当前位置:文档之家› 计算方法第4章

计算方法第4章

第四章插值方法

§4.0 引言

§4.1 多项式插值问题的一般提法§4.2 拉格朗日(Lagrange)插值§4.3 差商与差分及其性质

§4.4 牛顿插值公式

§4.5 分段插值法

§4.6 三次样条插值

§4.7 曲线拟合的最小二乘法

引言

1 插值法是广泛应用于理论研究和生产实践的重要数值方法,它是用简单函数(特别是多项式或分段多项式)为各种离散数组建立连续模型;为各种非有理函数提供好的逼近方法。众所周知,反映自然规律的数量关系的函数有三种表示方法:A 解析表达式

。(1865年,瓦里斯Walis ;1690年,Raphson 拉夫逊;1669年,牛顿Newton ;历史悠久的方程)。

,(开普勒(Kepler)方程)。悬链线方程;。

52)(3

??=x x x f y y x sin ε?=)/cos(λλx y =

B图像法C表格法

2 事实上,许多数据都是用表格法给出的(如观测和实验而得到的函数数据表格),可是,从一个只提供离散的函数值去进行理论分析和进行设计,是极不方便的甚至是不可能的。因此需要设法去寻找与已知函数值相符,并且形式简单的插值函数(或近似函数)。

3 另外一种情况是,函数表达式完全给定,但其形式不适宜计算机使用,因为计算机只能执行算术和逻辑操作,因此涉及连续变量问题的计算都需要经过离散化以后才能进行。如数值积分方法、数值微分方法、差分方程以及有限元法等,都必须直接或间接地应用到插值理论和方法。

1 插值法的概念

假设函数y=f (x )是[a , b ]上的实值函数,x 0,x 1,…,x n 是[a ,b ]上n +1个互异的点,f (x )在这些点上的取值分别为y 0,y 1,…,y n 。

求一个确定的函数P (x ),使之满足:

P (x i )=y i

(i =0,1,2,…,n ) (1)称x 0,x 1,…,x n 为插值节点,关系式(1)称为插值原则,函数P (x )称为函数y=f (x )的插值函数,区间[a , b ]称

为插值区间。

1 多项式插值问题的一般提法

插值函数p(x)作为f(x)的近似,可以选自不同类型的函数,如p(x)为代数多项式、三角多项式、有理分式;

解:设

,其中,为待

44332210)(x a x a x a x a a x P ++++=410,,,a a a "

§2 拉格朗日(Lagrange)插值

n 次多项式

n

n

x

x

x

x

"

"

1

1

2 Lagrange插值的基函数构造法

再讨论n=2 时的情形。

函数(如下图所示)。

于是,

??=21)

)(()(y x x x x x L

l 2(x )的图像?

),,1,0,(,1)(n j i j

i x l "=?

?===δ

3 例题

b)利用100,121的开方计算。

115

假设f

(x )在[a , b ]上有n +1阶导数,且在不同插

值节点取值为,

是经过插值样点的Lagrange 插值多项式,若引进记号:

4插值余项

如图所示,其截断误差R n (x )=f (x )-L n (x ),称为Lagrange 插值多项式的余项。

n

x x x ,,,1

"i i y x f =)()(x L n

),,(i

i

y x ),,1,0(n i "=∏?=???==+n

i i n n x x x x x x x x x 0

101)

()())(()("ω则有如下的误差估计:

)

()()()()()1(x x f x L x f x R n

i n n n ∏?=?=+ξ

(1)

n n d+

思考:

所求三次多项式为

)= = +

-+ =

(-1)=

)

5.0()

