当前位置:文档之家› 嵌入式Linux内核模块的配置与编译

嵌入式Linux内核模块的配置与编译

嵌入式Linux内核模块的配置与编译
嵌入式Linux内核模块的配置与编译

嵌入式Linux内核模块的配置与编译

一、简介

随着 Linux操作系统在嵌入式领域的快速发展,越来越多的人开始投身到

这方面的开发中来。但是,面对庞大的Linux内核源代码,开发者如何开始自己的开发工作,在完成自己的代码后,该如何编译测试,以及如何将自己的代码编译进内核中,所有的这些问题都直接和Linux的驱动的编译以及Linux的内核配置系统相关。

内核模块是一些在操作系统内核需要时载入和执行的代码,它们扩展了操作系统内核的功能却不需要重新启动系统,在不需要时可以被操作系统卸载,又节约了系统的资源占用。设备驱动程序模块就是一种内核模块,它们可以用来让操作系统正确识别和使用使用安装在系统上的硬件设备。

Linux内核是由分布在全球的Linux爱好者共同开发的,为了方便开发者修改内核,Linux的内核采用了模块化的内核配置系统,从而保证内核扩展的简单与方便。

本文通过一个简单的示例,首先介绍了如何在Linux下编译出一个内核模块,然后介绍了Linux内核中的配置系统,讲述了如何将一个自定义的模块作为系统源码的一部分编译出新的操作系统,注意,在这里我们介绍的内容均在内核

2.6.1

3.2(也是笔者的开发平台的版本)上编译运行通过,在2.6.*的版本上基本上是可以通用的。

二、单独编译内核模块

首先,我们先来写一个最简单的内核模块:

#include

#include

#include

#define DRIVER_VERSION "v1.0"

#define DRIVER_AUTHOR "RF"

#define DRIVER_DESC "just for test"

MODULE_AUTHOR(DRIVER_AUTHOR);

MODULE_DESCRIPTION(DRIVER_DESC);

MODULE_LICENSE("GPL");

staticintrfmodule_init(void)

{

printk("hello,world:modele_init");

return 0;

}

static void rfmodule_exit(void)

{

printk("hello,world:modele_exit");

}

module_init (rfmodule_init);

module_exit (rfmodule_exit);

这个内核模块除了在载入和卸载的时候打印2条信息之外,没有任何其他功能,不过,对于我们这个编译的例子来讲,已经足够了。

将上述源代码保存到一个test.c文件中,然后开始我们的内核模块的编译工作。

内核模块的编译与普通应用程序的编译一样,也使用的GCC,但是内核模块在用GCC编译的时候时需要使用特定的参数并定义一些宏。这是因为在编译普

通应用程序的可执行文件和内核模块时,内核头文件起的作用是不同的。在以往的内核版本需要我们去在Makefile中手动设置这些设定,虽然这些Makefile 都是按目录分层次存放的,但使用维护起来还是比较伏在。幸运的是,一种称为kbuild的新方法被引入,现在外部的可加载内核模块的编译的方法已经同内核编译统一起来,编译新的内核模块或者将自己的内核模块集成到内核源码中都已经变得非常简单了。

现在让我们看一下如何编译一个名字叫做test.c的模块。

首先,我们需要写一个简单的Makefile文件:

obj-m += test.o

将test.c和Makefile文件放在同一个目录下,然后就可以开始编译了,使用编译命令:

make -C /usr/src/linux-2.6.13.2/ SUBDIRS=$PWD modules

回车后,也许你会发现有一堆的报错,请检查如下配置是否正确:

1、在/usr/src/下有无放置你需要使用的内核源码树?如果没有,请上网down一个你需要的内核源码版本,解压后放在这里。

2、如果你已经将内核源码解压在/usr/src/下了,那么请先使用在内核源码的主目录下,在笔者的系统中就是/usr/src/linux-2.6.13.2/,使用:

make config或者make menuconfig或者make gconfig等命令来配置内核,然后使用make all将整个内核完整编译一次。

3、上述命令中的linux-2.6.13.2是笔者使用的内核源码的目录名,你需要将它改成你自己使用对应版本的的内核源码的目录名。

经过上述三步,一般来将,该内核模块都可以编译通过了,生成的test.ko 就是我们需要的内核模块的最终版本,你可以使用:

insmod ./test.ko将该模块载入系统。

请注意:如果想将模块载入系统,请保证编译模块使用的内核源码的版本与要载入的系统的版本一致!否则无法载入!

