司名称 版权所有不得复制

软件使用说明书模板 1引言 1 .1编写目的 编写本使用说明的目的是充分叙述本软件所能实现的功能及其运行环境,以便使用者了解本软件的使用范围和使用方法,并为软件的维护和更新提供必要的信息。 1 .2参考资料 略 1 .3术语和缩写词 略 2 软件概述 2 .1软件用途 本软件的开发是为具有电能质量仪表,可以获取电能数据的技术人员提供一个有利的分析工具。 2 .2软件运行 本软件运行在PC 及其兼容机上,使用WINDOWS 操作系统,在软件安装后,直接点击相应图标,就可以显示出软件的主菜单,进行需要的软件操作。 2 .3系统配置 本软件要求在PC 及其兼容机上运行,要求奔腾II以上CPU,64兆以上内存,10G 以上硬盘。软件需要有WINDOWS 98 操作系统环境。 2 .4软件结构 略 2 .5软件性能 略 2 .6输入、处理、输出 2 .6.1输入 略 2 .6.2处理 略 2 .6.3输出 分析数据为: 略

图表有: 略 3 软件使用过程 3 .1软件安装 直接点击软件的安装软件SETUP.EXE ;然后按照软件的提示进行。 3 .2运行表 略 3 .3运行步骤 略 3 .4运行说明 略 3 .4.1控制输入 按照软件的说明,将测试数据加入到软件中;具体过程如下: 略 3 .4.2管理信息 软件运行过程中的密码键入: 略 3 .4.3输入输出文件 略 3 .4.4输出报告 略 3 .4.5输出报告复制 略 3 .4.6再启动及恢复过程 略 3 .5出错处理 软件运行过程中可能雏形的出物及处理如下: 略 3 .6非常规过程 如果出现不可能处理的问题,可以直接与公司的技术支持人员联系:略

西门子仿真软件说明书

使用方法: 1.本软件无需安装,解压缩后双击S7_200.exe即可使用; 2.仿真前先用STEP 7 - MicroWIN编写程序,编写完成后在菜单栏“文件”里点击“导出”,弹出一个“导出程序块”的对话框,选择存储路径,填写文件名,保存类型的扩展名为awl,之后点保存; 3.打开仿真软件,输入密码“6596”,双击PLC面板选择CPU型号,点击菜单栏的“程序”,点“装载程序”,在弹出的对话框中选择要装载的程序部分和STEP 7 - MicroWIN的版本号,一般情况下选“全部”就行了,之后“确定”,找到awl文件的路径“打开”导出的程序,在弹出的对话框点击“确定”,再点那个绿色的三角运行按钮让PLC进入运行状态,点击下面那一排输入的小开关给PLC 输入信号就可以进行仿真了。 使用教程: 本教程中介绍的是juan luis villanueva设计的英文版S7-200 PLC 仿真软件(V2.0),原版为西班牙语。关于本软件的详细介绍,可以参考 https://www.doczj.com/doc/d36665811.html,/canalPLC。 该仿真软件可以仿真大量的S7-200指令(支持常用的位触点指令、定时器指令、计数器指令、比较指令、逻辑运算指令和大部分的数学运算指令等,但部分指令如顺序控制指令、循环指令、高速计数器指令和通讯指令等尚无法支持,仿真软件支持的仿真指令可参考 https://www.doczj.com/doc/d36665811.html,/canalPLC/interest.htm)。仿真程序提供了数字信号输入开关、两个模拟电位器和LED输出显示,仿真程序同时还支持对TD-200文本显示器的仿真,在实验条件尚不具备的情况下,完全可以作为学习S7-200的一个辅助工具。 仿真软件界面介绍:

加载减速工况法检测操作规程

加载减速工况法检测操作规程 1. 仪器设备的准备 系统开机:操作员输入自己的身份及密码,进入相应的工作界面; 系统检查:底盘测功机、废气分析仪自检必须全部完成并通过; 2. 受检车辆的准备 a.车辆机械状态良好,无影响安全或引起检测偏差的机械故障; b.车辆的进排气系统不得有任何泄露; c.车辆的发动机、变速箱和冷却系统等应无液体泄露; d.轮胎表面磨损应符合有关标准要求的规定,驱动轮的轮胎压力应满足生产厂的规定; e.关闭空调等附属装置,车辆完成预热状态; 3. 检测前的准备 a.操作人员升起测功机举升器,引车员驾驶被检车辆对正慢速驶入测功机,并将驱动轮置于测功机的滚筒上; b.操作人员降下测功机举升器,引车员控制被检车辆的油门,使驱动轮在滚筒上低速运转,让被检车辆的车体自然摆正。 c.车体摆正后,引车员制动驱动轮。操作人员插制动垫到非驱动轮,安装好左右限位器。(如果是前驱车,请拉好手刹)。 d.对准发动机的进风部位,打开散热风机; e.操作人员、引车员互相配合确认为完成屏幕上提示的安全检查项目后,将取样探头插入排气管>=400mm,等待检测开始。

4. 检测操作 a.被检车辆处于怠速状态,底盘测测功机滚筒速度为零,点击开始检测。 b.系统弹出提示对话框,当操作员观看车速和转速稳定后点击“确定” 按钮,系统自动开始功率扫描,烟度检测流程。 c.使用前进档驱动被检车辆,选择合适的档位,使油门踏板处于全开位 置时,测功机指示的车速最接近70km/h,但不能超过100km/h。对装有自动变速器的车辆,应注意不要在超速档下进行测量。 d.在检测期间,若监控到转速、车速小于规定值,或者检测过程所需要 的加载大于测功机容量,检测中止,该次排放检测结果无效,需重新开始检测。 停止检测 如果检测过程中需要停止检测,请按“停止检测”按钮,检测将中断,所有数据被放弃。 注意:检测过程中,引车员应注意车辆运行状态是否正常,切记不要随便打方向盘,特别是检测前驱车辆时。 e.全部检测工况结束,测功机滚筒停止转动后,工作人员取出采样探头,移出限位器、制动垫,操作员升起举升器,引车员驾车驶离测功机。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络 ,供参考。可复制、编制,期待你的好评与关注)

软件的系统操作手册

3DMS监控平台软件使用说明书 版本:4.23 深圳市亚美达通讯设备有限公司

目录 1、系统登录 (3) 2、主界面 (4) 2.1标题栏 (4) 2.2菜单栏 (4) 2.3工具栏 (4) 2.4状态栏 (4) 2.5树形区 (4) 2.6地图区 (5) 2.7简明信息区 (6) 2.8报警区 (6) 3、监控站点界面 (7) 3.1组态图形 (7) 3.2数据列表 (8) 3.3单灯 (8) 3.4监控点资料 (9) 4、配电箱端的远程操作 (10) 4.1遥测数据 (11) 4.2设置自动开关灯时间 (11) 4.3手动开关灯 (12) 4.4校准时钟 (13) 4.5设置采集器参数 (13) 5、单灯监控 (14) 5.1报警信息 (14) 5.2监测数据 (14) 5.3单灯手动开关灯控制 (15) 5.4单灯配置管理 (15) 6、报表 (17) 6.1监控数据 (17) 6.2故障记录 (17) 6.3监控点数据 (18) 6.4操作记录 (18) 7、数据配置 (19) 7.1监控点管理 (19) 7.2设备管理 (19) 7.3监控项管理 (20) 7.4人员管理 (20) 7.5字典管理 (21) 7.6时间表管理 (21) 8、常见问题 (22)

1、系统登录 启动客户端软件(3DMS.exe),出现登录界面,输入正确的用户名和登录密码,点击登录按钮即可进入监控软件。

2、主界面 主界面采用Windows标准风格,分为: 2.1标题栏:上方第一行,包括软件名称、Windows标准缩放按钮。 2.2菜单栏:上方第二行,为软件功能的菜单。 2.3工具栏:上方第三行,软件常用功能的快捷方式图标。 2.4状态栏:最下方一行,显示服务器连接状态和登录用户信息。 2.5树形区:左侧,按层次显示所有监控站点,可在监控站点名称上单击右键弹出菜单,执行常用功能,亦可在监控站点名称上双击左

