当前位置:文档之家› 高速钢车刀材料的选择及工艺设计课程设计

高速钢车刀材料的选择及工艺设计课程设计

高速钢车刀材料的选择及工艺设计课程设计
高速钢车刀材料的选择及工艺设计课程设计

专业课程设计任务书

学生姓名:班级:

设计题目:高速钢车刀材料的选择及工艺设计

设计内容:

1、根据零件工作原理,服役条件,提出机械性能要求和技术要

求。

2、选材,并分析选材依据。

3、制订零件加工工艺路线,分析各热加工工序的作用。

4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工

艺进行分析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。

5、分析热处理过程中可能产生的缺陷及补救措施。

6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录

前言 (4)

1 高速钢车刀的工作条件及性能、技术要求 (5)

1.1 高速钢车刀的工作条件 (5)

1.2高速钢车刀的机械性能要求及技术要求 (5)

1.2.1高速钢车刀的机械性能要求 (5)

1.2.2高速钢车刀的技术要求 (5)

2高速钢车刀材料的选择及分析 (5)

2.1选材及选材依据 (5)

2.1.1 普通高速钢 (6)

2.1.2高性能高速钢 (6)

2.2 W18C r4V钢的分析 (7)

3 W18Cr4V钢车刀的加工工艺路线 (8)

3.1 整体加工工艺路线的制定 (8)

3.2 柄部加工工艺路线 (9)

3.3 刃部加工工艺路线 (9)

4 W18Cr4V车刀热处理工艺的制定与分析 (9)

4.1焊接后的去应力退火 (9)

4.2 W18Cr4V车刀刃部的球化退火 (10)

4.3 W18Cr4V车刀刃部的最终热处理:淬火+回火 (11)

4.3.1 淬火 (11)

4.3.2 回火 (12)

5 W18Cr4V车刀热处理缺陷及措施 (13)

6 W18Cr4V车刀的失效方式 (15)

7 心得体会 (16)

参考文献 (18)

前言

车刀是用于车削加工的、具有一个切削部分的刀具。车刀是切削加工中应用最广的刀具之一。车刀的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。

车刀的切削部分由主切削刃、副切削刃、前刀面、主后刀面和副后刀面,刀尖角组成。车刀的切削部分和柄部(即装夹部分)的结合方式主要有整体式、焊接式、机械夹固式和焊接-机械夹固式。机械夹固式车刀可以避免硬质合金刀片在高温焊接时产生应力和裂纹,并且刀柄可多次使用。机械夹固式车刀一般是用螺钉和压板将刀片夹紧,装可转位刀片的机械夹固式车刀。刀刃用钝后可以转位继续使用,而且停车换刀时间短,因此取得了迅速发展。

车刀按用途可分为外圆、台肩、端面、切槽、切断、螺纹和成形车刀等。还有专供自动线和数字控制机床用的车刀。

刀具材质的改良和发展是今日金属加工发展的重要课题之一,因为良好的刀具材料能有效、迅速的完成切削工作,并保持良好的刀具寿命。所以,对于车刀以及刀具还有很长一段路要走,而本次设计的是普通成型车刀。

1 高速钢车刀的工作条件及性能、技术要求

1.1 高速钢车刀的工作条件

车刀作为一种切削工具,在车削致密金属的过程中会承受弯曲、剪切、冲击、扭转、振动、摩擦等力的作用,有可能使刀刃温度升高到600℃以甚至更高的温度,同时刃部也发生磨损,很容易造成车刀的严重损坏,总之,车刀工作条件很恶劣。

1.2 高速钢车刀的机械性能要求及技术要求

1.2.1 高速钢车刀的机械性能要求

车刀柄部应具有良好的综合机械性能,在使用过程中能有够足够承载各种应力的能力。刃部作为金属的切削工具,刃部首先应具备高的硬度和耐磨性。在一定条件下,工具的硬度越高,其耐磨性也越高,所以要求刃部要具有高的硬度。另外由于刃部在工作过程中会受到各种应力的作用,所以要求刃部还要具备足够的韧性,否则可能因为脆性过大,在应力作用下会产生折断,扭断等失效现象。刃部的工作温度高,要求刃部具有高的红硬性,保证其在较高温度下仍具有较高的硬度及耐磨性。

1.2.2 高速钢车刀的技术要求

由于车刀柄部仅需满足承载车刀上下部分带来的应力故硬度在30~45HRC之间即可。车刀刃部是切削工作部分硬度要在在63~66HRC之间,回火充分,表面无腐蚀和麻点以确保拥有足够的切削能力。

2 高速钢车刀材料的选择及分析

2.1选材及选材依据

车刀的柄部是车刀非工作部分,采用45#钢制造即可,45#钢是典型的调质钢,经调质或正火处理后,具有良好的综合机械性能,能满足使用要求。

车刀的刃部采用高速钢材料制造,因为普通的工具材料难以

满足其高红硬性的使用要求。而高速钢的种类非常多,按其性能用途不同可分为普通高速钢和高性能高速钢两种。

2.1.1普通高速钢

普通高速钢常用的有钨系高速钢和钨钼系高速钢两种。钨系高速钢如:W18Cr4V为钨系高速钢,具有高的硬度、红硬性及高温硬度。其热处理范围较宽淬火不易过热,热处理过程不易氧化脱碳,磨削加工性能较好。该钢在500℃及600℃时硬度分别保持在HRC57~58及HRC52~53,对于大量的、一般的被加工材料具有良好的切削性能。

钨钼系高速钢常用的是W6Mo5Cr4V2,它具有良好的机械性能,抗弯强度比W18Cr4V钢高10%~30%,韧性高50%~70%,可做尺寸较小,承受冲击力较大的刀具,另外,其热塑性特别好,特别适用于制造冲击力较大的刀具和热轧刀具。它的硬度、耐磨性、红硬性等性能均能满足普通高速钢车刀的使用要求。

2.1.2 高性能高速钢

高性能高速钢是在普通高速钢的基础上加入C、V、Co、Al 等合金元素,使其耐磨性和耐热性进一步提高的新型高速钢。它具有良好的切削性能,耐用度较普通高速钢高1.3~3倍,同时能适用于加工不锈钢、耐热钢、高强度钢等难加工材料。按钢中合金元素的不同高性能高速钢有高碳高速钢、高钒高速钢、钴高速钢、铝高速钢四种。

高碳高速钢常用牌号是9W18Cr4V,它含碳量较高,使其中的碳化物含量较W18Cr4V高,硬度、耐磨性较普通高速钢高,但其碳化物含量高且分布不均匀,所以它的韧性差,不适于制造高速钢车刀;高钒高速钢常用牌号是W6Mo5Cr4V3,钴高速钢常用牌号有W6Mo5Cr4V2Co8、W18Cr4VCo5、W18Cr4V2Co8等。这两类钢的各种性能都较普通高速钢W6Mo5Cr4V2要好,但是由于

W6Mo5Cr4V3钢中钒含量较W6Mo5Cr4V2高,所以它的价格要比W6Mo5Cr4V2钢高,在制造普通高速钢钻头时不考虑使用这类钢;铝高速钢常用牌号为W6Mo5Cr4V2Al,这类钢价格也不是很高,各种性能也都能满足普通高速钢车刀的要求,但是这类钢在热处理时极易氧化脱碳,淬火温度范围窄,若果淬火时温度稍微控制不好就有可能出现氧化脱碳现象。

综上所述,兼考虑材料的性能、服役条件、价格等因素,对于W18Cr4V高速钢其红硬性在切削温度540℃时,硬度可保持HRC66,切削温度600℃时,硬度可保持HRC63,通用性强,工艺成熟等优点,本次设计采用W18Cr4V做车刀材料。

2.2 W18Cr4V钢的分析

W18Cr4V的化学成分见表1

表1 W18Cr4V钢的化学成分(wt%)

元素 C Si Mn Cr Mo W V

含量0.70

0.90

0.20

0.45

0.10

0.40

3.80

4.40

≤0.3

17.50

19.50

1.00

1.40

W18Cr4V钢中各合金元素作用如下:

C:碳含量高,淬火加热时可溶于奥氏体中,淬火后可得到高碳马氏体,从而提高钢的硬度,另外在高速钢中可与其他合金元素形成各种各样的碳化物,提高钢的红硬性等性能,一起实现其它合金元素的作用。

W:钨能耐高温,而且溶于钢中会与碳形成碳化钨,能提高钢的强度和红硬性。此外还有:钨能提高钢的Ac1与Ac3温度;细化晶粒;提高回火稳定性;碳化物可以在晶界起钉扎作用,防止晶粒粗大。

Mo:钼可增加钢的强度及硬度,在钢中作用与W相似。主要作用有:能改善钢在高温下抗拉强度及蠕变强度;提高红硬性;细化晶粒;高速钢中含钼,可以提高切削加工性能;合金钢中加入钼可消除一定程度的回火脆性。含Mo高速钢的脱碳倾向大,过热敏感性较大。