嵌入式开发实作(Linux内核编译及安装)

部分内容译自《Embedded Linux kernel and driver development 》by Michael Opdenacker

刘建文(https://www.doczj.com/doc/d54728894.html,/keminlau )

KEY:Linux内核编译内核配置嵌入式

内核配置(Kernel configuration)

Makefile版本修改

为了区别基于同一源码构建(bulid)的不内核镜像,可使用变量EXTRAVERSION(定义位于makefile的顶部):

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 7

EXTRAVERSION = -acme1

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 7

EXTRAVERSION = -acme1

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 7

EXTRAVERSION = -acme1

运行“uname --r”会返回:2.6.7--acme1

2.内核配置

先定义内核需要什么特性,并进行配置。内核构建系统(The kernel build system)远不是简单用来构建整个内核和模块,想了解更多的高级内核构建选项,你可以查看Documentation/kbuild目录内的内核文档。

可用的配置命令和方式:

makexconfig

makemenuconfig

makeoldconfig

或者手动编写

内核编译的配置文件.config与内核配置的makefile?

内核配置文件(Makefile语法的)保存为内核源代码的顶层目录的.config文件。发行版的内核配置文件通常在/boot/内。

命令:makexconfig

qconf: 全新的基于QT的配置接口,2.6版本内核

更易使用(切记阅读help -> introduction: useful options!)

具有文件浏览功能,更易的加载配置文件

命令:makemenuconfig

老式字符界面,依然很管用。你够自信,完全可以手写配置文件!

命令:makeoldconfig

用于升级早期发布内核的配置文件

对一些绝对符号(obsolete symbols)发出警告

询问新符号的配置值

何为makefile?

makefile包含用以构建应用程序的一组规则集(set of rules)。并且第一条[规则]是特殊的[规则],叫[默认规则](default rule)。一条[规则]由三部分组成:目标(target)、前提条件(prerequisites)和命令动作(command):

target: prereq1 prereq2

commands

target: prereq1 prereq2

commands

target: prereq1 prereq2

commands

[目标]是被构建(made)的[文件]或其它东西。[前提条件]或者叫依赖(dependents)构建目标的“材料”。而[命令动作]是利用[前提条件]构建[目标]的shell命令。

以下是编译C源码的规则例子:

foo.o: foo.cfoo.h

lt;tab>gcc -c foo.c

foo.o: foo.cfoo.h

lt;tab>gcc -c foo.c

foo.o: foo.cfoo.h

gcc -c foo.c

注意格式,冒号前是[目标],后是[前提条件];[命令]在第二行,并且开始于一个tab字符。

编译内核

编译和安装内核

编译步骤:

$ cd /usr/src/linux2. 6

$ make

$ cd /usr/src/linux2.6

$ make

$ cd /usr/src/linux2.6

$ make

安装步骤(logged as root!)

$ make install

$ make modules_install

$ make install

$ make modules_install

$ make install

$ make modules_install

以下的步骤在2.6版本不再使用:

$ make depends

$ make modules (done by make)

$ make depends

$ make modules (done by make)

$ make depends

$ make modules (done by make)

提升编译速度

多花一些时间在内核配置上,并且只编译那些你硬件需要的模块。这样可以把编译时间缩短为原来的1/30,并且节省数百MB的空间。另外,你还可以并行编译多个文件:

$ make -j

make 可以并行执行多个目标(target)(KEMIN:前提是目标规则间没有交叉依赖项,这个怎么做到的?)