FX仿真软件使用手册

PLC是“Programmable Logic Controller(可编程序逻辑控制器)”的英文缩写,是采用微电脑技术制造的自动控制设备。它以顺序控制为主,回路调节为辅,能完成逻辑判断、定时、记忆和算术运算等功能。与传统的继电器控制相比,PLC控制具有控制速度快、可靠性高、灵活性强、硬件接线简单、改变工艺方便等优点。 PLC的基本构成见图1-1,简要说明如下: 1. 中央处理器CPU 起运算控制作用,指挥协调整机运行。 2. 存储器ROM RAM 存放程序和数据 (1) 系统程序存储器ROM 存放生产厂家写入的系统程序,用户不可更改。 (2) 随机读写存储器RAM 存放随机变化的数据。 (3) 用户程序存储器EPROM或E2 PROM 存放用户编写的用户程序。 3. 通信接口与计算机、编程器等设备通信,实现程序读写、监控、联网等功能。 4. 电源利用开关电源将AC220V转变成DC5V供给芯片;DC12V供给输出继电器; DC24V供给输入端传感器。另有锂电池做为备份电源。 5. 输入接口IN 将外部开关或传感器的信号传递给PLC。 6. 输出接口OUT 将PLC的控制信号输出到接触器、电磁阀线圈等外部执行部件。作为一般技术人员,对于上述构成,主要关心的是输入输出接口。输入输出接口的详细情况,见第9页§3.2的有关介绍和图2-3 PLC输入输出接口电路示意图。

随着PLC技术的发展,其功能越来越多,集成度越来越高,网络功能越来越强,PLC与PC 机联网形成的PLC及其网络技术广泛地应用到工业自动化控制之中,PLC集三电与一体,具有良好的控制精度和高可靠性,使得PLC成为现代工业自动化的支柱。 PLC的生产厂家和型号、种类繁多,不同型号自成体系,有不同的程序语言和使用方法,但是编程指导思想和模式是相同的,其编程和调试步骤如下: 1. 设计I/O接线图 根据现场输入条件和程序运行结果等生产工艺要求,设计PLC的外围元件接线图,作为现场接线的依据,也作为PLC程序设计的重要依据。(I/O接线图参见9页图2-3) 2. 编制PLC的梯形图和指令语句表 根据生产工艺要求在计算机上利用专用编程软件编制PLC的梯形图,并转换成指令语句表(FX系列PLC编程常用指令见13页表2-2)。 3. 程序写出与联机调试 用编程电缆连接计算机和PLC主机,执行“写出”操作,将指令语句表写出到PLC主机。PLC 输入端连接信号开关,输出端连接执行部件,暂不连接主回路负载,进行联机调。 PLC的控制方式是由继电器控制方式演化而来,由PLC内部的微电子电路构成的模拟线圈和触点取代了继电器的线圈和触点,用PLC 的程序指令取代继电器控制的连接导线,将各个元件按照一定的逻辑关系连接起来,PLC控制的梯形图在许多方面可以看作是继电器控制的电路图。 可以理解为,PLC内部有大量的由软件程序构成的继电器、计时器和计数器等软元件,用软件程序按照一定的规则将它们连接起来,取代继电控制电路中的控制回路。 本文第一章介绍利用PLC计算机仿真软件,学习PLC用户程序设计,并且仿真试运行、调试程序。由于仿真软件不需要真正的PLC主机,就可以在计算机上仿真运行调试,所以它既是学习PLC程序设计的得力助手,也给实际工作中调试程序带来很大方便。本章的编程仿真练习题,请读者认真完成,会对掌握PLC应用大有帮助。 本文第二章介绍PLC实际应用的编程软件的使用方法。 §2 PLC计算机仿真软件 FX系列PLC可用“FX-TRN-BEG-C”仿真软件,进行仿真运行。该软件既能够编制梯形图程序,也能够将梯形图程序转换成指令语句表程序,模拟写出到PLC主机,并模拟仿真PLC控制现场机械设备运行。 使用“FX-TRN-BEG-C”仿真软件,须将显示器象素调整为1024*768,如果显示器象素较低,则无法运行该软件。 §2.1 仿真软件界面和使用方法介绍 启动“FX-TRN-BEG-C”仿真软件,进入仿真软件首页。软件的A-1、A-2两个章节,介绍PLC 的基础知识,此处从略,请读者自行学习。从A-3开始,以后的章节可以进行编程和仿真培训练习,界面显示如图2-1所示。

