当前位置:文档之家› 2直角三角形存在性问题

2直角三角形存在性问题

2直角三角形存在性问题
2直角三角形存在性问题

直角三角形存在性问题

【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.

【几何法】两线一圆得坐标

(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ; (2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;

(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角

为直角)

重点还是如何求得点坐标,12C C 、求法相同,以2C 为例: 【构造三垂直】

故C 2坐标为(13

2

,0)

代入得:BN =

3

2AM BN

=

MB NC 2

由A 、B 坐标得AM =2,BM

=4,NC 2=3

△易证AMB ∽△BNC 2

34C C 、求法相同,以3C 为例:

故a =1或3

设MC 3=a ,C 3N =b △易证AMC 3∽△C 3NB ,

由A 、B 坐标得AM =1,BN =3,AM C 3N

=

MC 3N B

代入得:1

b =a

3,即ab =3,又a +b =4,故C 3坐标为(2,0),C 4坐标为(4,0)

构造三垂直步骤:

第一步:过直角顶点作一条水平或竖直的直线;

第二步:过另外两端点向该直线作垂线,即可得三垂直相似.

【代数法】表示线段构勾股 还剩下1C 待求,不妨来求下1C :

(1)表示点:设1C 坐标为(m ,0),又A (1,1)、

B (5,3); (2

)表示线段:AB =

1AC =

1BC =

(3)分类讨论:当1BAC ∠为直角时,22211AB AC BC +=; (4)代入得方程:()()2

2

22201153m m +-+=-+,解得:3

2

m =.

还有个需要用到一个教材上并没有出现但是大家都知道的算法: 互相垂直的两直线斜率之积为-1.

考虑到直线1AC 与AB 互相垂直,11AC AB k k ?=-,可得:12AC k =-, 又直线1AC 过点A (1,1),可得解析式为:y =-2x +3, 所以与x 轴交点坐标为3,02?? ???,即1C 坐标为3,02?? ???

确实很简便,但问题是这个公式出现在高中的教材上~ 【小结】

几何法:(1)“两线一圆”作出点;

(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.

代数法:(1)表示点A 、B 、C 坐标;

(2)表示线段AB 、AC 、BC ;

(3)分类讨论①AB 2+AC 2=BC 2、②AB 2+BC 2=AC 2、③AC 2+BC 2=AB 2; (4)代入列方程,求解.

如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等.

【三垂直构造等腰直角三角形】

【2019兰州中考(删减)】通过对下面数学模型的研究学习,解决问题. 【模型呈现】

如图,在Rt △ABC ,∠ACB =90°,将斜边AB 绕点A 顺时针旋转90?得到AD ,过点D 作DE ⊥AC 于点E ,可以推理得到△ABC ≌△DAE ,进而得到AC =DE ,BC =AE . 我们把这个数学模型成为“K 型”. 推理过程如下:

【模型迁移】

二次函数22y ax bx =++的图像交x 轴于点A (-1,0),B (4,0)两点,交y 轴于点C .动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN x ⊥轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒. (1)求二次函数22y ax bx =++的表达式;

(2)在直线MN 上存在一点P ,当PBC ?是以BPC ∠为直角的等腰直角三角形时,求此时点D 的坐标.

【分析】

(1)213

222

y x x =-++;

(2)本题直角顶点P 并不确定,以BC 为斜边作等腰直角三角形,直角顶点即为P 点,再

过点P 作水平线,得三垂直全等. 设HP =a ,PQ =b ,则BQ =a ,CH =b , 由图可知:42a b b a +=??-=?,解得:13a b =??=?

故D 点坐标为(1,3).

同理可求此时D 点坐标为(3,2).

思路2:等腰直角的一半还是等腰直角.

如图,取BC 中点M 点,以BM 为一直角边作等腰直角三角形,则第三个顶点即为P 点.根据B 点和M 点坐标,此处全等的两三角形两直角边分别为1和2,故P 点坐标易求. P 点横坐标同D 点,故可求得D 点坐标.

【2017本溪中考】

如图,在平面直角坐标系中,抛物线2

12

y x bx c =

++与x 轴交于A 、B 两点,点B (3,0)

,经过点A 的直线AC 与抛物线的另一交点为5

(4,)2

C ,与y 轴交点为

D ,点P 是直线AC 下

方的抛物线上的一个动点(不与点A 、C 重合).

(1)求该抛物线的解析式.

(2)点Q 在抛物线的对称轴上运动,当OPQ ?是以OP 为直角边的等腰直角三角形时,请

直接写出符合条件的点P 的坐标.