$ make -j 4

即便是在单处理器的工作站上也会很快,读写文件的时间被节省下来了。多线程让CPU保持忙碌。

number大于4不见得有效了,因为上下文切换过多反而降低的工作的速度。

make -j <4*number_of_processors>

内核编译tips

查看完整的(gcc, ld)命令行:$ make V=1

清理所有的生成文件(to create patches...): $ make mrproper

部分编译:$ make M=drivers/usb/serial

单独模块编译:$ make drivers/usb/serial/visor.ko

别处编译(假设源码在CDROM):

$ cd /mnt/cdrom/linux-2.6.17.11

$ make O=~/linux/linux-2.6.17.11

最终生成的文件

vmlinux原始内核镜像,非压缩的

arch//boot/zImagezlib压缩的内核镜像(Default image on arm)

arch//boot/bzImage bzip2压缩的内核镜像。通常很小,足够放入一张软盘(Default image on i386)

安装的文件

/boot/vmlinuz-内核镜像;

/boot/System.map-保存有内核的符号地址(symbol addresses);

/boot/initrd-.img Initial RAM disk:保存有你需要在引导时挂接最终根文件系统的模块。安装命令“make install”为替你运行“mkinitrd”生成initrd;

/etc/grub.conf or /etc/lilo.conf

bootloader的配置文件:“make install”会为你的新内核更新相应的bootloader的配置文件。如果你使用的是LILO,它会在生成配置文件后,执行/sbin/lilo,让LILO的配置生效。

/lib/modules// Kernel modules + extras

build/

为本的内核添加模块所需的所有东西:.config file (build/.config), module symbol information (build/module.symVers), kernel headers (build/include/)

kernel/

内核模块文件.ko (Kernel Object),目录结构与源代码目标一一对应。

modules.alias

模块别名记录(用于insmod和modprobe),例如:

alias sound--service--?-0 snd_mixer_oss

modules.dep

模块依赖记录(用于insmod和modprobe)

modules.symbols

标识某符号是属于哪个模块的。

这个目录的所有文件都是文本文件,可以直接查看。

小结编译及安装步骤:

编辑Makefile版本信息

定义内核特性,生成配置文件.config,用于编译:makexconfig

编译内核:make

安装内核:make install

安装模块:makemodules_install

交叉编译内核

Makefile修改

通常通过修改已有的makefile获得

你必须修改目标平台,假设目标平台是ARM,修改以下:

ARCH ?= arm

CROSS_COMPILE ?= arm-linux-

ARCH ?= arm

CROSS_COMPILE ?= arm-linux-

ARCH ?= arm

CROSS_COMPILE ?= arm-linux-

或运行带参数的make:

$ cd /usr/scr/linuxXX

$ make ARCH=arm CROSS_COMPILE=arm-linux-

$ cd /usr/scr/linuxXX

$ make ARCH=arm CROSS_COMPILE=arm-linux-

$ cd /usr/scr/linuxXX

$ make ARCH=arm CROSS_COMPILE=arm-linux-

内核配置文件

配置过程和本地配置一样;可以把生成的配置文件(.config)分享给其他人,比如像:

$

$ cp .config arch//config/acme_defconfig

$

$ cp .config arch//config/acme_defconfig

$

$ cp .config arch//config/acme_defconfig

这样其他同样开发ACME系统的开发人员可以通过以下命令编译出同样的内核:

$ make acme_defconfig

$

$ make acme_defconfig

$

$ make acme_defconfig

$

建立交叉编译环境(Cross--compiling setup)

假设你有ARM的交叉编译工具(cross--compiling toolchain)在in /usr/local/arm/3.3.2/,你得把它输出到PATH:

$ export PATH=/usr/local/arm/ 3.3 . 2 /bin:$PATH

$ export PATH=/usr/local/arm/3.3.2/bin:$PATH

$ export PATH=/usr/local/arm/3.3.2/bin:$PATH

注意查看内核文档(在Documentation/Changes)有关最低工具版本要求。

编译并安装内核

1. $ make //如果你修改了Makefile

或者

1'. $ make ARCH=arm CROSS_COMPILE=arm-linux-

2. 拷贝arch//boot/zImage到目标系统

$ make modules_install

3. 拷贝/lib/modules/到目标系统

你可以通过arch//boot/install.sh 自定义安装,让”make install“自动代劳。

何为交叉编译工具链(cross--compiling toolchain)?