Cr:铬在钢中主要存在于M6C中,也有一部分形成M23C6,淬火加热时,铬几乎溶于奥氏体,主要起增加钢的淬透性作用;铬的添加使钢具有一定的耐蚀性。

V:钒在高速钢中能显著提高钢的红硬性,提高硬度和耐磨性,同时还能有效的细化晶粒,降低钢的过热敏感性,另外提高钢的回火稳定性。

Mn:锰在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性;降低钢的临界冷却速度,提高钢的淬透性;稍稍改善钢的低温韧性。

Si:硅强化铁素体,提高钢的强度和硬度;降低钢的临界冷却速度,提高钢的淬透性;提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性。

3 W18Cr4V钢车刀的加工工艺路线

3.1 整体加工工艺路线的制定

W18Cr4V钢车刀的整体加工工艺路线如下:

下料→锻造→焊接→去应力退火→柄部正火→刃部球化退火→切削加工→刃部淬火→清洗→检测硬度及脱碳情况→校直→刃部回火→硬度及金相检验→喷丸→防锈→精磨→成品锻造后柄部45#钢和刃部W18Cr4V钢两种不同的材料焊接在一起,由于焊接所产生的热量使接口处存在热应力,故要进行一次去应力退火,以消除接口处内部的热应力,防止材料变形和开裂。

3.2 柄部加工工艺路线

柄部制造使用的材料为45#钢,其工艺路线及其中的热加工工序作用如下:

下料→锻造→正火→切削加工→精磨

锻造作用:粉碎较大共晶组织颗粒,改善和均匀组织。

正火作用:消除锻造后的残余内应力,防止变形和开裂,改善组织,降低硬度以利于切削加工,得到的索氏体为材料使用状态下的组织。

3.3 刃部加工工艺路线

刃部制造使用的材料为W18Cr4V高速钢,其工艺路线及其中的热加工工序作用如下:

下料→锻造→球化退火→切削加工→淬火→回火→精磨

锻造作用:破碎共晶碳化物和二次碳化物,使组织均匀。

球化退火作用:消除锻造后的残余内应力,防止变形和开裂;降低硬度,便于切削加工,改善组织,为淬火做组织准备。

淬火作用:加热使合金元素融入奥氏体中,获得高合金的奥氏体,淬火后得到高合金度的马氏体,具有高的抗回火稳定性,在高温回火时析出弥散合金碳化物产生二次硬化,使钢具有高的硬度和红硬性。

回火作用:消除残余内应力,防止变形和开裂,减少残余奥氏体的含量,把残余奥氏体的含量控制在一定范围内,产生二次硬化现象,获得高硬度及红硬性的组织。

4 W18Cr4V钢车刀热处理工艺的制定与分析

4.1焊接后的去应力退火

去应力退火主要是为了消除焊接时产生的内应力,去应力退火加热温度小于Ac1,碳钢和低合金钢的去应力退火温度为550~650℃,高合金钢和高速钢的去应力退火温度为600~750℃,焊

接后整体同时同温去应力退火,这里去应力退火温度选择45#钢上限温度650℃。保温时间:2h,冷却方式:炉冷至300℃后空冷。去应力退火工艺曲线如图1

图1 去应力退火工艺曲线

4.2 W18Cr4V钢车刀刃部球化退火

W18Cr4V钢的球化退火加热温度应在其Ac1温度至Acm温度之间,取870℃。退火方式有两种:普通退火工艺和等温退火工艺。

普通退火工艺先在870℃温度保温4h,然后以大约20℃/h 的冷却速度冷却到500℃,最后出炉空冷,此种退火工艺因为冷却速度慢,需要很长的时间,效率不高。W18Cr4V钢普通退火工艺曲线见图2

图2 W18Cr4V钢普通退火工艺曲线

等温退火工艺是先在870℃温度保温2~4h,之后炉冷至温度740~750℃,在此温度保温约6h,之后再炉冷至500~600℃,最后出炉空冷,退火后的组织为球状珠光体。此种退火工艺较普通退火工艺大大缩短了退火时间,提高了效率,所以对于W18Cr4V 钢球化退火采取此种等温退火比较合适,W18Cr4V钢等温退火工艺曲线见图3

图3 W18Cr4V钢等温退火工艺曲线

4.3 W18Cr4V钢车刀刃部的最终热处理:淬火+回火。

4.3.1 淬火

高速钢中含有大量合金碳化物,这些碳化物只有加热至较高的温度才能相续溶解,其中M23C6型合金碳化物的溶解温度为1000℃左右;M6C型合金碳化物在1200℃时部分溶解;MC型合金碳化物比较稳定,在1200℃时才开始少量溶解。所以高速钢的淬火加热温度较高,并且随着淬火加热温度的提高,奥氏体中碳及合金元素含量增多,钢的硬度和红硬性升高。淬火加热温度越高,钢的硬度和红硬性越高,但钢的M S点降低,淬火后残余奥氏体量增多,当残余奥氏体量增多到一定数量后,钢的淬火硬度反而下降。此外,淬火温度过高,晶粒粗大、钢的强度、韧性变坏。所以高速钢的淬火温度在A C1+400℃左右,本次W18Cr4V钢淬火取温度1270℃。

由于高速钢的导热率低,淬火加热温度又很高,所以都要进行预热。预热可减少工件在淬火加热过程中的变形和开裂倾向,缩短高温保温时间,减少氧化脱碳,还可以精确地控制炉温稳定性。预热可根据情况采用一次预热和二次预热,由于W18Cr4V导热性差,本次设计采用两次预热,第一次预热温度650℃,时间1h,第二次预热温度860℃,时间20min。预热后车刀加热到淬火温度1270℃,保温时间设定为160S。

高速钢工具最常用的的冷却方式是分级淬火。车刀冷却时采取一次分级淬火冷却方式,即车刀预冷至860℃再油冷至200℃之后及时回火。

淬火后的组织为:马氏体+碳化物+残余奥氏体。淬火清洗后要取样采用洛氏硬度机进行硬度检测,并且用肉眼观察其脱碳情况。

4.4.2 回火

淬火后的残余奥氏体合金度高,稳定性大,在回火加热过程中不分解。在500℃~600℃间保温时也仅从中析出合金碳化物,

使残余奥氏体合金度有所下降,因而奥氏体的Ms点升高,在冷却到室温时,部分残余奥氏体发生马氏体转变,残余奥氏体量由20%~25%减少到约10%左右。但还需进一步降低,并且消除新产生马氏体引起的内应力,所以高速钢一般需要在560℃左右回火三次,经过三次回火后产生二次硬化,提高硬度及红硬性。高速钢车刀回火参数为560℃保温1h空冷。

回火后的组织为:回火马氏体+碳化物+少量残余奥氏体。回火后取样用洛氏硬度机检测其硬度,侵蚀抛光后在金相显微镜下观察其显微组织。

车刀淬火、回火工艺曲线见下图4

图4 车刀淬火、回火工艺曲线

5 高速钢车刀热处理缺陷及措施

(1)氧化脱碳

零件加热时,若不进行表面防护,将发生氧化脱碳等缺陷,其后果是表面淬硬性降低,达不到技术要求,或在零件表面形成网状裂纹,并严重降低零件外观质量,加大零件粗糙度,甚至超差,所以精加工零件淬火加热需要在保护气氛下或盐浴炉内进行,小

批量可采用防氧化表面涂层加以防护。

(2)过热

过热导致淬火后形成粗大的马氏体组织将导致淬火裂纹形成或严重降低淬火件的冲击韧度,极易发生沿晶短裂,应当正确选择淬火加热温度,适当缩短保温时间,并严格控制炉温加以防止,出现的过热组织如有足够的加工余地余量可以重新退火,细化晶粒再次淬火返修。

(3)过烧

过烧常发生在淬火高速钢中,其特点是产生了鱼骨状共晶莱氏体,过烧后使淬火钢严重脆性形成废品。热处理过程中严格执行热处理工艺要求,加强对原材料的质量检验过,过烧的全部报废。

(4)硬度不足

淬火回火后硬度不足一般是由于淬火加热不足,表面脱碳,在高碳合金钢中淬火残余奥氏体过多,或回火不足造成的,在含CR轴承钢油淬时还经常发现表面淬火后硬度低于内层现象,这是逆淬现象,主要由于零件在淬火冷却时如果淬入了蒸汽膜期较长,特征温度低的油中,由于表面受蒸气膜的保护,孕化期比中心长,从而比心部更容易出现逆淬现象。正确选择加热温度和保温时间预热充分。热处理过程中加强对原材料的质量检测,采用分级淬火或等温淬火工艺以避免此类缺陷产生。

(5)软点

淬火零件出现的硬度不均匀叫软点,与硬度不足的主要区别是在零件表面上硬度有明显的忽高忽低现象,这种缺陷是由于原始组织过于粗大不均匀,(如有严重的组织偏析,存在大块状碳化物或大块自由铁素体)淬火介质被污染,零件表面有氧化皮或零件在淬火液中未能适当的运动,致使局部地区形成蒸气膜阻碍了