【分析】 (1)213

22

y x x =

--; (2)①当∠POQ 为直角时,

考虑Q 点在对称轴上,故过点Q 向y 轴作垂线,垂线段长为1,可知过点P 向x 轴作垂线,长度必为1,故P 的纵坐标为±1.如下图,不难求出P 点坐标. 设P 点坐标为21

3,2

2m m m ??-- ???,

可得:213

122

m m --=.

解得:11m =+

21m =-

31m =+

41m =-. 如下图,对应P

点坐标分别为()11-

、()11-

、()

1+.

②当∠OPQ 为直角时,如图构造△OMP ≌△PNQ ,可得:PM =QN . 设P 点坐标为21

3,2

2m m m ??-- ???,

则221

31302

222PM m m m m ??=---=-++ ???,QN =1m -,

∴213

122

m m m -++=-,

若213

122m m m -++=-

,解得:1m =

2m =.

若213

122m m m -++=-+

,解得:12m =

22m =.

如下图,对应P

点坐标分别为

、(2.

对于构造三垂直来说,直角顶点已知的和直角顶点的未知的完全就是两个题目!

也许能画出大概位置,但如何能画出所有情况,才是问题的关键.

其实只要再明确一点,构造出三垂直后,表示出一组对应边,根据相等关系列方程求解即可.

【2019阜新中考】

如图,抛物线22y ax bx =++交x 轴于点(3,0)A -和点(1,0)B ,交y 轴于点C . (1)求这个抛物线的函数表达式.

(2)点D 的坐标为(1,0)-,点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积

的最大值.

(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使MNO ?为等腰直角

三角形,且MNO ∠为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.

备用图

【分析】

(1)224

233

y x x =--+;

(2)连接AC ,将四边形面积拆为△APC 和△ADC 面积,考虑△ADC 面积为定值,故只需

△APC 面积最大即可,铅垂法可解; (3)过点N 作NE ⊥x 轴交x 轴于E 点,

如图1,过点M 向NE 作垂线交EN 延长线于F 点, 易证△OEN ≌△NFM ,可得:NE =FM .

设N 点坐标为224,233m m m ??

--+ ???

,则224233NE m m =--+,1FM m =+,

∴224

2133

m m m --+=+

224

2=133m m m --++

,解得:1m (图1)

,2m =(图4) 对应N

点坐标分别为??

、??

; 224

2=133m m m --+--

,解得:3m 2)

、4m (图3) 对应N

点坐标分别为??

、??

当直角顶点不确定时,问题的一大难点是找出所有情况,而事实上,所有的情况都可以归结为同一个方程:NE =FM .故只需在用点坐标表示线段时加上绝对值,便可计算出可能存在的其他情况.

一般直角三角形存在性,同样构造三垂直,区别于等腰直角构造的三垂直全等,没了等腰的条件只能得到三垂直相似.

而题型的变化在于动点或许在某条直线上,也可能在抛物线上等.

【对称轴上寻找点】

(2018·安顺中考)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C . (1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;

(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最

小,求出点M 的坐标;

(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ?为直角三角形的点P 坐标.

【分析】

(1)直线BC :3y x =+

抛物线:223y x x =--+;

(2)将军饮马问题,考虑到M 点在对称轴上,且点A 关于对称轴的对称点为点B ,故

MA +MC =MB +MC ,∴当B 、M 、C 三点共线时,M 到A 和C 的距离之后最小,此时M 点坐标为(-1,2); (3)两圆一线作点 P :

以1P 为例,构造△PNB ∽△BMC ,考虑到BM =MC =3, ∴BN =PN =2,故1P 点坐标为(-1,-2)

易求2P 坐标为(1,4).

3P 、4P 求法类似,下求3P :

已知PN =1,PM =2,设CN =a ,BM =b , 由相似得:

12

a

b =,即ab =2,由图可知:b -a =3,

故可解:1b =

,2b (舍),对应3P

坐标为?- ??

类似可求4P

坐标为?- ??

【抛物线上寻找点】

(2018·怀化中考)如图,在平面直角坐标系中,抛物线22y ax x c =++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.

(1)求抛物线的解析式和直线AC 的解析式;

(2)请在y 轴上找一点M ,使BDM ?的周长最小,求出点M 的坐标;

(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角

形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.

【分析】

(1)抛物线:223y x x =-++,直线AC :y =3x +3; (2)看图,M 点坐标为(0,3)与C 点重合了.