4)(5.2()(2??=x x x L

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值分析作业答案(第5章)part2

.证明: (1).如果A 是对称正定矩阵,则1-A 也是对称正定矩阵 (2).如果A 是对称正定矩阵,则A 可以唯一地写成L L A T =,其中L 是具有正对角元的下三角矩阵。 证明: (1).因A 是对称正定矩阵,故其特征值i λ皆大于0,因此1-A 的特征值1 -i λ也皆大于0。因此 1-i λ也皆大于0,故A 是可逆的。又 111)()(---==A A A T T 则1-A 也是对称正定矩阵。 (2).由A 是对称正定,故它的所有顺序主子阵均不为零,从而有唯一的杜利特尔分解 U L A ~ =。又 022211111 1222 11111DU u u u u u u u u u U n n nn =? ???? ???? ???????? ?=????????? ?? ?=M O ΛΛO 其中D 为对角矩阵,0U 为上三角矩阵,于是 0~ ~DU L U L A == 由A 的对称性,得 ~ T T T L D U A A == 由分解的唯一性得 ~ L U T = 从而 ~~ T L D L A = 由A 的对称正定性,如果设),,2,1(n i D i Λ=表示A 的各阶顺序主子式,则有 011>=D d ,01 >= -i i i D D d ,n i ,,3,2Λ=

故 2 12 12 1 2 121D D d d d d d d d d d D n n n =?????? ? ?????? ?????????????? ?=????????????=O O O 因此 T T T LL D L D L L D D L A ===)(21~ 2 1~ ~2 121~ , 其中2 1~ D L L =为对角元素为正的下三角矩阵。 .用列主元消去法解线性方程组 ??? ??=++-=-+-=+-6 1531815331232 1321321x x x x x x x x x 并求出系数矩阵A 的行列式(即A det )的值。 解 ?? ?? ??????----?→?-=???? ??????----?→??? ??? ?????----??→?- =-=?113/110053/7101513 186 76/3118/176/7053/7101513 186111153312151318)(323 2 18 1 21312 1m b A m m r r 所以解为33=x ,22=x ,11=x ,66det -=A 。

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

计算方法 第四章 参考答案

第四章 参考答案 1. 设2 ()35,,0,1,2,...k f x x x kh k =+==,则12[,,]n n n f x x x ++=3 和123[,,,]n n n n f x x x x +++= 0 2. 给定()f x x = 在144,121,100这3点处的函数值,试以这3点建立2次 (抛物)插值公式,利用插值公式求115的近似值并估计误差。 答: (144)(121)(144)(100)(100)(121) ()101112(100144)(100121)(121144)(121100)(144100)(144121) x x x x x x p x ------= ?+?+?------ 当x=115 p(x)=10.6728 11510.7238= ()()()53 213()115144115121115100 1.631103!8 R X ε--=?---=? ()() ()() ()() ()() (144)(121)169(144)(100)169()1011 (100144)(100121)100169(121144)(121100)121169(100)(121)169(100)(121)1441213 (144100)(144121)144169(169100)(169121)169144x x x x x x p x x x x x x x ------=?+ ?------------+ ?+ ?------ P(115)=10.7236 此题用牛顿公式来做要简单点,特别是后面还需要增加一点节点,这个自己做做! 3. 设j x 为互异节点0,1,...,j n =,求证: ()n k k j j j x l x x ==∑ k n ≤ 证明:记gk(x)= k x , k=0,1 n 作gk(x)以01,,n x x x 为插值节点的n 次插值多项式,则有()()()() ()(1)0 ()01!n n n k k k j j j j j g g x g x l x x x n ε+==- =-=+∑∏ ()0 0n k k j j x x l x =-=∑ k=0,1 n 或()0 n k k j j x x l x ==∑ k=0,1 n 4. 已知函数()y f x =的函数表: xi 1 2 3 4 5 yi=f(xi) 1 4 7 8 6