冷却等因素,通过晶相分析并研解工艺执行情况,可以进一步判明究竟是什么原因造成废品。

(6)变形和开裂

由于加热速度快温度不均匀、加热温度高或保温时间长、原材料的碳化物呈带状或网状造成合金元素偏析严重夹杂物超标、淬火后未及时回火或回火不充分、淬火后清洗过早、表面脱碳或磨削加工过程中冷却不当等因素造成。采取的措施有正确选择加热温度和保温时间预热充分、加强对原材料的质量检测、采用分级淬火或等温淬火工艺等。

6 高速钢车刀的失效方式

车刀正常磨损主要是由以下几种原因造成的:

(1) 磨料磨损是切屑或工件表面存在硬质点(如碳化物颗粒以及积屑瘤碎片等)在车刀表面(前刀面和后刀面)上划出沟纹而造成的磨损。低速切削时,其它原因产生的磨损不明显,因此对低速切削的车刀而言,磨料磨损是车刀磨损的主要原因。

(2) 黏结磨损是切削时切屑和工件材料沿车刀前、后刀面移动,破坏了车刀表面的氧化层和其它吸附膜,特别是刚从工件材料内部切削出的新鲜表面间形成强烈黏结造成的磨损。切削速度与黏结磨损之间存在着非常复杂的关系,一般黏结磨损主要发生在中等切削速度范围内,车刀材料与工件材料之间的亲和力、车刀材料和工件材料之间的硬度比以及车刀材料组分、晶粒粗细、车刀表面状态和切削液类型等都影响车刀黏结磨损速度。

(3) 扩散磨损是由于切屑、工件与车刀前、后刀面在高温、高压下接触且有较大的化学活性,接触面上的化学元素互相扩散到对方去,改变了两者的化学成分和材料结构而形成的磨损。扩散磨损一般与黏结磨损同时发生。由于每种元素的扩散速度是不同的,因此扩散磨损的程度与车刀材料的组分有很大关系,另外扩

散的速度与温度也有很大关系,温度越高,则扩散越快,因此扩散磨损主要发生在高速切削速度范围内。

(4) 其它磨损如溶解磨损、氧化磨损等。

可见车刀磨损产生的原因非常复杂,牵涉到机械、热、化学、物理等各种因素,在不同的工件材料、车刀材料和切削条件下,磨损的原因和磨损程度是不同的,对于一定的工件材料与车刀材料组合,切削温度对车刀磨损具有决定性的影响。

车刀发生非正常磨损的原因也很多,主要有:

(1) 车刀材料的韧性或硬度太低

(2) 车刀的结构或几何角度不合理,使得切削刃过于脆弱或切削力过大

(3) 切削用量选择不合理,使切削力太大或切削温度太高

(4) 车刀由于骤热骤冷(如断续切削、冷却液等)产生太大的热应力以致出现裂纹

(5) 操作不当等使切削刃受到突然机械或热冲击,以致崩刃、热裂等

7 心得体会

通过这一次课程设计,使我对热处理这门课有了更深的认识,让我明白热处理是一门很灵活的技术,不同的温度,不同的介质,还有材料中某一部分成分的不同都会影响着最终制作的零件的性能,也同时让我知道自己所了解和掌握的知识是多么的少,在课程设计的资料收集过程中,我拓展了知识面,获得了不少额外的收获通过本次课程设计的实践,让我对所学专业的专业知识有了更深一步的认识,为以后的进一步学习打下了比较坚实的基础,也为以后的工作做了一个比较坚实的准备。同时发现自己在很多发面存在不足,对自己所学专业的知识了解很少,对专

业前景及专业的研究方向的了解更是少之又少,决心以后努力学好各门课程。更让我明白做任何事情都需要耐心和细心的,要严格按照步骤一步一步来才能有效率的完成整个热处理工艺的设计,而我设计的以W18Cr4V钢为材料制作车刀的热处理工艺主要工艺是利用淬火和三次回火使之达到所需的性能要求,合金钢热处理是一种比较复杂的材料,我的设计中也许会有一些不够周全的地方,望老师予以指导和建议。最后感谢老师和同学在此次课程设计中对我的支持和帮助,才能使我顺利完成这次课程设计!

参考文献

1 [美]G.A.罗伯茨,R.A.卡里.工具钢.徐进,姜先畲等校译.北京:冶金工业出版社,1987:298-400

2 戴起勋.金属材料学.北京:化学工业出版社,2005:103-113

3 赵乃勤.热处理原理与工艺.北京:机械工业出版社,2011:303-309

4 中国机械工程学会热处理分会.热处理工程师手册.北京:机械工业出版社,1999:630-636

5 杨满.热处理工艺参数手册.北京:机械工业出版社,2012:93-96

6 赵步青.工具热处理工艺400例.北京:机械工业出版社,2009:80-109

7 王忠诚,王东.热处理常见缺陷分析及对策(第二版).北京:化学工业出版社,2012

8 纪嘉明,苗润生.热处理设备实用技术.北京:机械工业出版社,2011

9 孙一唐.工具钢及其热处理.北京:机械工业出版社,1986:142-143

10 叶卫平,张覃轶.热处理实用数据速查手册.北京:机械工业出版社,2005:86-90

11 樊新民,黄洁雯.热处理工艺与实践.北京:机械工业出版社,2011:114-123

常用刀具材料分类、特点及应用

常用刀具材料分类、特点及应用 刀具材料的切削性能直接影响着生产效率、工件的加工精度、已加工表面质量和加工成本等,所以正确选择刀具材料是设计和选用刀具的重要容之一。 1.刀具材料应具备的性能 金属切削时,刀具切削部分直接和工件及切屑相接触,承受着很大的切削压力和冲击,并受到工件及切屑的剧烈摩擦,产生很高的切削温度,即刀具切削部分是在高温、高压及剧烈摩擦的恶劣条件下工作的。因此,刀具切削部分材料应具备以下基本性能。 1.1 高的硬度和耐磨性 硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。 耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,耐磨性就越好。组织中硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越高。但刀具材料的耐磨性实际上不仅取决于它的硬度,而且也和它的化学成分、强度、纤维组织及摩擦区的温度有关。 1.2 足够的强度和韧性 要使刀具在承受很大压力,以及在切削过程常要出现的冲击和振动的条件下工作,而不产生崩刃和折断,刀具材料就必须具有足够的强度和韧性。 1.3 高的耐热性 耐热性是衡量刀具材料切削性能的主要标志。它是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能。 1.4 导热性好 刀具材料的导热性越好,切削热越容易从切削区散走,有利于降低切削温度。刀具材料的导热性用热导率表示。热导率大,表示导热性好,切削时产生的热量就容易传散出去,从而降低切削部分的温度,减轻刀具磨损。

1.5 具有良好的工艺性和经济性 既要求刀具材料本身的可切削性能、耐磨性能、热处理性能、焊接性能等要好,且又要资源丰富,价格低廉。 2.常用刀具材料分类、特点及应用 刀具材料可分为工具钢、高速钢、硬质合金、瓷和超硬材料等五大类。常用刀具材料的主要性能及用途见表2-1。

圆体成形车刀设计

圆体成形车刀设计 1.1 前言 成形车刀又称为样板刀,它是加工回转体成形表面的专用刀具,它的切削刃形状是根据工件廓形设计的。成型车刀主要用于大量生产,在半自动或自动车床上加工内、外回转体的成型表面。当生产批量较小时,也可以在普通车床上加工成形表面。 成型车刀的种类很多,按照刀具本身的结构和形状分为:平体成形车刀,棱体成形车刀和圆体成形车刀三种。相较传统的车刀,成形车刀的具有显著的优势:稳定的加工质量,生产率较高,刀具的可重磨次数多,使用期限长。但是它的设计、计算和制造比较麻烦,制造成本也比较高。一般是在成批、大量生产中使用。目前多在纺织机械厂,汽车厂,拖拉机厂,轴承厂等工厂中使用。 1.2设计要求 设计要求:按照要求完成一把成型车刀,并且能够用该刀具加工出图示的工件。 1.3 选取刀具材料 工件材料为:硬铝;硬度HBS100 ;强度σb = 420MPa 。 参考附录表5《金属切削刀具设计简明手册》选取刀具材料:18W 4r C V 。 1.4选择前角及后角 由表(2-4)《金属切削刀具设计简明手册》得:f γ =27°,f λ=13°。 1.5 刀具廓形及附加刀刃计算 根据设计要求取 r κ=20°,a=3mm ,b=1.5mm ,c=5mm ,d=0.5mm Lc---成形车刀切削刃总宽度, Lc=l+a+b+c+d 如图(2)所示:以0—0线(过9—10段切削刃)为基准,计算出1—12各点处的计算半径r 。