软件项目用户操作手册模版

六、用户操作手册 1.引言 (1) 1.1编写目的 (1) 1.2项目背景 (2) 1.3定义 (2) 1.4参考资料 (2) 2.软件概述 (2) 2.1目标 (2) 2.2功能 (2) 2.3性能 (2) 3.运行环境 (2) 3.1硬件 (2) 3.2支持软件 (3) 4.使用说明 (3) 4.1安装和初始化 (3) 4.2输入 (3) 4.3输出 (4) 4.4出错和恢复 (4) 4.5求助查询 (4) 5.运行说明 (4) 5.1运行表 (4) 5.2运行步骤 (4) 6.非常规过程 (5) 7.操作命令一览表 (5) 8.程序文件(或命令文件)和数据文件一览表 (5) 9.用户操作举例 (6) 1.引言 1.1编写目的 【阐明编写手册的目的,指明读者对象。】

1.2项目背景 【应包括项目的来源、委托单位、开发单位和主管部门。】 1.3定义 【列出手册中所用到的专门术语的定义和缩写词的原文。】 1.4参考资料 【列出有关资料的作者、标题、编号、发表日期、出版单位或资料来源,可包括: a.项目的计划任务书、合同或批文; b.项目开发计划; c.需求规格说明书; d.概要设计说明书; e.详细设计说明书; f.测试计划; g.手册中引用的其他资料、采用的软件工程标准或软件工程规范。】 2.软件概述 2.1目标 2.2功能 2.3性能 a.数据精确度【包括输入、输出及处理数据的精度。】 b.时间特性【如响应时间、处理时间、数据传输时间等。】 c.灵活性【在操作方式、运行环境需做某些变更时软件的适应能力。】3.运行环境 3.1硬件 【列出软件系统运行时所需的硬件最小配置,如

操作指示

液压车操作规程 梁山县杨嘉挂车制造有限公司

1、充油:打开BF1、BF3阀,推动任一 支撑手柄(左,右或后支撑)到设定压力,关闭BF1、BF3阀,然后松开手柄。充油压力观察转向压力表。 2、调整货台高度:分打开BF5、BF6、BF7 阀,向前或向后推动左、后、右换向阀手柄即可,打开BF3转向,支撑压力请观察相应压力表。 3、单操纵箱使用时请打开直通回油阀, 双操纵箱使用时,关闭先进动力油操纵箱的直通回油阀,打开后进动力油操纵箱的直通回油阀。

1、充油:打开K6、K8阀,向上推动第 四个手柄(从左往右数)到设定压力,关闭K6、K8阀,充油压力请观察转 向压力表。 2、打开K4、K5阀,推动换向阀分别完 成鹅颈的升降和加载功能,加载压力 请观察后支承/加载压力表。 3、左边两个球阀用来支持挂车左支承 和右支承的升降,打开球阀,推动相 应换向阀便可完成挂车左、右支承的 升降,完成后关闭球阀。 4、打开K4、K 5、K9阀,推动换向阀便 可完成后支承的升降。 5、车辆在行走时,请打开K3、K9阀。

半挂车操纵说明书 1、系统压力的调整 a, 将动力站和挂车的液压油路接通, b,将动力站上的溢流阀调压手柄沿逆时针方向旋转到底, c,将鹅颈操纵箱上的K4,K5,K6,阀关闭(见鹅颈操纵箱示意图) d,启动柴油机并空转10分钟左右, e,一人推或拉动鹅颈操纵箱上任一支承(左、右或后支承)换向阀的手柄并保持住,另一人将动力站上的溢流阀调压手柄沿顺时针方向慢慢旋转并同时观察动力站上压力表的压力,当压力达到25Mpa 时,停止旋转调压手柄,松开手动换向阀的手柄,并使手柄处于中位, f,锁紧调压手柄的锁紧螺母,完成调压。 2、转向油缸充油(调节用的所有节流阀均为逆时针旋转为打开) 打开鹅颈操纵箱上的K6、K8阀,关闭K4、K5阀。(其余阀可开可关)如下图:鹅颈操纵箱示意图

