当前位置:文档之家› 风力发电机概述,风力发电机工作原理,风力发电机各个部件介绍

风力发电机概述,风力发电机工作原理,风力发电机各个部件介绍

风力发电机概述

一、风力发电机

风力发电的原理

简单来说:

风力发电原理是把风

的动能转换为风轮轴

的机械能最后到电

能!

工作原理

现代变速双馈风力发电机的工作原理

就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发

电机同步转速通常为1500转/分)。风机是有许

多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。

就1500千瓦风机而言,一般在3米/秒左右的风速自动启动,在11.5米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。

二、风力发电机结构

风力发电机整机主要包括:

1.机座

2.传动链(主轴、齿轮箱)

3. 偏航组件(偏航驱动、偏航刹车钳、偏航轴承)

4.踏板和棒

5.电缆线槽

6.发电机

7.联轴器8.液压站9.冷却泵(风冷型无) 10.滑环组件11.自动润滑12.吊车

13.机舱柜14.机舱罩15.机舱加热器

16.轮毂17.叶片18.电控系统等。

1、机座

:机座是风力发电整机的主要设备安装的基机座:

础,风电机的关键设备都安装在机座上。(包括传动链(主轴、齿轮箱)、偏航组件(偏航驱动、偏航刹车钳、偏航轴承)、踏板和棒、电缆线槽、发电机、联轴器、液压站、冷却泵(风冷型无)、

滑环组件、自动润滑、吊车、机舱柜、机舱罩、机舱加热器等。机座与现场的塔筒连接,人员可以通过风电机塔进入机座。机座前端是风电机转子,即转子叶片和轴。

2、偏航装置偏航装置::

自然界的风,方向和速度经常变化,为了使风力机能有效地捕捉风能,就相应设置了对风装置以跟踪风向的变化,保证风轮基本上始终处于迎风状况。风力发电机的偏航系统也称为对风装置,其主要作用在于当风向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能。另外、当风机对风相同一个方向旋转几圈之后,向塔筒底部输送电力的线缆也会扭转,为了保护电缆,系统会控制风机向相反的方向旋转,既解缆。

为了使风机的桨叶转子工作事始终朝向某个方向,在风机内安设了偏航系统,风力机的偏航系统即对风装置。其作用在于当风速矢量的方向变化时,精密的测风仪器将检测信号传输给电脑的软件,经过分析后驱动偏航系统的电机和齿轮箱使风机尽可能的减少风能损失,快速平稳地对准风向,以便风轮获得最大的风能。

借助偏航驱动电机转动机座,以使转子叶片调整风向的最佳切入角度。偏航装置由电子控制器操作,电子控制器可以通过风向标来探知风向。通常,在风改变其方向时,风电机一次只会偏转几度。

工作原理如下:

风向标作为感应元件将风向的变化用电信号传递到偏航电机的控制回路的处理器里,经过比较后处理器给偏航电机发出顺时针或逆时针的偏航命令,为了减少偏航时的力矩,电机转速将通过同轴联接的减速器减速后,将偏航力矩作用在偏航轴承上,带动风轮偏航对风,当对风完成后,风向标失去电信号,电机停止工作,偏航过程结束。

偏航的驱动机构

几乎所有水平轴的风电机都会强迫偏航。即使用一个带有电动机及齿轮箱的机构来保持风电机对着风偏转。1.5兆瓦风电机上的偏航机构上可以看到环绕内圈的偏航轴承,当系统接到偏航指令时,偏航电机开始运转,通过偏航驱动减速齿轮箱减速之后驱动偏航轴承已实现偏航。

解缆

电缆用来将电流从风电机运载到塔下。但是当风电机偶然沿一个方向偏转太长时间时,电缆将越来越扭曲。此时我们的风机上安装有一个偏航计数器,当风机同一个方向转动一定的圈数之后,计数器给系统一个指令,系统控制风机往回转动,偏航刹车主机室的转动按照指令的方向,偏航电机转动,液压刹车系统处于释放状态,当偏航电机停止转动时,液压刹车系统处于刹车状态,将主机室固定在相应的位置上,实现解缆。