(注:为了避免尺寸偏差值对计算准确性的影响,故常采用计算尺寸---计算长度和计算角度来计算) 图( 2 ) jx r =基本半径±2 半径公差 mm r 788.710)4 1.024.25(22 j 1j =--==2r mm r r j j 94.745cos 5.1r 1043=??-== mm r j 29.845cos 1r 67=??-==j5r 6r j =9mm; mm tg r j 928.9201 12=? - =j8r mm mm r 975.9)4 1 .0220(r 910j =-==; ; mm 675.12)4 1 .024.25(r =±==j1211r ; ;

刀具常用钢材概述

刀具常用钢材简介 评价一把刀的钢材好坏,并不能仅仅从刀的锋利程度(硬度)来看,而是要从它使用钢材的:硬度,保持性(抗腐蚀性),柔韧性,易修复性这4个方面来综合的看。 一、钢合金 简单地说:钢就是铁和碳的合金。其它成分是为了使钢材性能有所区别。以下以字母顺序列出重要的钢材,他们包含以下成分: 碳(Carbon) 存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有5%以上的碳,也成为高碳钢。铬(Chromium) 增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有1。3%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈的。锰(Manganese) 重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM420V。 钼(MolyBDenum)

碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。 镍(Nickle) 保持强度、抗腐蚀性、和韧性。出现在L-6AUS-6和AUS-8中。 硅(Silicon) 有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。 钨(Tungsten) 增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。 钒(Vanadium) 增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPMT440V和420VA 含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒。 二、碳合金钢(非不锈钢) 这一类钢材是通常用于锻造的钢材。其实不锈钢也是可以锻造的,但非常困难。另外,同一块碳钢可以用经由分段冶炼方法来获得非常坚硬的刃端和坚韧而具弹性的背端,而不锈钢不可以这样冶炼。当然,在不同程度上碳钢比不锈钢容易生锈,也比使用不锈钢风险大。 在AISI钢材命名系统中,10xx是碳钢,其他的则是合金钢,例如,50xx系列是铬钢。在SAE命名系统中,带有字符标示的(例

金属切屑刀具设计-圆体成形车刀、棱体成形车刀、圆拉刀的设计

湖南工学院 金属切屑刀具课程设计说明书 题目圆体成形车刀、棱体成形车刀和圆拉刀的设计 专业级班姓名学号 指导老师职称

20**年6月12日 圆体成形车刀设计 设计说明及计算备注设计课题: 工件如下图所示,材料为ζb=0.65GPa碳钢棒料,成形表面粗糙度为Ra3.2um,在C1336 型单轴自动车床上加工。要求设计圆体成形车刀。 设计步骤如下: 1) 选择刀具材料 查高速钢牌号及用途表,选用普通高速钢W18Cr4V制造。 2) 选择前角γf及后角αf 根据材料的力学性能,查成形车刀的前角和后角表得:γf=10°,αf=12°。 3)画出刀具廓形(包括附加刃)计算图如下 取k r=20°,a=2mm,b=1.5mm,c=5mm,d=1mm。标出工作廓形各组成点1-12。以0-0线(通过9-10段切削刃)为基准(以便于对刀),计算出1-12各点处的计算半径r jx(为避免尺寸偏差值对计算准确性的影响,故常采用计算尺寸、计算半径、计算长度和计算角度来计算): a、b、c、d ------ 成形车刀的附加刀刃; a ------ 为避免切削刃转角处过尖而设的附加刀刃宽度,常取为0.5—3mm; b ------ 为考虑工件端面的精加工和倒角而设的附加刀刃宽度,其数值应大 于端面精加工余量和倒角宽度。为使该段刀刃在主剖面内有一定后 角,常做成偏角k r=15°--45°,b值取为1—3mm;如工件有倒角, k r值应等于倒角角度值,b值比倒角宽度大1—1.5mm; c ------ 为保证后续切断工序顺利进行而设的预切槽刀刃宽度,c值常取 3—8mm; d ------ 为保证成形车刀刃延长到工件毛坯表面之外而设的附加刀刃宽度, 常取d=0.5—2mm。高速钢牌号及用途表出自金属切削刀具设计简明手册第113页附表5。注:在本课程设计中本书后面简称刀具设计手册。成形车刀前角和后角表见刀具设计手册第28页表2-4。

硬质合金可转位车刀设计

硬质合金可转位车刀设 计 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

七、硬质合金可转位车刀设计 [原始条件] 加工推动架工序1中车¢50端面,工件材料HT200,铸件。表面粗糙度要求达到Ra6.3,需采用粗车完成其端面车削,总余量为3 mm,使用机床为CA6140普通车床。 试设计一把硬质合金可转位车刀。 设计步骤为: (1)选择刀片夹固结构。考虑到加工在CA6140普通车床上进行,且属于连续切削,由《切削手册》表4-22典型刀片夹固结构简图和特点,采用偏心式刀片夹固结构。 (2)选择刀片材料(硬质合金牌号)。由原始条件给定:被加工工件材料为HT200,连续切削,完成粗车工序,按照硬质合金的选用原则,选取刀片材料(硬质合金牌号)为YT15。 (3)选择车刀合理角度。根据刀具合理几何参数的选择原则,并考虑到可转位车刀几何角度的形成特点,选取如下四个主要角度:①前角γo= 15°;②后角?o= 5°;③主偏角k r = 90°;④刃倾角λs= -6°。 后角?o的实际数值以及副后角??o和副偏角k?rg在计算刀槽角度时,经校验后确定。 (4)选择切削用量。根据切削用量的选择原则,查表确定切削用量。

粗车时:切削深度a p =3mm,进给量f=0.5mm/r,切削速度v= 122m/min ; (5)选择刀片型号和尺寸: ①选择刀片有无中心固定孔。由于刀片夹具结构已选定为偏心式,因此应选用中心有固定孔的刀片。 ②选择刀片形状。按选定的主偏角k r = 90°,根据《切削手册》表 4-20刀片形状的选择原则,选用正三角形刀片。 ③选择刀片精度等级。由《切削手册》表4-17刀片精度等级的选择 原则,选用U级。 ④选择刀片内切圆直径d(或刀片边长L)。根据已确定的a p =3mm,k r = 90°和λs= 0°,将a p、k r和λs代入《金属切削刀具课程设计指导书》 公式(2.5),可求出刀刃的实际参加工作长度L se 为 L se = s r p k a λ cos sin=? - ?6 cos 90 sin 3 =3.0mm 则所选用的刀片边长L应为 L>1.5 L se =1.5×3.016=4.50mm 因为是正三角形刀片,L=√3d d=2.60mm ⑤选择刀片厚度s。根据已选定的a p =3mm、f=0.5mm/r,根据刀片厚度的诺模图求得刀片厚度s≥3.8mm。 ⑥选择刀尖圆弧半径r ε。根据已选定的a p =3mm、f=0.5mm/r及通过刀 尖圆弧半径诺模图,求得连续切削时的r ε =0.8mm。 ⑦由于工件材料为HT200,所以刀片可以无断屑槽。

车刀的各种类型

各种车刀角度 一、常用车刀种类 二、车刀的用途 三、90度外圆车刀的角度 注:后角、副后角均为8-12度 a)90°偏刀、b)75°外圆车刀、c)45°外圆、端面车刀、 d)切断刀、e)内孔车刀、f)成形刀、g)螺纹车刀

四、端面车刀 五、切断刀

六、成形刀 七、内孔刀

八、螺纹车刀 1、角度样板 2、螺纹车刀种类:外螺纹车刀和内螺纹车刀 图一:60度外螺纹车刀图二:60度内螺纹车刀 3、对刀方法

外螺纹车刀的装夹 a)内螺纹车刀的装夹 4、螺纹的车削方法 a)左右进给法b)直进法

九、砂轮 1、砂轮的选用必须根据刀具材料来选用 1)氧化铝砂轮氧化铝砂轮多呈灰色或白色,其砂粒韧性好,比较锋利,但硬度稍低(指磨粒容易从砂轮上脱落),适于刃磨高速钢车刀和硬质合金车刀的刀柄部分。氧化铝砂轮也称为刚玉砂轮。 2)碳化硅砂轮碳化硅砂轮多呈绿色,其磨粒硬度高,切削性能好,但较脆,适于刃磨硬质合金车刀。 十、刻度盘的计算和应用 在车削工件时,为了正确和迅速的掌握进刀深度,通常利用中滑板或小滑板上刻度盘进行操作。 中滑板的刻度盘装在横向进给的丝杠上,当摇动横向进给丝杠转一圈时,刻度盘也转了一周,这时固定在中滑板上的螺母就带动中滑板车刀移动一个导程、如果横向进给丝杠导程为5mm,刻度盘分100格,当摇动进给丝杠转动一周时,中滑板就移动5mm,当刻度盘转过一格时,中滑板移动量为5÷100=0.05mm。使用刻度盘时,由于螺杆和螺母之间配合往往存在间隙,因此会产生空行程(即刻度盘转动而滑板未移动)。所以使用刻度盘进给过深时,必须向相反方向退回全部空行程,然后再转到需要的格数,而不能直接退回到需要的格数。但必须注意、中滑板刻度的刀量应是工件余量的二分之一。见下图。