有如任何其它开发活动一般,嵌入式开发的第一步是建立(setting up)用于构建嵌入式Linux 内核(当然包括驱动程序)及应用程序的工具链(toolchains)。不过,嵌入式开发需要是跨平台工具链。跨平台是什么意思呢?一般开发活动是在本地编译,使用是本地的工具链;而由于嵌入式的软硬资源(内存不足、没有本地编译器或操作系统都没有)限制等没法进行本地开发。需要在Linux-x86 主机(HOST)开发,使用主机的编译器生成目标(TARGET)平台代码,这个过程叫交叉编译。

我们常常说的编译器有广义和狭义之分。狭义的编译器只完软件编译(或者叫软件构建)的第一步;广义的编译器包括了软件编译(或者叫软件构建)所需要代码库(比如libc)和其它构建工具(比如汇编器和连接器)。无论是什么编译器都需要支持的代码库和各种构建工具,交叉编译也不例外。一整套广义的编译器称为交叉编译工具链。

何为工具链?

In software, a toolchain is the set of computer programs (tools) that are used to create a product (typically another computer program or system of programs). The tools may be used in a chain, so that the output of each tool becomes the input for the next, but the term is used widely to

refer to any set of linked development tools.

A simple software development toolchain consists of a text editor for editing source code, a compiler and linker to transform the source code into an executable program, libraries to provide interfaces to the operating system, and a debugger.

The GNU toolchain is a blanket term for a collection of programming tools produced by the GNU Project. These tools form a toolchain (suite of tools used in a serial manner) used for developing applications and operating systems.

Projects included in the GNU toolchain are:

* GNU make: Automation tool for compilation and build;

* GNU Compiler Collection (GCC): Suite of compilers for several programming languages;

* GNU Binutils: Suite of tools including linker, assembler and other tools;

* GNU Bison: Parser generator

* GNU m4: m4 macro processor

* GNU Debugger (GDB): Code debugging tool;

* GNU build system (autotools):

oAutoconf

oAutoheader

oAutomake

oLibtool

参考

https://www.doczj.com/doc/d54728894.html,/index.php/2006/01/05/autotools-tutorial/

本文来自CSDN博客,转载请标明出处:https://www.doczj.com/doc/d54728894.html,/shijizhisheng/archive/2009/09/16/4558107.aspx

把设备驱动程序编译进嵌入式linux内核

文章来源网络属于linux分类电脑编程网整理2007107

简介:这是把设备驱动程序编译进嵌入式linux内核的详细页面,介绍了和linux,有关的知识,加入收藏请按键盘ctrl+D,谢谢大家的观看!要查看更多有关信息,请点击此处

驱动程序的使用可以按照两种方式编译,一种是静态编译进内核,另一种是编译成模块以供动态加载。由于uclinux不支持模块动态加载,而且嵌入式linux不能够象桌面linux那样灵活的使用insmod/rmmod加载卸载设备驱动程序,因而这里只介绍将设备驱动程序静态编译进uclinux内核的方法。

下面以uclinux为例,介绍在一个以模块方式出现的驱动程序test.c基础之上,将其编译进内核的一系列步骤:

(1)改动test.c源带代码

第一步,将原来的:

#include

#include

char kernel_version[]=uts_release;

和 "把设备驱动程序编译进嵌入式linux内核" 有关的编程小帖士:

strong>session_encode

Session 资料编码。

语法: booleansession_encode(void);

返回值: 布尔值

内容说明

本函数可将 Session 资料编码,编码以 ZEND 引擎做哈稀编码。本函数没有参数。成功则返回 true 值。

改动为:

第二步,新建函数intinit_test(void)

将设备注册写在此处:

(2)将test.c复制到/uclinux/linux/drivers/char目录下,并且在/uclinux/linux/drivers/char 目录下mem.c中,intchr_dev_init()函数中增加如下代码:

(3)在/uclinux/cinux/drivers/char目录下makefile中增加如下代码:

(4)在/uclinux/linux/arch/m68knommu目录下config.in中字符设备段里增加如下代码:

(5)运行make menuconfig(在menuconfig的字符设备选项里你可以看见我们刚刚添加的'support for testdrive'选项,并且已经被选中);make dep;make linux;make linux.text;make linux.data;catlinux.textlinux.data>linux.bin.