(3)考虑到AC 为直角边,故分别过A 、C 作AC 的垂线,与抛物线交点即为所求P 点,

有如下两种情况,

先求过A 点所作垂线得到的点P : 设P 点坐标为()

2,23m m m -++,

则PM =m +1,AM =()

2202323m m m m --++=--, 易证△PMA ∽△ANC ,且AN =3,CN =1,

∴212331m m m +--=

,解得:1103

m =,21m =-(舍), 故第1个P 点坐标为1013,3

9??

- ???;

再求过点C 所作垂线得到的点P :

()223232PM m m m m =--++=-,CN =m ,

2321m m m =-,解得:1

7

3

m =,20m =(舍), 故第2个P 点坐标为720,39??

???.

综上所述,P 点坐标为1013,3

9??- ???或720,39??

???.

【动点还可能在……】

(2019·鄂尔多斯中考)如图,抛物线22(0)y ax bx a =+-≠与x 轴交于(3,0)A -,(1,0)B 两点,与y 轴交于点C ,直线y x =-与该抛物线交于E ,F 两点. (1)求抛物线的解析式.

(2)P 是直线EF 下方抛物线上的一个动点,作PH EF ⊥于点H ,求PH 的最大值. (3)以点C 为圆心,1为半径作圆,C e 上是否存在点M ,使得BCM ?是以CM 为直角边

的直角三角形?若存在,直接写出M 点坐标;若不存在,说明理由.

【分析】 (1)224

233

y x x =

+-; (2)过点P 作x 轴的垂线交EF 于点Q ,所谓PH 最大,即PQ 最大,易解.

(3)CM 为直角边,故点C 可能为直角顶点,点M 也可能为直角顶点.

①当BCM ∠为直角时,如图:

1M :不难求得CF =1,BF =2,

∴1:1:2EM EC =,又11CM =,

可得:1EM =

EC =. 故1M

坐标为2?- ??; 同理可求2M

坐标为2--??

. ②当∠BMC 为直角时,如图:

3M :不难发现CM =1,BC ,∴2BM =,

即△MEC ∽△BFM ,且相似比为1:2, 设EC =a ,EM =b ,则FM =2a ,BF =2b , 由图可知:2221a b b a +=??-=?,解得:35

45a b ?

=????=??

故点3M 的坐标为36,55??

-- ???

至于4M 坐标,显然(

)1,2-.

综上所述,M 点坐标为2?

-+

??或2-??

或36,55??-- ???或()1,2-.

【总结】对于大部分直角三角形存在性问题,构造三垂直全等或相似基本上可解决问题,牢记构造步骤:(1)过直角顶点作水平或竖直线;(2)过另外两端点向其作垂线.

直角三角形存在性

直角三角形的存在性问题代数法 1.写出三边的平方 2.分类列方程 3.解方程 几何法 1.分类 2.画图——“两线一圆” 3.计算

例1.如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3). (1)求抛物线的解析式; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

例 2.如图,在直角坐标系中,R t△O A B的直角顶点A在x轴上,O A=4,A B=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O 移动;同时点N从点O出发,以每秒 1.25个单位长度的速度,沿O B 向终点B移动.当两个动点运动了x秒(0

例 3.(2015·益阳中考)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′. (1)求m的值及抛物线E2所表示的二次函数的表达式. (2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由. (3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接O P并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

专题等腰三角形存在性问题 题型一:几何图形 1、如图(1),在△ABC中,AB=AC,∠A=36°. (1)直接写出∠ABC的度数; (2)如图(2),BD是△ABC中∠ABC的平分线. ①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程; ②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.

变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒. (1)当t=1时,求△ACP的面积. (2)t为何值时,线段AP是∠CAB的平分线? (3)请利用备用图2继续探索:当t为何值时,△ACP是以AC为腰的等腰三角形?(直接写出结论) 变式二:如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A 开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC 的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t秒.(1)出发2秒后,求PQ的长; (2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由; (3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?

变式三:在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB 的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形. (1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由. 变式四:如图,在矩形ABCD中,AB=4,BC=3,点E是边CD上任意一点(点E 与点C、D不重合),过点A作AF⊥AE,交边CB的延长线于点F,连接EF,交边AB于点G.设DE=x,BF=y. (1)求y关于x的函数解析式,并写出自变量x的取值范围; (2)如果AD=BF,求证:△AEF∽△DEA; (3)当点E在边CD上移动时,△AEG能否成为等腰三角形?如果能,请直接写出线段DE的长;如果不能,请说明理由.