硬质合金可转位车刀设计

七、硬质合金可转位车刀设计 [原始条件] 加工推动架工序1中车¢50端面,工件材料HT200,铸件。表面粗糙度要求达到Ra6.3,需采用粗车完成其端面车削,总余量为3 mm,使用机床为CA6140普通车床。 试设计一把硬质合金可转位车刀。 设计步骤为: (1)选择刀片夹固结构。考虑到加工在CA6140普通车床上进行,且属于连续切削,由《切削手册》表4-22典型刀片夹固结构简图和特点,采用偏心式刀片夹固结构。 (2)选择刀片材料(硬质合金牌号)。由原始条件给定:被加工工件材料为HT200,连续切削,完成粗车工序,按照硬质合金的选用原则,选取刀片材料(硬质合金牌号)为YT15。 (3)选择车刀合理角度。根据刀具合理几何参数的选择原则,并考虑到可转位车刀几何角度的形成特点,选取如下四个主要角度:①前角γo=15°;②后角αo= 5°;③主偏角k r = 90°;④刃倾角λs= -6°。 后角αo的实际数值以及副后角α'o和副偏角k'rg在计算刀槽角度时,经校验后确定。 (4)选择切削用量。根据切削用量的选择原则,查表确定切削用量。 粗车时:切削深度a p=3mm,进给量f=0.5mm/r,切削速度v= 122m/min ; (5)选择刀片型号和尺寸: ①选择刀片有无中心固定孔。由于刀片夹具结构已选定为偏心式,因此应选

用中心有固定孔的刀片。 ②选择刀片形状。按选定的主偏角k r = 90°,根据《切削手册》表4-20刀片形状的选择原则,选用正三角形刀片。 ③选择刀片精度等级。由《切削手册》表4-17刀片精度等级的选择原则,选用U 级。 ④选择刀片切圆直径d (或刀片边长L )。根据已确定的a p =3mm ,k r = 90°和λs = 0°,将a p 、k r 和λs 代入《金属切削刀具课程设计指导书》公式(2.5),可求出刀刃的实际参加工作长度L se 为 L se =s r p k a λcos sin =?-?6cos 90sin 3=3.0mm 则所选用的刀片边长L 应为 L >1.5 L se =1.5×3.016=4.50mm 因为是正三角形刀片,L=√3d d=2.60mm ⑤选择刀片厚度s 。根据已选定的a p =3mm 、f=0.5mm/r ,根据刀片厚度的诺模图求得刀片厚度s ≥3.8mm 。 ⑥选择刀尖圆弧半径r ε。根据已选定的a p =3mm 、f=0.5mm/r 及通过刀尖圆弧半径诺模图,求得连续切削时的r ε=0.8mm 。 ⑦由于工件材料为HT200,所以刀片可以无断屑槽。 综合以上七方面的选择结果,确定选用的刀片型号是:TNUM160408-V2(《金属切削刀具课程设计指导书》表2.11),其具体尺寸为 L =16.5mm ;s=4.76mm ;d 1=3.81mm ;m=13.494mm ;r ε=0.8mm 刀片刀尖角εb = 60°;刀片刃倾角λsb = 0°;断屑槽宽Wn =2mm ;取法前角γnb = 20°。刀片法后角αnb = 0°

车刀种类和用途

车刀种类和用途 序 一、车刀是应用最广的一种单刃刀具,也是学习、分析各类刀具的基础。车刀用于各种车床上,加工外圆、内孔、端面、螺纹、车槽等。车刀按结构可分为整体车刀、焊接车刀、机夹车刀、可转位车刀和成型车刀。其中可转位车刀的应用日益广泛,在车刀中所占比例逐渐增加。 二、硬质合金焊接车刀所谓焊接式车刀,就是在碳钢刀杆上按刀具几何角度的要求开出刀槽,用焊料将硬质合金刀片焊接在刀槽内,并按所选择的几何参数刃磨后使用的车刀。 三、机夹车刀机夹车刀是采用普通刀片,用机械夹固的方法将刀片夹持在刀杆上使用的车刀。此类刀具有如下特点:(1)刀片不经过高温焊接,避免了因焊接而引起的刀片硬度下降、产生裂纹等缺陷,提高了刀具的耐用度。(2)由于刀具耐用度提高,使用时间较长,换刀时间缩短,提高了生产效率。(3)刀杆可重复使用,既节省了钢材又提高了刀片的利用率,刀片由制造厂家回收再制,提高了经济效益,降低了刀具成本。(4)刀片重磨后,尺寸会逐渐变小,为了恢复刀片的工作位置,往往在车刀结构上设有刀片的调整机构,以增加刀片的重磨次数。(5)压紧刀片所用的压板端部,可以起断屑器作用。 四、可转位车刀可转位车刀是使用可转位刀片的机夹车刀。一条切削刃用钝后可迅速转位换成相邻的新切削刃,即可继续工作,直到刀片上所有切削刃均已用钝,刀片才报废回收。 更换新刀片后,车刀又可继续工作。1.可转位刀具的优点与焊接车刀相比,可转位车刀具有下述优点:(1)刀具寿命高由于刀片避免了由焊接和刃磨高温引起的缺陷,刀具几何参数完全由刀片和刀杆槽保证,切削性能稳定,从而提高了刀具寿命。(2)生产效率高由于机床操作工人不再磨刀,可大大减少停机换刀等辅助时间。(3)有利于推广新技术、新工艺可转位刀有利于推广使用涂层、陶瓷等新型刀具材料。(4)有利于降低刀具成本由于刀杆使用寿命长,大大减少了刀杆的消耗和库存量,简化了刀具的管理工作,降低了刀具成本。2.可转位车刀刀片的夹紧特点与要求(1)定位精度高刀片转位或更换新刀片

可转位车刀

45°可转位车刀设计 一、设计背景 硬质合金刀片是标准化、系列化生产的,其几何形状均事先磨出。而车刀的前后角是靠刀片在刀杆槽中安装后得到的,刀片可以转动,当一条切削刃用钝后可以迅速转位将相邻的新刀刃换成主切削刃继续工作,直到全部刀刃用钝后才取下刀片报废回收,再换上新的刀片继续工作。因此可转位式车刀完全避免了焊接式和机械夹固式车刀因焊接和重磨带来的缺陷,无须磨刀换刀,切削性能稳定,生产效率和质量均大大提高,是当前我国重点推广应用的刀具之一 二、原始数据 工件材料:40Cr Ra3.2 机床:C620 CA6140 v=80~120m/min,a p=0.2~8mm,f=0.5~2mm/r 其他数据: c 三、刀片材料的选择 由给定的原始材料:被加工工件材料为40Cr,连续切削完成粗车工序,按照硬质合金选用原则,选取刀片材料(硬质合金牌号)为YT5。 四、刀片夹固结构的选择 考虑到加工在CA6140普通机床上进行,且属于连续切削,参照《刀具课程设计指导书》表2.1典型刀片加固结构简图和特点,采用偏心式刀片夹固结构。

五、 刀具合理几何参数的选择 根据刀具几何参数的选用原则,并考虑到可转位车刀的几何角度形成特点,选取如下四 个主要角度:①前角°07.5?=②后角°07.5α= ③主偏角°r 45K = ④刃倾角°5s λ=-。 后角的实际数值以及副后角和副角在计算刀槽角度时经校验后确定。 六、 切削用量的选择 根据切削用量的选择原则,查表确定切削用量。粗车时切削深度p a =3mm ,进给量f=0.5mm/r,切削速度v=80m/min. 七、 刀片形状和尺寸的选择 ① 选择刀片有无中心固定孔。由于刀片加固结构已选定为偏心式,因此应选用有中心固定孔的刀片。 ② 选择刀片形状。按选定主偏角45°,参照本章2.4节的表2.3刀片形状的选用原则,选用正方形刀片(这样既可以提高刀尖强度,又增加了散热面积,使刀具寿命有所提高,还可以减小已加工表面的残余面积,使表面粗糙度数值减小)。 ③ 选择刀片精度等级。参照本章2.4节表2.4刀片精度等级的选用原则,选用U 级。 ④ 选择刀片内切圆直径。根据已定p a =3mm ,°r 45K =,°5s λ=-,代入下式,可 得: Le=p a /sin r K cos s λ=3.011mm; 1.5L Le > =1.5 3.011?=4.50mm ⑤ 选择刀片厚度s 。根据已选定的粗车时切削深度p a =3mm, 进给量f=0.5mm/r,通过图 2.3选择刀片厚度的诺模图,求得刀片厚度S ≥4.76mm 。 ⑥ 选择刀尖圆弧半r 。根据已选定的粗车时切削深度p a =3mm, 进给量f=0.5mm/r,利用一般刀片刀尖圆弧半径应等于或大于车削时最大进给量的1.25倍,求得连续切削时的刀尖圆弧半径为r=0.6mm 。 ⑦ 选择刀片断屑槽形式和尺寸,参照本章2.4节中刀片断屑槽形式和尺寸的选择原则,根据已知的原始条件,选用A 型断屑槽,断屑槽的尺寸在选定刀片型号和尺寸后便可确定。 综合以上七方面的选择结果,确定选用的刀片型号是FNUM190608(见下图),其具体尺寸为 : L=19mm ,d=15.875mm ,s=6.35mm ,1d =6.35mm ,r=0.8mm 刀片刀尖角ε=82°刀片刃倾角 °0sb λ=;断屑槽宽度n W =4mm ;取法前角nb ?=15°。