(6)在 /uclinux/romdisk/romdisk/dev/目录下创建设备:

并且在/uclinux/appsrc/下运行make,生成新的romdisk.s19文件。

到这里,在uclinux中增加设备驱动程序的工作可以说是完成了,只要将新的linux.bin与romdisk.s19烧入目标板中,你就可以使用自己的新设备test了。

用命令行加挂linux的文件系统简介

linux中mount其他文件系统

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.doczj.com/doc/d54728894.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

linux内核配置模块编译安装

Linux内核配置编译和加载 Linux内核模块 Linux内核结构非常庞大,包含的组件也非常多,想要把我们需要的部分添加到内核中,有两个方法:直接编译进内核和模块机制 由于直接编译进内核有两个缺点,一是生成的内核过大,二是每次修改内核中功能,就必须重新编译内核,浪费时间。因此我们一般采用模块机制,模块本身不被编译进内核映像,只有在加载之后才会成为内核的一部分,方便了修改调试,节省了编译时间。 配置内核 (1)在drivers目录下创建hello目录存放hello.c源文件 (2)在hello目录下新建Makefile文件和Kconfig文件 Makefile文件内容: obj-y += hello.o //要将hello.c编译得到的hello.o连接进内核 Kconfig文件内容: 允许编译成模块,因此使用了tristate (3)在hello目录的上级目录的Kconfig文件中增加关于新源代码对应项目的编译配置选项 修改即driver目录下的Kconfig文件,添加

source "drivers/hello/Kconfig" //使hello目录下的Kconfig起作用 (4)在hello目录的上级目录的Makefile文件中增加对新源代码的编译条目 修改driver目录下的Makefile文件,添加 obj-$(CONFIG_HELLO_FOR_TEST) += hello/ //使能够被编译命令作用到 (5)命令行输入“make menuconfig”,找到driver device,选择select,发现test menu 已经在配置菜单界面显示出来 (6)选择test menu进入具体的配置,可以选择Y/N/M,这里我选择编译为M,即模块化 (7)保存退出后出现 (8)进入kernels目录中使用“ls -a”查看隐藏文件,发现多出.config隐藏文件,查看.config 文件

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

简析linux内核的内核执行流程图

简析linux核的执行流程 ----从bootsect.s到main.c(核版本0.11)Linux启动的第一阶段(从开机到main.c) 3个任务: A、启动BIOS,准备实模式下的中断向量表和中断服务程序。 B、从启动盘加载操作系统程序到存。 C、为执行32的main函数做过渡准备。 存变化如下: ①、0xFE000到0xFFFFF是BIOS启动块,其中上电后第一条指令在0xFFFF0。 ②、而后0x00000到0x003FF总共1KB存放中断向量表,而接下去的地址到0x004FF共256B存放BIOS数据,从0x0E05B 开始的约8KB的存中存放中断服务程序。 ③、利用BIOS中断0x19h把硬盘的第一扇区bootsect.s的代码加载到存中,即0x07c00处,后转到该处执行。 ④、将bootsect.s的代码复制到0x90000处。 ⑤、利用中断0x13h将setup.s程序加载到存0x90200处。 ⑥、再将剩余的约240个扇区的容加载到0x10000~0x2EFFF 处。 ⑦、开始转到setup.s处执行,第一件事就利用BIOS提供的中断服务程序从设备上获取核运行的所需系统数据并存在0x90000的地址处,这时将原来bootsect.s的代码覆盖得只剩2Byte的空间。

⑧、关中断并将系统代码复制到0x00000处,将原来放在这里的中断向量表与BIOS数据区覆盖掉,地址围是 0x00000~0x1EFFF。同时制作两表与两寄存器。 ⑨开地址线A20,寻址空间达到4GB,后对8259重新编程,改变中断号。 ⑩、转到head.s(大小是25K+184B)执行,执行该程序完后是这样的: 0x00000~0x04FFF:页目录与4个页表,每一项是4KB,共20KB;0x05000~0x05400:共1KB的空间是软盘缓冲区; 0x05401~0x054b8:共184B没用; 0x054b9~0x05cb8:共2KB的空间存中断描述符表; 0x05cb9~0x064b8:共2KB的空间存全局描述符表; 之后就是main函数的代码了! 第二阶段、从main.c函数到系统准备完毕阶段。 第一步:创建进程0,并让进程0具备在32位保护模式下载主机中的运算能力。流程是: 复制根设备和硬盘参数表(main.c中的102、110、111行) 物理存规划格局(main.c的112行~126行,其中有 rd_init函数定义在kernel/ramdisk.c中,此函数用于虚拟盘初始化;而mem_init函数是用于存管理结构初始化,定义在mem/memory.c中,该函数页面使用