中考数学 专题16 函数动点问题中三角形存在性(解析版)

专题16 函数动点问题中三角形存在性 模型一、等腰三角形存在性问题 以腰和底分类讨论,借助勾股定理、相似性质、三角函数等知识进行求解. 模型二、直角三角形存在性问题 以直角顶点不同分类讨论,借助勾股定理、相似性质、三角函数等知识进行求解.常见的模型为“一线三直角”. 【例1】 (2019·郑州外国语模拟)如图,在平面直角坐标系中,抛物线y=ax2-3 2 x+c经过点A(-1,0),B(4,0), 与y轴交于点C,点P是x轴下方的抛物线上一动点(包含点A、B).作直线BC,若过点P作x轴的垂线,交直线BC于点Q. (1)求抛物线的解析式; (2)在点P的运动过程中,是否存在点P,使△CPQ是等腰三角形?若存在,直接写出点P的横坐标,若不存在,请说明理由. 【答案】见解析. 【解析】解:(1)由题意,抛物线的解析式可表示为:y=a(x+1)(x-4), 将点(0,-2)代入上式,得:a=1 2 , 即抛物线的解析式为:y=1 2 x2- 3 2 x-2; (2)由y=1 2 x2- 3 2 x-2得:C(0,-2), 由勾股定理得:BC 由C(0,-2), B(4,0)得直线BC的解析式为:y=1 2 x-2, 设P(m,1 2 m2- 3 2 m-2),则Q(m, 1 2 m-2), 过Q作QM⊥y轴于M,则QM∥AB,

∴ CQ QM BC AB = ,4 m =, ∴CQ , PQ =-12m 2+2m , PC ①当CQ =PQ 时, =-1 2 m 2+2m ,解得:m =0(舍)或m =4; ②当CQ =PC 时, = m =0(舍)或m =2或m =4(舍); ③当PQ =PC 时, -12m 2+2m = m =0(舍)或m =32; 综上所述,存在点P ,使△CPQ 是等腰三角形,点P 的横坐标为:42或3 2 . 【变式1-1】(2018·开封二模)如图,抛物线L :y =ax 2+bx +3与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C ,已知点B (3,0),抛物线的对称轴为x =1. (1)求抛物线的解析式; (2)将抛物线向下平移h 个单位长度,使平移后所得的抛物线的顶点落在△OBC 内部(包含△OBC 边界),求h 的取值范围; (3)设点P 是抛物线L 上任一点,点Q 在直线l :x =-3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,写出符合条件的点P 的坐标,若不能,请说明理由. 【答案】见解析.

(完整版)一次函数与等腰三角形的存在性问题

一次函数与等腰三角形的存在性问题 一.选择题(共3小题) 1.在平面直角坐标系中有两点:A(﹣2,3),B(4,3),C是坐标轴x轴上一点,若△ABC是直角三角形,则满足条件的点C共有() A.2个B.3个C.4个D.6个 2.(2008?天津)在平面直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y=﹣x+2的图象上,且△ABC为直角三角形,则满足条件 的点C有() A.1个B.2个C.3个D.4个 3.(2016?江宁区一模)已知点A,B的坐标分别为(﹣4,0)和(2,0), 在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C 有() A.1个B.2个C.3个D.4个 二.填空题(共4小题) 4.(2015?杭州模拟)在平面直角坐标系xOy中,点A(﹣4,0),B(2,0),设点C是函数y=﹣(x+1)图象上的一个动点,若△ABC是直角三角形,则点C的坐标是. 5.(2009秋?南昌校级期末)在直角坐标系中,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D 的坐标应为. 6.(2009秋?扬州校级期中)在平面直角坐标系中若△ABC的顶点坐标分别为:A(3,0)、B(﹣1,0)、C(2,3)、若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为. 7.(2010春?江岸区期中)一个平行四边形在平面直角坐标系中三个顶点的 坐标分别是(﹣1,﹣1),(﹣2,3),(3,﹣1),则第四个顶点的坐标 为. 三.解答题(共14小题) 8.四边形ABCD中,BD,AC相交于O,且BD⊥AC,求证:AB2+CD2=AD2+BC2.9.如图,直线y=﹣x+3与x轴、y轴分别交于点A,点B,在第一象限是 否存在点P,使以A,B,P为顶点的三角形是等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

等腰三角形的存在性问题

10.(2016山东省临沂市)如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由. 11.(2016山东省日照市)阅读理解: 我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹. 问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM 交EF于点P,那么动点P为线段AM中点. 理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点. 由此你得到动点P的运动轨迹是:. 知识应用: 如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长. 拓展提高: 如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△A PC和等边△PBD,连结AD、BC,交点为Q. (1)求∠AQB的度数; (2)若AB=6,求动点Q运动轨迹的长.