棱形成形车刀设计说明

棱形成形车刀设计 :XXX 学号:XXX 班级:XXX 导师:XXX

前言 成形车刀是加工回转体成形表面的专用工具,它的切削刃形状是根据工件的轮廓设计的。用成形车刀加工,只要一次切削行程就能切出成形表面,操作简单,生产效率高,成形表面的精度与工人操作水平无关,主要取决于刀具切削刃的制造精度。它可以保证被加工工件表面形状和尺寸精度的一致性和互换性,加工精度可达IT9—IT10,表面粗糙度Ra6.3—Ra3.2。成形车刀的可重磨次数多,使用寿命长,但是刀具的设计和制造较复杂,成本高,故主要用在小型零件的大批量生产中。由于成形车刀的刀刃形状复杂,用硬质合金作为刀具材料时制造比较困难,因此多用高速钢作为刀具的材料。 棱形成型车刀是成型车刀三种中的一种,棱柱体的刀头和刀杆分开制作,大大增加了沿前刀面的重磨次数,刀体刚性好,但比圆体成形车刀制造工艺复杂,刃磨次数少,且只能加工外成形表面。棱体成形车刀的后刀面是成形棱形柱面,前刀面是平面。后刀面与燕尾面K-K平行,而前刀面与K-K呈倾角90°-(rf+af )。在制造棱体成形车刀时,将前刀面与后刀面的夹角磨成 90°-(rf+af )。切削时,将后刀面安装出af 角,这样就形成了前角rf 和后角af 。 棱体成形车刀是以燕尾作为定位基准,配装在刀夹的燕尾槽。刀具燕尾的后平面是夹固基准。安装时,刀体竖立并倾斜角,刀夹下端的螺钉可将计算基准点的位置调整与工件中心等高后用螺栓夹紧,同时下端螺钉可以承受部分切削力,以增强刀具的刚性。 棱体成形车刀的刃磨比较简单,只要在工具磨床上使用一简单的双向万能刃磨夹具,将刀具后刀面与砂轮表面的垂线装成(rf+af)的角度即可刃磨。

详细讲解车刀的种类和用途

详细讲解车刀的种类和用途 刀具材质的改良和发展是今日金属加工发展的重要课题之一,因为良好的刀具材料能有效、迅速的完成切削工作,并保持良好的刀具寿命。一般常用车刀材质有下列几种: 1 高碳钢: 高碳钢车刀是由含碳量0.8%~1.5%之间的一种碳钢,经过淬火硬化后使用,因切削中的摩擦四很容易回火软化,被高速钢等其它刀具所取代。一般仅适合于软金属材料之切削,常用者有SK1,SK2、、、、SK7等。 2 高速钢: 高速钢为一种钢基合金俗名白车刀,含碳量0.7~0.85%之碳钢中加入W、Cr、V及Co等合金元素而成。例如18-4-4高速钢材料中含有18%钨、4%铬以及4%钒的高速钢。高速钢车刀切削中产生的摩擦热可高达至6000C,适合转速1000rpm以下及螺纹之车削,一般常用高速钢车刀如SKH2、SKH4A、SKH5、SKH6、SKH9等。 3 非铸铁合金刀具: 此为钴、铬及钨的合金,因切削加工很难,以铸造成形制造,故又叫超硬铸合金,最具代表者为stellite,其刀具韧性及耐磨性极佳,在8200C温度下其硬度仍不受影响,抗热程度远超出高速钢,适合高速及较深之切削工作。 4烧结碳化刀具: 碳化刀具为粉未冶金的产品,碳化钨刀具主要成分为50%~90%钨,并加入钛、钼、钽等以钴粉作为结合剂,再经加热烧结完成。碳化刀具的硬度较任何其它材料均高,有最硬高碳钢的三倍,适用于切削较硬金属或石材,因其材质脆硬,故只能制成片状,再焊于较具韧性之刀柄上,如此刀刃钝化或崩裂时,可以更换另一刀口或换新刀片,这种够车刀称为舍弃式车刀。 碳化刀具依国际标准(ISO)其切削性质的不同,分成P、M、K三类,并分别以蓝、黄、红三种颜色来标识: P类适于切削钢材,有P01、P10、P20、P30、P40、P50六类,P01为高速精车刀,号码小,耐磨性较高,P50为低速粗车刀,号码大,韧性高,刀柄涂蓝色以识别之。 K类适于切削石材、铸铁等脆硬材料,有K01、K10、K20、K30、K40五类,K01为高速精车刀,K40为低速粗车刀,此类刀柄涂以红色以识别。 M类介于P类与M类之间,适于切削韧性较大的材料如不?袗?等,此类刀柄涂以黄色来识别之。 5 陶瓷车刀:

棱形成形车刀设计

棱形成形车刀设计 姓名:XXX 学号:XXX 班级:XXX 导师:XXX

前言 成形车刀是加工回转体成形表面的专用工具,它的切削刃形状是根据工件的轮廓设计的。用成形车刀加工,只要一次切削行程就能切出成形表面,操作简单,生产效率高,成形表面的精度与工人操作水平无关,主要取决于刀具切削刃的制造精度。它可以保证被加工工件表面形状和尺寸精度的一致性和互换性,加工精度可达IT9—IT10,表面粗糙度Ra6.3—Ra3.2。成形车刀的可重磨次数多,使用寿命长,但是刀具的设计和制造较复杂,成本高,故主要用在小型零件的大批量生产中。由于成形车刀的刀刃形状复杂,用硬质合金作为刀具材料时制造比较困难,因此多用高速钢作为刀具的材料。 棱形成型车刀是成型车刀三种中的一种,棱柱体的刀头和刀杆分开制作,大大增加了沿前刀面的重磨次数,刀体刚性好,但比圆体成形车刀制造工艺复杂,刃磨次数少,且只能加工外成形表面。棱体成形车刀的后刀面是成形棱形柱面,前刀面是平面。后刀面与燕尾面K-K平行,而前刀面与K-K呈倾角90°-(rf+af )。在制造棱体成形车刀时,将前刀面与后刀面的夹角磨成 90°-(rf+af )。切削时,将后刀面安装出af 角,这样就形成了前角rf 和后角af 。 棱体成形车刀是以燕尾作为定位基准,配装在刀夹的燕尾槽内。刀具燕尾的后平面是夹固基准。安装时,刀体竖立并倾斜角,刀夹下端的螺钉可将计算基准点的位置调整与工件中心等高后用螺栓夹紧,同时下端螺钉可以承受部分切削力,以增强刀具的刚性。 棱体成形车刀的刃磨比较简单,只要在工具磨床上使用一简单的双向万能刃磨夹具,将刀具后刀面与砂轮表面的垂线装成(rf+af)的角度即可刃磨。

圆孔拉刀刀具课程设计说明书

序言 机械制造工艺学课程设计使我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的.这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。 就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后参加祖国的“四化”建设打下一个良好的基础。

目录 0.序言 (1) 1.可转位车刀设计 (3) 2.圆孔拉刀设计 (10) 3.结语 (15) 4参考文献 (16)

一可转位车刀设计 设计题目: 已知:工件材料Y12,使用机床CA6140,加工后dm=22,Ra3.2,需精车完成,加工余量自定,设计装T刀片95°偏头外圆车刀。 设计步骤: 1.1 选择刀片夹固结构: 考虑到加工在CA6140普通车床上进行,属于连续切削,采用杠杆式刀片夹固结构。 1.2选择刀片材料:(硬质合金牌号) 由原始条件给定:被加工工件材料为Y12,连续切削,完成精车工序,按照硬质合金的选用原则,选取刀片材料(硬质合金牌号)为YT30。 1.3选择车刀合理角度: 根据刀具合理几何参数的选择原则,并考虑到可转位车刀:几何角度的形成特点,选取如下四个主要角度。 (1)前角=15°,(2)后角=8°,(3)主偏角=95°; (4)刃倾角=-3°, 后角α。的实际数值以及副后角在计算刀槽角度时,经校验后确定。 1.4选择切削用量:

根据切削用量的选择原则,查表确定切削用量为, 精车: p a =0.5 mm ,f =1mm/r ,v =60m/min 1.5选择刀片型号和尺寸: (1)选择刀片有无中心固定孔 由于刀片夹固结构已选定为杠杆式,因此应选用有中心固定孔的刀片。 (2)选择刀片形状 按选定的主偏角=95°,选用三角形刀片 (3)选择刀片精度等级 选用U 级。 (4)选择刀片内切圆直径d (或刀片边长L ) 根据已选定的 p a 、 r K 、s λ,可求出刀刃的实际参加工作Lse 。为: p se r s 0.5 0.804 sin cos sin95cos(3)a L K = = =??λ L>1.5L se =1.026 (5)选择刀片厚度S 根据 p a ,f ,利用诺模图,得S ≥4..73 (6)选择刀尖圆弧半径 r ε :根据 p a ,f ,利用诺模图,得连续切削 r ε =1.6 (7)选择刀片断屑槽型式和尺寸 根据条件,选择A 型。当刀片型号和尺寸确定后,断屑槽尺寸便可确定。 确定刀片型号:TNUM220416-A ,尺寸为:

机械制造技术基础课程设计-刀具课程设计指导书

机械制造技术基础课程设计指导书 (刀具部分) 一、设计目的及要求: 刀具课程设计是机械制造类(冷加工)专业学生在学习《机械制造技术基础》、《机械制造装备设计》等课程及其它有关课程之后进行的一个实践性教学环节,其目的是巩固和加深理论教学内容,培养学生综合运用所学理论,解决生产实际中刀具设计问题的能力。通过刀具课程设计,应使学生达到如下要求: (一)初步掌握几种典型刀具的设计计算方法, (二)学会绘制刀具工作图,标注必要的技术条件, (三)学会使用各种设计资料、手册和国家标准, 设计内容: 刀具课程设计的内容是从成形车刀、成形铣刀、拉刀、可转位车刀或可转位铣刀中选择两把进行设计,每把刀具设计内容包括: 1.刀具工作图:1 张; 2.设计计算说明书:1 份(不少于3000 字)。 二、设计刀具的一般步骤 (一)确定刀具的类型; (二)选择刀具材料; (三)确定刀具合理的几何角度; (四)确定刀具结构参数(包括:刀体尺寸、刀齿齿数、刀齿和容屑槽形状和尺寸、刀具夹持部分的结构和尺寸等); (五)设计计算刀具的廓形; (六)制订合理的技术条件(包括:重要尺寸的公差、形位公差、各重要表面的粗糙度、对刀具材料及热处理的要求等); (七)考虑刀具的制造工艺及检验方法; (八)绘制刀具工作图; (九)编写出刀具设计计算说明书。 三、刀具工作图及设计计算说明书 (一)制刀具工作图时应注意的主要问题: 刀具设计计算最终要用刀具工作图表示出来,为刀具制造提供全部参数及要求。刀具工作图在图纸中的布置,应当各部分之间协调,松、密恰当,整体美观。绘制刀具工作图时应注意的主要问题如下: 1.刀具工作图的画法:刀具工作图应表示出该刀具的结构特征及其具体尺寸。同时除主要视图外,常有剖面图,局部放大图。如切削刃口型式,分屑槽结构型式、小圆角及空刀槽等。在绘制刀具工作图时,除按机械制图投影理论绘制外,通常还采用简化画法。例如齿轮滚刀、蜗轮滚刀、花键滚刀等正视图其外圆及两端面用粗实线画,而刀齿、螺旋槽则可用双点划线简化表示,但螺旋方向必须一致。拉刀切削部粗切齿、精切齿、校准齿,按类只画前后几个齿而中间齿可以用简化画出,即外圆用粗实线,容屑槽底用细实线,其拉刀长度可以断开等。 2.刀具工作图的标注:刀具工作图像其它图纸一样按国家标准规范进行标注尺寸、公差及表面粗糙度。形位公差尽量标注在图形上,有时为了简便也可用文字说明,写在技术要求中。

常用车刀简介.

第一节常用车刀简介 一、车刀的种类 图3–1 车刀的种类 1.按用途可分为: ①外圆车刀 如图示3–1a 、b 主偏角一般取75°和90°,用于车削外圆表面和台阶; ②端面车刀 如图示3–1c,主偏角一般取45°,用于车削端面和倒角,也可用来车外圆; ③切断、切槽刀 如图示3–1d 用于切断工件或车沟槽。 ④镗孔刀 如图示3–1e用于车削工件的内圆表面,如圆柱孔、圆锥孔等; ⑤成形刀 如图示3–1f 有凹、凸之分。用于车削圆角和圆槽或者各种特形面;

⑥内、外螺纹车刀 用于车削外圆表面的螺纹和内圆表面的螺纹。图3–1g为外螺纹车刀。 2.按结构可分为: ①整体式车刀 刀头部分和刀杆部分均为同一种材料。用作整体式车刀的刀具材料一般是整体高速钢,如图3–1f 所示。 ②焊接式车刀 刀头部分和刀杆部分分属两种材料。即刀杆上镶焊硬质合金刀片,而后经刃磨所形成的车刀。图3–1所示a、b、c、d、e、g均为焊接式车刀。 ③机械夹固式车刀 刀头部分和刀杆部分分属两种材料。它是将硬质合金刀片用机械夹固的方法固定在刀杆上的,如图3–1h所示。它又分为机夹重磨式和机夹不重磨式两种车刀。图3–2所示即是机夹重磨式车刀。图3–3即是机夹不重磨车刀。两者区别在于:后者刀片形状为多边形,即多条切削刃,多个刀尖,用钝后只需将刀片转位即可使新的刀尖和刀刃进行切削而不须重新刃磨;前者刀片则只有一个刀尖和一个刀刃,用钝后就必须的刃磨。 图3–2 机夹重磨式车刀图3–3 机夹不重磨式车刀

目前,机械夹固式车刀应用比较广泛。尤其以数控车床应用更为广泛。用于车削外圆、端面、切断、镗孔、内、外螺纹等。 二、常用车刀的用途 如图3–4所示: 外圆车刀(90°偏刀、75°偏刀、 60°偏刀)车外圆和台阶; 端面车刀(45°弯头刀)车端面; 切刀切槽和切断; 螺纹车刀车内外螺纹; 镗孔刀车内孔; 滚花刀滚网纹和直纹; 圆头刀车特形面。

5常用车刀种类介绍

第5章常用车刀种类介绍 车刀是应用最广的一种刀具,车刀按加工表面特征分:外圆车刀、车槽车刀、螺纹车刀、内孔车刀等,表5-1是常用车刀的形式及代号。 表5-2 常用车刀的形式及代号 我们在第三章刀具的几何参数中,对刀具角度的测量及功能等进行了简单的分析,其实不同刀具的参数等的分析大致相同,所以在本章中我们不对所有刀具作一一分析,只对90 °外圆车刀、45°端面车刀、割断刀进行分析,并用ug立体图的形式展现出来,合其更直观,但于大家接受。 一. 90 °外圆车刀 1.车刀的图示标注 如图5-1所示,设车刀以纵向进给车外圆。90 °外圆车刀主偏角kr=90 °,车刀切削平面的投影就是车刀俯视图,图中主切削刃与副切削刃处在同一平面上。 90 °外圆车刀也有三个刀面:前面、主后面及副后面(定义同第三章刀具的几何参数)。在图上需要标注6个独立的角度:前角、主后角、副后角、主偏角、副偏角和刃倾角(定义同第三章刀具的几何参数)。 2.立体图动画展示90 °外圆车刀的结构特点(见Ug立体图1) 3. 90 °外圆车刀的特点和功用 90 °外圆车刀,又称偏刀。常用的有焊接式和机夹式二种,常用的刀头材料为硬质合金现在焊接式车刀基本上还是以硬质合金为主(图5-2),机夹式己广泛采用涂层刀具,因为图层刀具耐磨性好,使用寿命长,切削加工性良好,所以是发展趋势。

图5-1 90 °外圆车刀几何角度 图5-2 焊接式90 °外圆车刀 90 °外圆车刀按进给方向不同分为左偏刀和右偏刀,我们最常用的是右偏刀。右偏刀,由右向左进给。用来车削工件的外圆、端面和台阶,它的主偏角较大,车削外圆时作用于工件的径向力小,不易出现将工件顶弯的现象,一般用于半精加工;左偏刀,由左向右进给,用于车削工件外圆和台阶,也用于车削外径较大而长度短的零件(盘类件)的端面。 4.案例分析 图5-3是钨钛钴类硬质合金刀具(YT15)的角度图示,请根据图示说出这把车刀的六个独立角度及简单分析这把车刀的切削用途。 根据实图标注,这是一把90 °的外圆车刀,所以主偏角为90 °,这把刀的的前角为20°,主后角为6 °,副后角为5 °,副偏角为8 °,刃倾角为3 °。 其次为了增加这把刀的切削刀强度,在切削刃上磨出了5°的负倒棱。为了有利断屑还磨出断屑槽,断屑槽的圆弧为R3。根据我们学过的刀具角度的功用、刀具材料等相关知识做出下列判断:

可转位车刀的设计方案

一: 选择刀片夹固结构 工件的直径D 为 50mm,工件长度L=360mm.因此可以在普通机床CA6140上加工. 表面粗糙度要求1.6μm,为精加工,但由于可转为车刀刃倾角s λ通常取负值,切屑流 向已加工表面从而划伤工件,因此只能达到半精加工. 参照《机械制造技术基础课程补充资料》表2.1典型刀片结构简图和特点,采用偏心式刀片加固结构较为合适. 二: 选择刀片结构材料. 加工工件材料为45号钢,正火处理,连续切屑,且加工工序为粗车,半精车了两道工序.由于加工材料为钢料,因此刀片材料可以采用YT 系列,YT15宜粗加工,YT30宜精加工,本题要求达到半精加工,因此材料选择YT30硬质合金. 三: 选择车刀合理角度 根据《机械制造技术基础》刀具合理几何参数的选择,并考虑可转位车刀几何角度的形成特点,四个角度做如下选择: ① 前角0γ:根据《机械制造技术基础》表3.16,工件材料为中碳钢(正火),半精车, 因此前角可选0γ=20, ② 后角0?:根据《机械制造技术基础》表3.17,工件材料为中碳钢(正火),半精车,因此后角可选0?=6 ③ 主偏角γκ:根据题目要求,主偏角γκ=75 ④ 刃倾角s λ:为获得大于0的后角0?及大于0的副刃后角'0?,刃倾角s λ=-5 后角0?的实际数值及副刃后角'0?和副偏角'γκ在计算刀槽角度时经校验确定. 四: 选择切屑用量 根据《机械制造技术基础》表3.22: 粗车时,背吃刀量p a =3mm,进给量f=0.6mm/r,切削速度v=110m/min 半精车时, 背吃刀量p a =1mm,进给量f=0.3mm/r,切削速度v=130m/min 五: 刀片型号和尺寸 ① 选择刀片有无中心孔.由于刀片加固结构已选定为偏心式,因此应选用有中心固 定孔的刀片. ② 选择刀片形状.按选定主偏角γκ=75,参照《机械制造技术基础课程补充资料》2.4.4.2刀片形状的选择原则,选用正方形刀片. ③ 选择刀片的精度等级.参照《机械制造技术基础课程补充资料》2.4.4.3节刀片精度等级的选择原则,一般情况下选用U 级. ④ 选择刀片内切圆直径d(或刀片边长L).根据已确定的背吃刀量p a =3mm, 主偏

可转位车刀的设计方案

一、车刀的结构 机夹可转位车刀是将可转位硬质合金刀片用机械的方法夹持在刀杆上形成的车刀,一般由刀片、刀垫、夹紧元件和刀体组成(见图1)。 图1 机夹可转位车刀组成 根据夹紧结构的不同可分为以下几种形式。 ·偏心式(见图2) 偏心式夹紧结构利用螺钉上端的一个偏心心轴将刀片夹紧在刀杆上,该结构依靠偏心夹紧,螺钉自锁,结构简单,操作方便,但不能双边定位。当偏心量过小时,要求刀片制造的精度高,若偏心量过大时,在切削力冲击作用下刀片易松动,因此偏心式夹紧结构适于连续平稳切削的场合。 图2 偏心式夹紧结构组成 ·杠杆式(见图3) 杠杆式夹紧结构应用杠杆原理对刀片进行夹紧。当旋动螺钉时,通过杠杆产生夹紧力,从而将刀片定位在刀槽侧面上,旋出螺钉时,刀片松开,半圆筒形弹簧片可保持刀垫位置不动。该结构特点是定位精度高、夹固牢靠、受力合理、适 用方便,但工艺性较差。 图3 杠杆式夹紧结构组成 ·楔块式(见图4) 刀片内孔定位在刀片槽的销轴上,带有斜面的压块由压紧螺钉下压时,楔块一面靠紧刀杆上的凸台,另一面将刀片推往刀片中间孔的圆柱销上压紧刀片。该结构的特点是操作简单方便,但定位精度较低,且夹紧力与切削力相反。 图4 楔块式夹紧结构 不论采用何种夹紧方式,刀片在夹紧时必须满足以下条件:①刀片装夹定位要符合切削力的定位夹紧原理,即切削力的合力必须作用在刀片支承面周界内。 ②刀片周边尺寸定位需满足三点定位原理。③切削力与装夹力的合力在定位基面(刀片与刀体)上所产生的摩擦力必须大于切削振动等引起的使刀片脱离定位基面的交变力。夹紧力的作用原理如表1所示。 可转位车刀片的形状有三角形、正方形、棱形、五边形、六边形和圆形等,是由硬质合金厂压模成形,使刀片具有供切削时选用的几何参数(不需刃磨);同

圆体成形车刀设计

圆体成形车刀设计 1150111-01 秦磊 一、设计课题: 工件材料为45#钢,0.6b GPa σ=,工件如下图1所示。要求设计圆体成形车刀,D=35mm ,d 1=22.28mm ,d 2=34mm ,d 3=32mm ,L 1=10mm ,L 2=25mm ,L 3=30mm ,L 4=40mm ,R=20mm 。 图1 加工工件图

二、圆形成形车刀的结构尺寸: 序号 项目 数据来源或计算 采用值 1 刀具材料 W18Cr4V 2 前角与后角 由表2-6 15;12f f γα=?=? 3 最大廓形深度 max 3422.28 5.862 t mm -= = max 5.86t mm = 4 外径 由表2-2 D 0=40mm R 1=20mm 5 画出工件廓形及刀具廓形标出各组成点及计算半 径 计算图(见图2) r 1=22.28/2=11.14mm r 2·3=34/2=17mm r 4·5=32/2=16mm r 1=11.14mm r 2·3=17mm r 4·5=16mm 6 成型刀宽度 L 0=L 4+a+b+c+d =40+4+1+6+1=52mm L 0=52mm 校验成型刀的宽 度 工件的最小直径d min : min 12211.1422.28d r mm ==?= 0min 52 2.3 2.522.28 L d ==<允许 宽度允许 7 其余尺寸 按表2-2 d=13mm d 1=20mm d 2=20mm

工件各组成点尺寸图2 三、圆形成形车刀截形计算: 已知 条件 工件计算半径1r 11.14mm =,23r 17mm = ,45r 16mm = 刀具前,后角及外径15;12f f γα=?=?,R 1=20mm 步骤 计算 采用值(mm ) 1 1h sin 11.14sin15 2.8832f r γ==??= h=2.8832 2 11cos 11.14cos1510.7604f A r γ==??= 110.7604A =

可转位车刀课程设计说明书

前言 当前刀具结构的变革正朝着可转位、多功能、专用复合刀具和模块式工具系统的方向发展,各种精密、高效、优质的可转位刀具已应用于车削,近十年来我国工具工业有了长足进步,切削技术迅速提高,据专家分析,我国切削加工及刀具技术的水平与工业发达国家相比大致要落后15~20年。近年来国内轿车工业引进了几条具有国际20世纪90年代水平的生产线,但所用工具的国内供给率只能达到20%的低水平。为改变这种状况,我国工具行业需要加速进口刀具国产化的步伐,必须更新经营理念,从主要向用户“卖刀具”转到为用户“提供成套切削技术,解决具体加工问题”的经营方向上来。要根据自身产品的专业优势,精通相应的切削工艺,不断创新开发新产品。用户行业则应增大刀具费用的投入,充分利用刀具在提高效率、降低成本,实现最大程度的资源(如切削数据库)共享。有关部门将产、学、研各部门的科研力量组织起来,集中优势,一方面积极引进国外先进刀具制造技术,提高刀具产品水平,加快刀具产品(尤其是数控刀具产品)的国产化步伐;另一方面应结合生产实际,系统地推广使用各种先进刀具和先进切削技术。我们相信,通过正确的政策引导和企业的有序竞争,完全有可能使我国的切削加工与刀具技术赶上国外先进水平,并做到有所发展与创新铣削、钻削等领域,成为刀具结构发展的主流。

目录 1 可转位车刀设计 (2) (1)选择刀片夹固结构 (2) (2)选择刀片材料(硬质合金牌号) (2) (3)选择车刀合理角度 (2) (4)选择切削用量 (2) (5)选择刀片型号和尺寸 (2) (6)确定刀垫型号和尺寸 (3) (7)刀槽角度计算步骤 (4) (8)选择刀杆材料和尺寸 (7) (9)选择偏心角及其相关尺寸 (7) 2.图孔拉刀设计举例 (9) (1)选择拉刀材料 (9) (2)选择拉削方式 (9) (3)选择拉刀几何参数 (9) (4)确定校准齿直径(以角标x表示校准齿的参数) (9) (5)确定拉削余量 (9) (6)选取齿升量 (9) (7)设计容屑槽 (9) (8)确定分屑槽参数 (10) (9)选择拉刀前柄部形状和尺寸 (11) (10)校验拉刀强度与拉床载荷 (11) (11)确定拉刀齿数及每齿直径 (11) (12)设计拉刀其他部分 (12) (13)计算和校验拉刀总长 (12)

相关主题
文本预览
相关文档 最新文档