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

Linux内核与跟文件系统的关系

Linux内核与根文件系统的关系 开篇题外话:对于Linux初学者来说,这是一个很纠结的问题,但这也是一个很关键的问题!一语破天机:“尽管内核是Linux 的核心,但文件却是用户与操作系统交互所采用的主要工具。这对Linux 来说尤其如此,这是因为在UNIX 传统中,它使用文件I/O 机制管理硬件 设备和数据文件。” 一.什么是文件系统 文件系统指文件存在的物理空间,linux系统中每个分区都是一个文件系统,都有自己的目 录层次结构。 Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,所有Linux 用户和程序看到的文件、目录、软连接及文件保护信息等都存储在其 中。这种机制有利于用户和操作系统的交互。 每个实际文件系统从操作系统和系统服务中分离出来,它们之间通过一个接口层:虚拟文件系统或VFS来通讯。VFS使得Linux可以支持多个不同的文件系统,每个表示一个VFS 的通用接口。由于软件将Linux 文件系统的所有细节进行了转换,所以Linux核心的其它部分及系统中运行的程序将看到统一的文件系统。Linux 的虚拟文件系统允许用户同时能透明地安装 许多不同的文件系统。 在Linux文件系统中,EXT2文件系统、虚拟文件系统、/proc文件系统是三个具有代表性的 文件系统。 二.什么是根文件系统 根文件系统首先是一种文件系统,该文件系统不仅具有普通文件系统的存储数据文件的功能,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所挂载(mount)的第一个文件系统,内核代码的映像文件保存在根文件系统中,系统引导启动程序会在根文件系统挂载之后从中把一些初始化脚本(如rcS,inittab)和服务加载到内存中去运行。我们要明白文件系统和内核是完全独立的两个部分。在嵌入式中移植的内核下载到开发板上,是没有办法真正的启动Linux操作系统的,会出现无法加载文件系统的错误。 那么根文件系统在系统启动中到底是什么时候挂载的呢?先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.根文件系统执行完之后,也就是到了Start_kernel()函数的最后,执行init的进程,也就第一个用户进程。对系统进行各 种初始化的操作。 根文件系统之所以在前面加一个”根“,说明它是加载其它文件系统的”根“,既然是根的话,那么如果没有这个根,其它的文件系统也就没有办法进行加载的。它包含系统引导和使其他文件系统得以挂载(mount)所必要的文件。根文件系统包括Linux启动时所必须的目录和关键性的文件,例如Linux启动时都需要有init目录下的相关文件,在Linux挂载分区时Linux 一定会找/etc/fstab这个挂载文件等,根文件系统中还包括了许多的应用程序bin目录等,任何包括这些Linux 系统启动所必须的文件都可以成为根文件系统。Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。成功之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。在Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂载(mount)。使用mount 命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。根文件系统被挂载到根目录下“/”上后,在根目录下就有根文件系统的各个目录,文件:/bin /sbin /mnt等,再将其他分区挂接到/mnt 目录上,/mnt目录下就有这个分区的各个目录,文件。

Linux内核配置编译与文件系统构建要点

Linux内核配置编译与文件系统构建 南京大学 黄开成101180046 2012.11.11 一:实验目的 1.了解嵌入式系统的开发环境,内核与文件系统的下载和启动; 2.了解Linux内核源代码的目录结构及各自目录的相关内容,了解Linux内核各配置选项内容和作用,掌握Linux内核的编译过程; 3.了解嵌入式操作系统中文件系统的类型和应用、了解JFFS2文件系统的优点及其在嵌入式系统中的作用、掌握利用Busybox软件制作嵌入式文件系统的方法,并且掌握嵌入式Linux文件系统的挂载过程。二:实验环境说明 1.PC机使用openSUSE 14 Enterprise 系统。 2.开发板使用深圳市武耀博德信息技术有限公司生产的基于Inter 的PXA270处理器的多功能嵌入式开发平台EELIOD。 3.PC机通过RS-232串口与开发板相连,在PC机终端上运行minicom 程序构造一个开发板上的终端,用于对开发板的控制。 4.PC机与开发板通过ethernet网络相连接,并可在开发板上通过加载网络文件系统(NFS)与PC机通信。 5.Bootloader可以通过tftp协议从PC机上下载内核镜像和根文件系统镜像。下载目录为/tftpboot 。 6.用于开发板的Linux内核源码为linux-2.4.21-51Board_EDR,