12.(2016山东省日照市)如图1,抛物线 2 3 [(2)] 5 y x n =--+ 与x轴交于 点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC. (1)求m、n的值; (2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值; (3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由. 13.(2016山西省)综合与探究 如图,在平面直角坐标系中,已知抛物线 28 y ax bx =+-与x轴交于A,B 两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8). (1)求抛物线的函数表达式,并分别求出点B和点E的坐标; (2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由; (3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.

直角三角形存在性问题解决方法汇总

【问题描述】 如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标. 【几何法】两线一圆得坐标 (1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ; (2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ; (3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角) 重点还是如何求得点坐标,C1、C2求法相同,以C2为例: 【构造三垂直】 01问题与方法

C3、C4求法相同,以C3为例: 构造三垂直步骤: 第一步:过直角顶点作一条水平或竖直的直线; 第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股 还剩下C1待求,不妨来求下C1: 【解析法】 还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1. 考虑到直线AC1与AB互相垂直,k1k2=-1, 可得:kAC=-2, 又直线AC1过点A(1,1), 可得解析式为:y=-2x+3, 所以与x轴交点坐标为(1.5,0), 即C1坐标为(1.5,0). 确实很简便,但问题是这个公式出现在高中的教材上

方法小结 几何法: (1)两线一圆作出点; (2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数. 代数法: (1)表示点A、B、C坐标; (2)表示线段AB、AC、BC; (3)分类讨论①AB2+AC2=BC2、②AB2+BC2=AC2、③AC2+BC2=AB2; (4)代入列方程,求解. 02从等腰直角说起 再特殊一些,如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等. 2019兰州中考删减 【等腰直角存在性——三垂直构造全等】 通过对下面数学模型的研究学习,解决问题. 【模型呈现】 如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”. 推理过程如下: 【模型迁移】 二次函数y=ax2+bx+2的图像交x轴于点A(-1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式; (2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.

二次函数的动点问题(等腰、直角三角形的存在性问题)

二次函数中的动点问题 三角形的存在性问题 一、技巧提炼 1、利用待定系数法求抛物线解析式的常用形式 (1)、【一般式】已知抛物线上任意三点时,通常设解析式为,然后解三元方程组求解;(2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解; 2、二次函数y=ax2+bx+c 与 x 轴是否有交点,可以用方程ax2 +bx+c = 0是否有根的情况进行判定; 判别式 b 24ac二次函数与x 轴的交点情况一元二次方程根的情况△> 0与 x 轴交点方程有的实数根 △< 0与 x 轴交点实数根 △= 0与 x 轴交点方程有的实数根 3、抛物线上有两个点为A(x , y), B( x , y) 12 (1) 对称轴是直线x x 1 x2Q 2 (2) 两点之间距离公式: 已知两点 P x1 , y1,Q x2 ,y2 ,P G ( x1 x2 ) 2( y1 y2 ) 2O 则由勾股定理可得:PQ 练一练:已知 A( 0, 5)和 B(- 2, 3),则 AB=。 4、常见考察形式 1)已知 A( 1,0 ), B( 0, 2),请在下面的平面直角坐标系 坐标轴上找一点C,使△ ABC是等腰三角形; 总结:两圆一线 方法规律 :平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;

2)已知 A( -2,0 ), B( 1, 3),请在平面直角坐标系中坐标轴 上找一点C,使△ ABC是直角三角形; 总结:两线一圆 方法规律 {平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积: ( 1)直接用面积公式计算;( 2)割补法;( 3)铅垂高法; 如图,过△ ABC 的三个顶点分别作出与水平线垂直的三条直线, A铅垂高 外侧两条直线之间的距离叫△ABC 的“水平宽” ( a),中间的C h 这条直线在△ ABC 内部线段的长度叫△ ABC 的“铅垂高” ( h). 我们可得出一种计算三角形面积的新方法:B 水平宽1 S△ABC =2ah,即三角形面积等于水平宽与铅垂高乘积的一半。a 6、二次函数中三角形的存在性问题 解题思路:( 1)先分类,罗列线段的长度;(2)再画图;(3) 后计算

等腰直角三角形存在性(通用版)(含答案)