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

统计学各章计算题公式及解题方法

统计学各章计算题公式及解题方法 第四章数据的概括性度量 1.组距式数值型数据众数的计算:确定众数组后代入公式计算: 下限公式:;上限公式:,其中,L为众数所在组 下限,U为众数所在组上限,为众数所在组次数与前一组次数之差,为众数所在组次数与后一组次数之差,d为众数所在组组距 2.中位数位置的确定:未分组数据为;组距分组数据为 3.未分组数据中位数计算公式: 4.单变量数列的中位数:先计算各组的累积次数(或累积频率)—根据位置公式确定中位 数所在的组—对照累积次数(或累积频率)确定中位数(该公式假定中位数组的频数在该组内均匀分布) 5.组距式数列的中位数计算公式: 下限公式:;上限公式:,其中,为中位数 所在组的频数,为中位数所在组前一组的累积频数,为中位数所在组后一组的 累积频数 6.四分位数位置的确定: 未分组数据:;组距分组数据: 7.简单均值: 8.加权均值:,其中,为各组组 中值 9.几何均值(用于计算平均发展速度): 10.四分位差(用于衡量中位数的代表性): 11.异众比率(用于衡量众数的代表性):

统计学各章计算题公式及解题方法 : 12.极差:未分组数据:;组距分组数据 13.平均差(离散程度):未分组数据:;组距分组数据: 14.总体方差:未分组数据:;分组数据: 15.总体标准差:未分组数据:;分组数据: 16.样本方差:未分组数据:;分组数据: 17.样本标准差:未分组数据:;分组数据: 18.标准分数: 19.离散系数: 第七章参数估计 1.的估计值: 置信水平α 90% 0.1 0.05 1.654 95% 0.05 0.025 1.96 99% 0.01 0.005 2.58 2.不同情况下总体均值的区间估计: 总体分布样本量σ已知σ未知 大样本(n≥30) 正态分布 小样本(n<30)

数值分析第五章学习小结【计算方法】

第五章最小二乘法与曲线拟合小结 一、本章知识梳理 1、 从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差 平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合 中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函 数类中,求,使误差(i=0,1,…,m)的平方和最小,即 从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小 的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合 函数的方法称为曲线拟合的最小二乘法。 2、多项式拟合 假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即

(3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。 从式(4)中解出 (k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我 们把称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n; (2) 列表计算和; (3) 写出正规方程组,求出; (4) 写出拟合多项式。 在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛 顿插值多项式。 3、曲线拟合: 曲线拟合,即把一组数据拟合为曲线,需遵循最小二乘法。常用双曲线型和指数型函数。

数值分析第四章习题

第四章 习题 1. 采用数值计算方法,画出dt t t x y x ?= 0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。 〖答案〗 1.6541 2. 求函数 x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。 〖答案〗 s = 5.1354 Warning: Explicit integral could not be found. > In sym.int at 58 s = int(exp(sin(x)^3),x = 0 .. pi) 3. 用quad 求取dx x e x sin 7.15? --ππ的数值积分,并保证积分的绝对精度为910-。 〖答案〗 1.08784943754779 4. 求函数 5.08.12cos 5.1)5(sin )(20 6.02++-=t t t e t t f t 在区间]5,5[-中的最小值点。 〖答案〗

最小值点是 -1.28498111480531 相应目标值是 -0.18604801006545 5. 设 0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。 〖答案〗 数值解 y_05 = 0.78958020790127 符号解 ys = 1/2-1/2*exp(2*t)+exp(t) ys_05 = .78958035647060552916850705213780 6. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。 〖答案〗 x = 0.0667 0.0667 0.0667 7. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。 〖答案〗 解不唯一 x = -0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588

数值分析第五章答案

数值分析第五章答案 【篇一:数值分析第五版计算实习题】 第二章 2-1 程序: clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); or j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp(4次牛顿插值多项式); p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs; disp(三次样条函数); for i=1:4 s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1]; s=vpa(collect(s),5) end x2=0.2:0.08:1.08; dot=[1 2 11 12]; figure ezplot(p4,[0.2,1.08]); hold on y2=fnval(pp,x2); x=x2(dot);

y3=eval(p4); y4=fnval(pp,x2(dot)); plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co); title(4次牛顿插值及三次样条); 结果如下: 4次牛顿插值多项式 p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数 x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x + 0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下 2-3(1) 程序: clear; clc; x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8];%插值点 n=length(y1); a=ones(n,2); a(:,2)=-x1; c=1; for i=1:n c=conv(c,a(i,:)); end q=zeros(n,n); r=zeros(n,n+1); for i=1:n [q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk) end dw=zeros(1,n); for i=1:n dw(i)=y1(i)/polyval(q(i,:),x1(i));%系数 end p=dw*q; syms x l8; for i=1:n