busybox版本为busybox-1.00-pre5。 7.交叉编译器的路径为/usr/local/arm-linux/bin/arm-linux。 三:实验操作过程和分析记录 1.嵌入式系统的开发环境和开发流程: 1.1启动minicom和开发板 在PC机上打开一个终端,输入: >minicom 按Ctrl+A-o进入minicom的configuration界面。对串行通信接口进行配置,串口设置为:/dev/ttyS0(串口线接在PC机的串口1上)、bps=115200、8位数据、无校验、无流控制。 然后打开开发板电源,看到屏幕有反应之后,按任意键进入配置界面,如果长时间没有按下任何键,bootloader将会自动从flash中读取内核和根文件系统并启动开发板上的Linux系统。 分析:嵌入式系统中,通常并没有像PC机中BIOS 那样的固件程序,因此整个系统的加载启动任务完全由bootloader来完成。bootloader的主要作用是:初始化硬件设备;建立内存空间的映射图;完成内核的加载,为内核设置启动参数。 按0进入命令行模式,出现51board>,可以设置开发板和PC机的IP 地址: 51board> set myipaddr 192.168.208.133(设置开发板的IP地址) 51board> set destipaddr 192.168.208.33(设置PC机的IP地址)注意IP地址的设置:使其处于同一网段,并且避免和其他系统的

Linux内核与驱动开发实验教材

内核与驱动开发实验教材 中程在线 实验一嵌入式开发环境的建立 实验目的 掌握嵌入式开发环境的构建,熟悉课程实验的开发板 掌握安装交叉编译工具的安装方法 掌握的烧写方法 掌握的编译方法 实验内容 安装交叉编译工具 编译 烧写 生成映像 基础知识 交叉编译工具 嵌入式系统的开发中,开发环境被称为主机。因为嵌入式目标系统的资源局限性,不可能完成构建系统的任务,所以需要主机使用交叉编译工具来构建目标系统。 实验使用交叉编译器,与桌面系统采用的编译器是不同,因为实验开发板采用的是处理器。 编译器将使用下列工具 , 与通常在平台上使用的工具不同,交叉编译工具编译处理的执行文件只能够在平台上运行。 嵌入式系统构建 一个嵌入式系统从软件的角度看通常可以分为四个层次: .引导加载程序()。引导加载程序是系统加电后运行的第一段软件代码。 . 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 . 文件系统。包括根文件系统和建立于内存设备之上文件系统。通常用来作为。 .用户应用程序。特定于用户的应用程序。