软件系统操作手册

3D M S监控平台软件 使用说明书 版本: 深圳市亚美达通讯设备有限公司

目录

1、系统登录 启动客户端软件(),出现登录界面,输入正确的用户名和登录密码,点击登录按钮即可进入监控软件。 2、主界面 主界面采用Windows标准风格,分为: 标题栏:上方第一行,包括软件名称、Windows标准缩放按钮。 菜单栏:上方第二行,为软件功能的菜单。 工具栏:上方第三行,软件常用功能的快捷方式图标。 状态栏:最下方一行,显示服务器连接状态和登录用户信息。 树形区:左侧,按层次显示所有监控站点,可在监控站点名称上单击右键弹出菜单,执行常用功能,亦可在监控站点名称上双击左键,进入监控站点界面。 地图区:采用网络矢量地图,显示监控中心及各个监控站点的地图位置信息。 简明信息区:显示监控站点树形区所选择监控站点的简明监测数据,点击详细信息按钮可进入监控站点界面。 报警区:集中显示所有监测报警信息。

3、监控站点界面 左键双击主界面树形区中的监控站点名称,或者点击简明信息区的详细信息按钮,可以进入监控站点界面。监控站点界面分为组态图形、数据列表、单灯、监控点资料四个部分,单灯操作的具体细节在后面章节有详细描述。 组态图形:以组态图形方式显示监控站点的监测数据和状态。

数据列表:以数据列表方式显示监控站点的监测数据和状态。 单灯:当前监控站点的单灯监控界面,包括单灯的显示效果、报警信息、监测数据、手动控制、灯杆配置、自控时间表等。 监控点资料:显示监控点静态数据和照片。

4、配电箱端的远程操作 配电箱端的远程操作包括遥测数据、设置自动开关灯时间表、手动开关灯、校准时钟、设置参数。可以从菜单的操作选项、工具图标栏、树形区监控站点名称上单击右键菜单进入此界面。左边为需要远程操作的监控站点,右上为远程操作的内容,右下为命令执行反馈。 选择待操作监控站点时,请点击左下角选择监控点按钮,弹出监控站点选择对话框,将左边需要操作的监控站点移动到右边并确定。 遥测数据:远程遥测配电箱、电缆防盗的监测数据。选择待遥测的设备类型,然后点击遥测数据按钮即可。 设置自动开关灯时间:远程设置配电箱中接触器吸合、断开的自动控制开关灯时间表。此命令操作是将已经编辑好并存储在数据库中的自控时间表下发至配电箱端采集器中。 手动开关灯:远程手动开关灯,开关灯时必须设置延时时间,即手动控制到什么时候失效。 校准时钟:远程校准采集器、集中器的时钟。 设置采集器参数:设置采集器的各类物理型参数,采集器安装调试完后不用操作。 5、单灯监控 进入监控站点界面来进行单灯监控操作。 报警信息:显示此监控站点的所有单灯报警信息。

Machining数控仿真软件简明使用手册

Machining数控仿真软件简明使用手册视频教程下载:软件基本操作: 机床视图右键菜单介绍: A.XOZ平面:改变机床视图视角 B.YOZ平面:改变机床视图视角 C.XOY平面:改变机床视图视角 D.隐藏/显示床身: 在机床视图中点右键,选择“隐藏床身”或者“显示床身” E.快速定位: 让主轴移动到工件中心位置。 F.开关机舱门 3D机床模型操作: A.鼠标左键旋转 B.鼠标滚轮放大或缩小 C.按下鼠标中键平移 提示窗口: 软件菜单介绍 A.加工时间 估算加工程序所需时间

B.文件 1.导入:导入一个加工程序,但必须在E DIT模式下打开或者新建了一个程序的情况下才能导入2?保存工件:保存已加工工件 3.读入工件:打开保存的工件 C.设置 1.显示刀具轨迹 选中后会在自动加工中显示加工轨迹。 2.显示床身 选中该选项将显示床身。 3.机床声音 选中该选项将启用声音效果。 4.模型阴影 选中该选项将启用阴影效果,但是一些比较老的显卡运行速度会下降。如果速度慢请取消该选项。 D.视图 视图:当面板视图被关闭后,用该菜单将面板重新打开。 双屏显示:分别在两个显示器中显示面板和机床模型。 E.切换面板 各系统间进行切换操作。 F.设置工件 选择工件类型,工件类型为:长方体和圆柱体。 设置工件的显示精度,精度有3级: 1.性能:工件精度较低 2.平衡:工件精度中等 3.质量:工件精度较高 请根据显卡能力选择适当的精度,较高的精度资源占用高。 G.检查更新 检查是否有新版本,该功能需要联网。 H.帮助文档