数值分析第一章作业

数值分析第一章作业 1.数值计算方法设计的基本手段是( ). (A) 近似 (B) 插值 (C) 拟合 (D) 迭代 2.为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精确解之间的误差称为( ). (A) 舍入误差 (B) 截断误差 (C) 测量误差 (D) 绝对误差 3.由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生的误差统称为( ). (A) 舍入误差 (B) 截断误差 (C) 相对误差 (D) 绝对误差 4.数值计算方法研究的核心问题可以概括为( )对计算结果的影响. (A) 算法的稳定性 (B) 算法的收敛性 (C) 算法的复杂性 (D) 近似 5.当N 充分大时,利用下列各式计算121N N dx I x +=+?,等式( )得到的结果最好. (A) arctan(1)arctan()I N N =+- (B) 2arctan(1)I N N =++ (C) 21arctan()1I N N =++ (D) 211I N =+ 6. 计算61), 1.4≈,利用下列哪个公式得到的结果最好?为什么? (B) 3(3- (D) 99-7.计算球体的体积,已知半径的相对误差限不超过3310-?,则计算所得体积的相对误差限如何估计? 8.设0x >,近似值*x 的相对误差限为δ,试估计*ln x 的误差限. 9.计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限均不超过δ,则计算所得体积的相对误差限如何估计?. 10.用秦九韶算法求32()431f x x x x =-+-在2x =处的值. 11.已知近似值 1.0000x *=的误差限4()110x ε*-=?,21()16 f x x = ,求(())f x ε*,并说明x *及()f x *的各有几位有效数字. 12. 分析算法011111,,32,1,2,,k k k y y y y y k +-?==???=-=?的数值稳定性.

[整理]04第四章 动态分析方法 习题答案

第四章 动态分析方法 习题答案 一、名词解释 用规范性的语言解释统计学中的名词。 1. 动态数列:是将某种现象的指标数值按时间先后顺序排列而成的统计数列。 2. 平均发展水平:是将不同时期的发展水平加以平均而得到的平均数。 3. 增长量:是说明社会经济现象在一定时期内所增长的绝对数量。 4. 平均发展速度:是各个时期环比发展速度的序时平均数。 5. 长期趋势:是研究某种现象在一个相当长的时期内持续向上或向下发展变动的趋势。 6. 季节变动:是由自然季节变化和社会习俗等因素引起的有规律的周期性波动。 二、填空题 根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。 1. 时间、指标数值 2. 绝对数动态数列、相对数动态数列,平均数动态数列,绝对数动态数列,派生。 3. 时间数列,时间数列。 4. 最初水平,最末水平,中间各项水平;报告期水平,期间水平。 5. 逐期、累计。 6. 报告期水平;定基发展速度,环比发展速度。 7. 35.24%。 8. 某一固定时期水平,总的发展程度。 9. 增长量,基期发展水平;环比增长速度。 10. 几何平均法,方程法。 11. 1200459 5 12. (205%×306.8%)-1 13. 长期趋势,季节变动,循环变动,不规则变动。 14. 季节比率。 15. 按月(季)平均法 16. 若干年、转折点。 17. 随机因素和偶然因素。