等腰直角三角形存在性(通用版) 试卷简介:考查在动态框架和函数框架下等腰直角三角形存在性的处理原则,调用存在性问题的处理手段,分析定点、动点,从直角入手,确定分类,借助等腰三角形自身的性质或构造弦图模型解决问题。 一、单选题(共5道,每道20分) 1.如图,抛物线交x轴于A,C两点(点A在点C的右侧),交y轴于点B.点 D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为( ) A. B.(-1,3)或(1,2) C.(-1,4)或(1,2) D.(-1,4),(1,2)或(5,-2) 答案:C 解题思路:1.解题要点 ①观察题目特征,确定为等腰直角三角形存在性问题. ②分析定点、动点、不变特征.从直角入手,分类讨论. ③画图,表达线段长,借助等腰直角三角形性质建等式. 2.解题过程 由题意得,A(3,0),B(0,3),AO=BO=3. 在△ADP中,A,D为定点,P为直线AB上的动点. ①当点A是直角顶点时,在直线AB上不存在点P,使△ADP为等腰直角三角形. ②如图,当点D为直角顶点时,过点D作⊥DA,交直线AB于点.

由∠1=45°可得,为等腰直角三角形,点满足题意. 此时,点的坐标为(-1,4). ③如图,当点P为直角顶点时,过点D作⊥AB于点. 易知为等腰直角三角形,点满足题意. 过点作轴于点M. 易得,OM=1, ∴点的坐标为(1,2). 综上得,点P的坐标为(-1,4)或(1,2). 试题难度:三颗星知识点:等腰直角三角形存在性 2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线,交

2018二次函数与直角三角形存在性问题

二次函数中直角三角形存在性问题 1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么 以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点 2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1 以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者 三条边分别表示之后,利用勾股定理求解 例一:如图,抛物线()2 230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; (3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.

例二、如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.(1)求该抛物线的解析式; (2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大; (3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由. 练习:

2.如图,抛物线y=x2-2mx (m>0)与x轴的另一个交点为A,过P(1,-m)作PM⊥x轴与点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C. (1)若m=2,求点A和点C的坐标; (2)令m>1,连接CA,若△ACP为直角三角形,求m的值; (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由. 3. 如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).

专题:直角三角形存在性问题

直角三角形存在性问题 方法提炼: ●找点 已知“两个定点,求作直角三角形”,可借用“两线一圆法”找到第三个顶点的位置; ●直角三角形存在性问题探讨 1.先假设结论成立,根据直角顶点的不确定性,分情况讨论 2.方法一:画出具体图形,依托直角,作“横平竖直”辅助线,造“一线三直角”,利用相似列方程解 方法二:引入一个字母,用它表示出三角形的三边,再分类谈论,利用勾股定理列方程求解; 例1:如图在菱形ABCD中,∠ABC=60°,AB=2,点P是菱形外部的一点,若以点P、A、C为顶点的三角形 (1)求点A、B的坐标; (2)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

例3.如图,二次函数y=x2+bx+c图像经过原点和点A(2,0),直线AB与抛物线交于点B,且∠BAO =45°. (1)求二次函数解析式及其顶点C的坐标; (2)在直线AB上是否存在点D,使得△BCD 为直角三角形.若存在,求出点D的坐标,若不存在,说明理由. 例4.(2017年.娄底)如图,抛物线y=ax2+bx+c与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t 秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;

●针对性演练: 1、如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式; (2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD 分成面积相等的两个四边形,求点E的坐标; (3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由. 2、如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x 轴的另一交点为A,顶点为P,且对称轴是直线x=2。 (1)求点A的坐标; (2)求该抛物线的函数表达式; (3)请问在抛物线上是否存在点Q,使得以点B、C、Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

等腰三角形存在性问题及真题典例分析(含解析)

等腰三角形存在性问题 几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法. 等腰三角形存在性问题 【问题描述】 如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形. 【几何法】“两圆一线”得坐标 (1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB. 【注意】若有三点共线的情况,则需排除. 作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.

C 21+23,0() C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13 34C C 、同理可求,下求5C . 显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解: 故C 5坐标为( 196,0) 解得:x = 136 3-x ()2+22=x 2 设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3, BH =2 而对于本题的5C ,或许代数法更好用一些.

【代数法】表示线段构相等 (1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3) , (2)表示线段:5AC = 5BC (3)分类讨论:根据 55AC BC = , (4)求解得答案:解得:236m =,故5C 坐标为23,06?? ??? . 【小结】 几何法:(1)“两圆一线”作出点; (2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标. 代数法:(1)表示出三个点坐标A 、B 、C ; (2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解. 问题总结: (1)两定一动:动点可在直线上、抛物线上; (2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.