2.刀具选择 1.新建刀具: 添加刀具:按“Add按钮添加新的刀具,然后在自定义刀具对话框中输入直径和长度2.编辑刀具: 双击“ Tool Select "中列表中的条目进行刀具参数编辑。 3.删除刀具: 按“ Delete ”按钮删除所选刀具。 4 .选择刀具: 鼠标移动到右边刀具栏,出现"select tool" 对话框,在里面选择所需的刀具。再点击“ Tool Number”下拉菜单,选择所需的刀号。点击“ OK确认。 将刀具移动到刀具库上,单击鼠标左键,刀具装入。将鼠标移动至刀位可以查看刀号。 3.数控面板操作 FANUC 0iM 操作控制面板急停按钮 电源开 电源关 循环启动 循环停止 自动模式编辑模式手动输入模式步进模式 手轮模式回参考点手动模式

稳态工况法规程

稳态工况法操作规程 —————————————————————— 1. 发动机进气系统应装有空气滤清器,排气系统应装有排气消声器, 外观及发动机排放控制装置检查合格后由引车员低于5公里/小时按测功机规定方向驾驶到转鼓中央位置; 2. 关闭解除主动型制动功能和扭矩控制功能(ESP等),如无法关闭 和解除,和全时四驱车一样,应使用双怠速法进行检测; 2. 对废气分析仪及取样管路进行校准调零和气体泄漏检查,排气管 长度小于测量深度时应使用排气加长管,且发动机机油温度不低于80℃,或达到汽车使用说明说规定的热车状态; 3. 禁止除工作人员以外的人员靠近待检车辆; 4. 按照显示器提示,举升器落下前驱车后轮轮胎前放上三角挡块,后 驱车前轮前放上三角挡块,测功机上装好限位器,将取样探头插入排气管中深度不少于400mm。 1) ASM5025工况:加速至25公里/小时,工况计时器开始计时(t=0s),保持车速25公里/小时±1.5公里/小时等速5s后开始检测,(t=15s)进入“ASM5025”工况,否则系统将重新计时,(t=25s)快速检查工况结束,低于等于限值的50%测试合格结束,否则将检

测至90s,高于限值测试不合格,测试结束,否则应继续进行“ASM2540”工况; 2)ASM2540工况:先加速到40公里/小时,工况计时器开始计时(t=0s),保持车速40公里/小时±1.5公里/小时等速5s后开始检测,(t=15s)进入“ASM2540”工况,否则系统将重新计时,(t=25s)快速检查工况结束,低于等于限值的50%测试合格结束,否则将检测至90s,测试结束; 3)待分析仪反吹后将取样探头、三角挡块、限位器归位; (注:检测过程中CO与C02浓度之和小于6%,或发动机在任何时间熄火,应终止试验,排放测量无效;严禁使用倒挡和刹车,自动挡车辆禁止在测功机和车辆运行过程中挂停车(P)档。) 5. 举升器升起后车辆驶离测功机,检测结束。 重庆顺通汽车检测有限公司

软件使用说明书模板.最新版本

变电所联网监控系统使用说明书 **发展有限公司 2013.04.01

目录 第一部分设计说明______________________________________ 2一系统概况____________________________________________ 2二系统网络结构________________________________________ 2 三、监控内容及方式_____________________________________ 3 3.1 联网变电所_________________________________________ 3 3.2 监控内容___________________________________________ 4 四、使用环境___________________________________________ 4 五、设计依据___________________________________________ 5第二部分系统功能介绍__________________________________ 6 2.1 主菜单_____________________________________________ 8 2.2 历史曲线__________________________________________ 11 2.3 报警查询__________________________________________ 12 2.4 操作查询__________________________________________ 13 2.5 报表查询__________________________________________ 14 2.6 系统说明__________________________________________ 15 2.7 报警确认__________________________________________ 15第三部分系统故障及维护_______________________________ 16 3.1 系统故障处理______________________________________ 16 3.2 使用注意__________________________________________ 16

相关主题
文本预览
相关文档 最新文档