18. 逐期增长量。 19. 数列的中间位置。 20. 各期的二级增长量。 三、单项选择 从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。 1. B 2. B 3. D 4. B 5. B 6. C 7. C 8. D 9. B 10. A 11. A 12. B 13. D 14. B 15. C 四、多项选择 从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。 1. ABCD 2. AC 3. AC 4. AC 5. ABD 6. BD 7. AD 8. ACD 9. AB 10. ABCD 五、判断改错 对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。 1. 时期指标与时点指标都是通过连续登记的方式取得统计资料的。(×) 时点指标是通过一次性登记方式取得资料 2. 增长量指标反映社会经济现象报告期比基期增长(或减少)的绝对量。(√) 3. 相邻两个时期的累计增长量之差,等于相应时期的逐期增长量。(√) 4. 累计增长量等于相应时期逐期增长量之和。(√) 5. 环比发展速度的连乘积等于定基发展速度,相邻两个时期的定基发展速度之和等于环比发展速度。(×) 之比 6. 增长1%的绝对值可以用增长量除以增长速度求得,也可以用基期水平除以100求得。(×) (增长量除以增长速度)/100

数值计算方法第五章

第五章 数值拟合及最小二乘法 一、最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数; 二是误差绝对值的和 ∑=m i i r ,即误差向量r 的1—范数; 三是误差平方和∑=m i i r 2 的算术平方根,即误差向量r 的2—范数;前两种方 法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方, 因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 2 [] ∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线 )(x p y =(图6-1)。函数)(x p 称为拟合函数或最小二乘解,求拟合 函数p(x)的方法称为曲线拟合的最小二乘法。 合中,函数类Φ可有不同的选取方法 .

5—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m), Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0)(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。特别地,当n=1 时,称为线性拟合或直线拟合。 显然 ∑∑==-=m i n k i k i k y x a I 0 2 0)( 为n a a a ,,10的多元函数,因此上述问题即为求),,(10n a a a I I =的极值 问题。由多元函数求极值的必要条件,得 n j x y x a a I m i j i n k i k i k j ,,1,0,0)(200 ==-=??∑∑== (2) 即 n j y x a x n k m i i j i k m i k j i ,,1,0, )(0 ==∑∑∑===+ (3) (3)是关于n a a a ,,10的线性方程组,用矩阵表示为 ???? ?? ???? ??????????=????????????????????? ??????????? +∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n m i n i m i n i m i n i m i n i m i i m i i m i n i m i i y x y x y a a a x x x x x x x x m 00010020 10 102000 1 (4) 式(3)或式(4 )称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出k a (k=0,1,…,n) ,从而可得多项式

数值计算方法第四章

58 第四章 函数插值 插值是对函数进行近似的基本方法,本章介绍了代数插值时常用的Lagrange 插值法、Newton 插值法、Hermite 插值法和三次样条插值法,并相应的介绍了差商,差分和插值余项等概念. §4.1 引 言 在科学与工程计算中,常会遇到如下问题:已知)(x f y =在区间[,]a b 上的一系列点{}n i i x 0=处的函数值{}n i i y 0=,需要利用这些数据来求某点)(i x x x ≠处的函数值 的近似值.若能利用这组数据建立一个近似)(x f 的函数)(x φ,)(x f 的值就可以用 )(x φ近似求出. 已知函数)(x f 在区间],[b a 上1+n 个互异节点{}n i i x 0=处的函数值{}n i i y 0=.若函 数集合Φ中函数()x φ满足条件 ()() (0,1,2,,)i i x f x i n φ== (4.1) 则称)(x φ为)(x f 在Φ中关于节点{}n i i x 0=的一个插值函数,并称)(x f 为被插值函数,],[b a 为插值区间,{}n i i x 0=为插值节点.式(4.1)被称为插值条件. 函数集合Φ可以有不同的选择,最常用的是形式简单的多项式函数集合.将多项式作为插值函数进行插值的方法称为代数插值.针对区间],[b a 上1+n 个互异节点,代数插值就是要确定一个不超过n 次的多项式 n n x a x a a x +++= 10)(φ (4.2) 使其满足插值条件(4.1),即选取参数{}0n i i a =,满足线性方程组 000 1111111n n n n n n n a y x x a y x x a y x x ??????? ??????????? =?????? ???????????? ?? (4.3)