直角三角形的存在性问题(教案)

直角三角形的存在性问题(教案) 学习目标: 1、经历探索直角三角形存在性问题的过程,熟练掌握解题技巧。 2、体会分类讨论的数学思想,体验解决问题方法的多样性。 一、课前准备 1.已知直角三角形的两边长分别是3和4,则第三边的长为 . 2.如图,A (0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为 . 【设计意图】通过两个简单的关于直角三角形的练习,检测学生对勾股定理、M 型相似的应用情况,同时引出课题——直角三角形的存在性问题. 二、我们一起来探究 如图,A (0,1),B (4,3)是直线12 1 += x y 上的两点,点P 是x 轴上一个动点. 问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标. y x B A O y x B A O y x B A O (备用图1) (备用图2) 提问:(1)这样的问题,你怎么思考的? 需要针对直角顶点进行分类. (2)一般会有几种情况? 三种. (3)分类之后需要做什么? 画图. (4)解题有哪些方法? (5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点. 变式跟进:将上述直线向上平移a 个单位,A 、B 两点也同时向上平移到相应的位置,x 轴上存在唯一的点P ,使得∠APB=90°. 求a 的值. 【小结】直角三角形的存在性问题解题策略: . 【设计意图】通过这个环节,探究直角三角形存在性问题解题策略:分类——画图——解题,重在让学生了解这类题的的三种解法:几何法、解析法、代数法,从而为后面的练习做好铺垫. 三、反馈练习 1.如图,点O (0,0),A (1,2),若存在格点P ,使△APO 为直角三角形,则点P 的个数有 个.

中考压轴题等腰三角形存在性问题 -

中考压轴题等腰三角形存在性问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题. 在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类. 原创模拟预测题1.如图,抛物线 223 y x x =-++与y轴交于点C,点D(0,1),点P是 抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为. 【答案】(122)或(122). 【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标. 【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作 PE⊥y轴于点E,则E为线段CD的中点,∵抛物线 223 y x x =-++与y轴交于点C,∴C (0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在 223 y x x =-++中, 令y=2,可得 2232 x x -++=,解得x=12 ±,∴P点坐标为(122)或(12, 2),故答案为:(122)或(12,2).

二次函数压轴题等腰三角形存在性-直角三角形存在性

中考数学压轴题 一、等腰三角形存在性 1 解题思想:分类讨论 2 解题技巧:坐标系内线段长度表示 (1)线段在坐标轴上或平行于坐标轴 在x轴或平行于x轴:x右-x左 在y轴或平行于y轴:y上-y下 (2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C) 由勾股定理得:AB2= AC2= BC2= 3 解题方法 (1)代数法:(1)根据条件用坐标表示三边或三边的平方 (2)分三种情况列方程,解方程 (3)根据题目条件及方程解确定坐标(注意重根) (2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点 (2)画图,作圆法,垂直平分线法 (3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。 例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 代数法: 几何法: 例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.

(1)试求△ABC 的面积; (2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况 2 根据已知表示三边长度(相似) 3 列方程计算 同步练习: 1.如图,抛物线2 54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC . (1)写出A,B,C 三点的坐标并求抛物线的解析式; (2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由. 2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. A C B y x 0 1 1

二次函数的动点问题(等腰、直角三角形的存在性问题)解析

_ Q _ G _ P _ O 二次函数中的动点问题 三角形的存在性问题 一、技巧提炼 1、利用待定系数法求抛物线解析式的常用形式 (1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数y=ax 2 +bx+c 与x 轴是否有交点,可以用方程ax 2 +bx+c = 0是否有根的情况进行判定; 判别式ac b 42-=? 二次函数与x 轴的交点情况 一元二次方程根的情况 △ > 0 与x 轴 交点 方程有 的实数根 △ < 0 与x 轴 交点 实数根 △ = 0 与x 轴 交点 方程有 的实数根 3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2 x 2 1x x += (2)两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:2 21221)()(y y x x PQ -+-= 练一练:已知A (0,5)和B (-2,3),则AB = 。 4、 常见考察形式 1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线 方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个 端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;

2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形; 总结: 两线一圆 方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的 两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积: (1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法: S △ABC =1 2ah ,即三角形面积等于水平宽与铅垂高乘积的一半。 6、二次函数中三角形的存在性问题 解题思路:(1)先分类,罗列线段的长度;(2)再画图;(3) 后计算 B C 铅垂高 水平宽 h a A

等腰三角形存在性问题(带答案)

等腰三角形存在性问题(两圆一线) 类型一、格点中的等腰三角形 1、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是() 2、.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C, 使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( )个. 3、如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于. 4、如图,在图中能画出与△ABC全等的格点三角形有几个?