主要的功能有: 初始化硬件,初始化, , , , 。 启动,这是最重要的功能,保存内核映像到中,并跳转到内核起始地址。 映像下载,下载内核映像和文件系统到,下载只能通过以太网进行。如命令完成文件下载。 内存控制,如命令可以烧写。 机中的引导加载程序由(其本质就是一段固件程序)和位于硬盘中的(比如,和等)一起组成。在完成硬件检测和资源分配后,将硬盘中的读到系统的中,然后将控制权交给。的主要运行任务就是将内核映象从硬盘上读到中,然后跳转到内核的入口点去运行,也即开始启动操作系统。 而在嵌入式系统中,通常并没有像那样的固件程序(注,有的嵌入式也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由来完成。在实验开发板(基于3C)的嵌入式系统中,系统在上电或复位时都从地址处开始执行,而在这个地址处安排的通常就是系统的程序。 简单地说,就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。 通常,是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的几乎是不可能的。尽管如此,我们仍然可以对归纳出一些通用的概念来,以指导用户特定的设计与实现。 内核是所有系统的中心软件组件。整个系统的能力完全受内核本身能力的限制。 由于内核支持多个架构,由于架构的差异性,每种架构都有不同的团队在维护,所以必须根据架构来选择供应内核的网站。见下表: 架构最合适的内核网站下载方式 等 内核源代码目录树结构说明如下: :包含和硬件体系结构相关的代码,每种平台占一个相应的目录。和位相关的代码存放在目录下,其中比较重要的包括(内核核心部分)、(内存管理)、(浮点单元仿真)、(硬件相关工具函数)、(引导程序)、(总线)和(相关状态)。 :常用加密和散列算法(如、等),还有一些压缩和校验算法。 :关于内核各部分的通用解释和注释。 :设备驱动程序,每个不同的驱动占用一个子目录。 :各种支持的文件系统,如、、等。 :头文件。其中,和系统相关的头文件被放置在子目录下。 :内核初始化代码(注意不是系统引导代码)。 :进程间通信的代码。 :内核的最核心部分,包括进程调度、定时器等,和平台相关的一部分代码放在*目录下。:库文件代码。 :内存管理代码,和平台相关的一部分代码放在*目录下。 :网络相关代码,实现了各种常见的网络协议。

linux2.6内核的编译步骤及模块的动态加载-内核源码学习-linux论坛

[原创]linux2.6内核的编译步骤及模块的动态加载-内核源码 学习-linux论坛 05年本科毕业设计做的是Linux下驱动的剖析,当时就买了一本《Linux设备驱动程序(第二版)》,但是没有实现将最简单的helloworld程 序编译成模块,加载到kernel里。不过,现在自己确实打算做一款芯片的Linux的驱动,因此,又开始看了《Linux设备驱动程序》这本书,不过已 经是第三版了。第二版讲的是2.4的内核,第三版讲的是2.6的内核。两个内核版本之间关于编译内核以及加载模块的方法都有所变化。本文是基于2.6的内核,也建议各位可以先看一下《Linux内核设计与实现(第二版)》作为一个基础知识的铺垫。当然,从实践角度来看,只要按着以下的步骤去做也应该可以实现成功编译内核及加载模块。个人用的Linux版本为:Debian GNU/Linux,内核版本为:2.6.20-1-686.第一步,下载Linux内核的源代码,即构建LDD3(Linux Device Drivers 3rd)上面所说的内核树。 如过安装的Linux系统中已经自带了源代码的话,应该在/usr/src目录下。如果该目录为空的话,则需要自己手动下载源代码。下载代码的方法和链接很多,也可以在CU上通过

https://www.doczj.com/doc/d54728894.html,/search/?key=&;q=kernel&a mp;frmid=53去下载。不过,下载的内核版本最好和所运行的Linux系统的内核版本一致。当然,也可以比Linux系统内核的版本低,但高的话应该不行(个人尚未实践)。 Debian下可以很方便的通过Debian源下载: 首先查找一下可下载的内核源代码: # apt-cache search linux-source 其中显示的有:linux-source-2.6.20,没有和我的内核版本完全匹配,不过也没关系,直接下载就可以了: # apt-get install linux-source-2.6.20 下载完成后,安装在/usr/src下,文件名为: linux-source-2.6.20.tar.bz2,是一个压缩包,解压缩既可以得到整个内核的源代码: # tar jxvf linux-source-2.6.20.tar.bz2

配置和编译Linux内核

配置和编译Linux内核 对内核进行正确配置后,才能进行编译。配置不当的内核,很有可能编译出错,或者不能正确运行。 1.1.1 快速配置内核 进入Linux内核源码数顶层目录,输入make menuconfig命令,可进入如图0.1所示的基于Ncurses的Linux内核配置主界面(注意:主机须安装ncurses相关库才能正确运行该命令并出现配置界面)。如果没有在Makefile中指定ARCH,则须在命令行中指定: $ make ARCH=arm menuconfig 图0.1基于Ncurses的Linux内核配置主界面 基于Ncurses的Linux内核配置界面不支持鼠标操作,必须用键盘操作。基本操作方法: ?通过键盘的方向键移动光标,选中的子菜单或者菜单项高亮; ?按TAB键实现光标在菜单区和功能区切换; ?子菜单或者选项高亮,将光标移功能区选中