数值分析(第五版)计算实习题第五章作业

数值分析第五章 第一题: LU分解法: 建立m文件 function h1=zhijieLU(A,b)%h1各阶主子式的行列式值 [n n]=size(A);RA=rank(A); if RA~=n disp('请注意:因为A的n阶行列式h1等于零,所以A不能进行LU分解。A的秩RA如下:') RA,h1=det(A); return end if RA==n for p=1:n h(p)=det(A(1:p,1:p)); end h1=h(1:n); for i=1:n if h(1,i)==0 disp('请注意:因为A的r阶主子式等于零,所以A不能进行LU分解。A的秩RA和各阶顺序主子式h1依次如下:') h1;RA return end end if h(1,i)~=0 disp('请注意:因为A的r阶主子式都不等于零,所以A能进行LU分解。A的秩RA和各阶顺序主子式h1依次如下:') for j=1:n U(1,j)=A(1,j); end for k=2:n for i=2:n for j=2:n L(1,1)=1;L(i,i)=1; if i>j L(1,1)=1;L(2,1)=A(2,1)/U(1,1);L(i,1)=A(i,1)/U(1,1); L(i,k)=(A(i,k)-L(i,1:k-1)*U(1:k-1,k))/U(k,k); else U(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j); end end end end h1;RA,U,L,X=inv(U)*inv(L)*b

end end 输入: >> A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2]; >> b=[8;5.900001;5;1]; >> h1=zhijieLU(A,b) 输出: 请注意:因为A的r阶主子式都不等于零,所以A能进行LU分解。A的秩RA和各阶顺序主子式h1依次如下: RA = 4 U = 10.0000 -7.0000 0 1.0000 0 2.1000 6.0000 2.3000 0 0 -2.1429 -4.2381 0 -0.0000 0 12.7333 L = 1.0000 0 0 0 -0.3000 1.0000 0 0 0.5000 1.1905 1.0000 -0.0000 0.2000 1.1429 3.2000 1.0000 X = -0.2749 -1.3298 1.2969 1.4398 h1 = 10.0000 -0.0000 -150.0001 -762.0001 列主元高斯消去法: 建立m文件 function [RA,RB,n,X]=liezhu(A,b) B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhicha=RB-RA; if zhicha>0 disp('请注意:因为RA~=RB,所以方程组无解') return warning offMATLAB:return_outside_of_loop end if RA==RB if RA==n disp('请注意:因为RA=RB,所以方程组有唯一解') X=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 [Y,j]=max(abs(B(p:n,p)));C=B(p,:); B(p,:)=B(j+p-1,:);B(j+p-1,:)=C;

《数值分析》第四章答案

习题4 1. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。再给13169=建立3次插值公式,给出相应的结果。 解:x x f =)( 2 12 1)(- = 'x x f ,2 34 1 )(- -=''x x f ,2 58 3)(- = '''x x f , 2 7) 4(16 15)(- - =x x f ,72380529.10)115(=f 1000=x , 121 1=x , 144 2=x , 1693=x 10 0=y , 111=y , 12 2=y , 13 3=y ) )(())(() )(())(() )(())(()(1202102 2101201 2010210 2x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= ) 121144)(100144()121115)(100115(12) 144121)(100121()144115)(100115(11) 144100)(121100()144115)(121115(10)115(2----? +----? +----? =L =23 44)6(1512) 23(21)29(1511) 44)(21()29)(6(10?-?? +-?-?? +----? 72276.1006719.190683.988312.1=-+= ))()((!3)()()(2102x x x x x x f x L x f ---'''= -ξ ,144100<<ξ ) 44115()121115()100115()(max 61 )115()115(1441002-?-?-?'''≤ -≤≤x f L f x 2961510 83615 ?????≤ - 001631 .010 1631.02 =?=- 实际误差 22101045.0)115()115(-?=-L f

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103- B. 33105- C. 53105- D. 5103 -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效 数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

相关主题
文本预览
相关文档 最新文档