类型二、定边几何法讨论:两圆一线 5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来 6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P也在AB 上,这样的等腰三角形能画个(在图中作出点P)

(2)若∠DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果) (3)若改变(2)中∠DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后∠DOB=. 7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个. 8、线段AB和直线l在同一平面上.则下列判断可能成立的有个 直线l上恰好只有个1点P,使△ABP为等腰三角形 直线l上恰好只有个2点P,使△ABP为等腰三角形 直线l上恰好只有个3点P,使△ABP为等腰三角形 直线l上恰好只有个4点P,使△ABP为等腰三角形 直线l上恰好只有个5点P,使△ABP为等腰三角形 直线l上恰好只有个6点P,使△ABP为等腰三角形.

1.3因动点产生的直角三角形问题 (2)

1.3 因动点产生的直角三角形问题 例1 2012年广州市中考第24题 如图1,抛物线233 384 y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标; (2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有.... 三个时,求直线l 的解析式. 图1 思路点拨 1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D 有两个. 2.当直线l 与以AB 为直径的圆相交时,符合∠AMB =90°的点M 有2个;当直线l 与圆相切时,符合∠AMB =90°的点M 只有1个. 3.灵活应用相似比解题比较简便. 满分解答 (1)由2333 3(4)(2)848 y x x x x =--+=-+-, 得抛物线与x 轴的交点坐标为A (-4, 0)、B (2, 0).对称轴是直线x =-1. (2)△ACD 与△ACB 有公共的底边AC ,当△ACD 的面积等于△ACB 的面积时,点B 、D 到直线AC 的距离相等. 过点B 作AC 的平行线交抛物线的对称轴于点D ,在AC 的另一侧有对应的点D ′. 设抛物线的对称轴与x 轴的交点为G ,与AC 交于点H . 由BD //AC ,得∠DBG =∠CAO .所以3 4 DG CO BG AO ==. 所以3944DG BG ==,点D 的坐标为9 (1,)4 -. 因为AC //BD ,AG =BG ,所以HG =DG . 而D ′H =DH ,所以D ′G =3DG 274=.所以D ′的坐标为27 (1,)4 .

一次函数之等腰直角三角形的存在性 (讲义及答案).

一次函数之等腰直角三角形的存在性(讲义)?课前预习 1.如图所示的正方形网格中,网格线的交点称为格点.已知A, B 是两个格点,若点 C 也是图中的格点,且使得△ABC 为等 腰直角三角形,则符合条件的点C 有个. 2.用铅笔做讲义第1 题,并将计算、演草保留在讲义上,先看知 识点睛,再做题,思路受阻时(某个点做了2~3 分钟)重复上述动作,若仍无法解决,课堂重点听. ?知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析所求图形中的定点、定线、定角等不变特征. ②分类、画图 结合所求图形的形成因素,依据其判定、定义等确定分类,并画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等. 2.等腰直角三角形存在性的特征分析及特征下操作要点: 三角形的三个顶点分别为直角顶点进行分类,在直角的基础上,再考虑等腰,通常借助构造弦图模型进行求解.

?精讲精练 1.如图,直线y=-2x+6 与x 轴、y 轴分别交于点A,B,点P 是 第一象限内的一个动点,若以A,B,P 为顶点的三角形是等腰直角三角形,则点P 的坐标为.

2.如图,直线y =-1 x +b 与x 轴、y 轴分别交于点A,B,点C 3 在直线y =-1 x +b 上,且其纵坐标为1,△OAC 的面积为 3 . 3 2 (1)求直线y =-1 x +b 的表达式及点C 的坐标;3 (2)点P 是第二象限内的一个动点,若△ACP 是等腰直角三角形,则点P 的坐标为.

专题01 直角三角形的存在性问题(解析版)

专题一直角三角形的存在性问题 【考题研究】 主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。 【解题攻略】 解直角三角形的存在性问题,一般分三步走: 第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程; 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 【解题类型及其思路】 当直角三角形存在时可从三个角度进行分析研究: (1)当动点在直线上运动时,常用的方法是:① 121 k k?=-,②三角形相似,③勾股定理; (2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法① 121 k k?=-,②三角形相似,③勾股定理; (3)当动点处作直角的方法:寻找特殊角 【典例指引】 类型一【确定三角形的形状】 典例指引1. (2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.

相关主题
文本预览
相关文档 最新文档