偏航的组成部件

整个偏航组件包括有偏航驱动电机、偏航驱动齿轮箱、偏航轴承、偏航刹车盘、偏航刹车钳、液压管路、回油管路、润滑系统等。

部分部件如下图所示:

偏航刹车:风机的转动方向应该是按照指令的方向转动的。当偏航电机转动的时候,液压刹车系统处于释放状态,这时偏航刹车钳还会有一定的抱紧量,以保证偏航的速度恒定,保护风机。当偏航电机停止转动时,液压刹车系统处于刹车状态,将风机固定在相应的位置上。

偏航刹车钳:它固定在风机机座上。

我们使用的偏航刹车钳有两个油缸,其大致结构如下图所示:当液压油通过液压油管和进入液压管道后,液压油推动活塞,然后活塞再推动刹车片,上下刹车片抱紧刹车盘实现刹车。

刹车盘:刹车盘和塔筒相连,当风机需要刹车,刹车钳就抱紧它的内缘。

家用小型风力发电机的功能介绍

家用小型风力发电机的功能介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s 平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为 6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW, 假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。 以上总耗能为285Wh。 这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。 上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。 另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。 三,小型风力发电机的合理配套 小型风力发电机发出的电能首先经过蓄电池贮存起来,然后再由蓄电池向用电器供电。所以,必须认真科学地考虑,风力发电机功率与蓄电池容量的合理匹配和静风期贮能等问题。目前,小型风力发电机与蓄电池容量一般都是按照输入和输出相等,或输入大于输出的原则进行匹配的。即:100W风力发电机匹配120Ah蓄电池(60Ah2块);200W风力发电机匹配120-180Ah蓄电池(60或90Ah2 块);300W风力发电机匹配240Ah蓄电(120Ah2块);750W 风力发电机匹配240Ah蓄电池(120Ah2块);1000W风力发电机匹配 360Ah蓄电池(120Ah3块)。

250 小型风力发电机总体结构的设计

第一章 概述 1.1 风力发电机概况 风能的利用有着悠久的历史。 近年来, 资源的短缺和环境的日趋恶化使世界各国开始重 视开发和利用可再生、 且无污染的风能资源。自80年代以来, 风能利用的主要趋势是风力发 电。风力发电最初出现在边远地区, 应用的方式主要有: 1) 单独使用小型风力发电机供家 庭住宅使用; 2) 风力发电机与其它电源联用可为海上导航设备和远距离通信设备供电; 3) 并入地方孤立小电网为乡村供电。 随着现代技术的发展, 风力发电迅猛发展。以机组大型化(50kW~ 2MW )、集中安装和 控制为特点的风电场(也称风力田、风田) 成为主要的发展方向。20 年来, 世界上已有近30 个国家开发建设了风电场(是前期总数的3 倍) , 风电场总装机容量约1400 万kW (是前期总 数的100 倍)。目前, 德国、美国、丹麦以及亚洲的印度位居风力发电总装机容量前列, 且 未来计划投资有增无减。美国能源部预测2010 年风电至少达到国内电力消耗的10%。欧盟5 国要在2000~ 2002 年达到本国总发电量的10%左右, 丹麦甚至计划2030 年要达到40%。 中国是一个风力资源丰富的国家, 风力发电潜力巨大。据1998 年统计, 风力风电累计 装机22.36万kW , 仅占全国电网发电总装机的0.081% , 相对于可开发风能资源的开发率仅 为0.088%。 中国第一座风力发电场于1986 年在山东荣成落成, 总装机较小, 为3×55kW。到1993 年我国风电场总装机容量达17.1MW , 1999 年底, 我国共建了24 个风力发电场, 总装机 268MW。我国风力发电场主要分布在风能资源比较丰富的东南沿海、西北、东北和华北地区, 其中风电装机容量最多的是新疆已达72.35kW。在未来2~ 3 年内, 我国计划新增风电场装 机容量将在800MW 以上, 并且将会出现300~ 400MW 的特大型风力发电场。 1.2 风力发电机的研究现状 1.2.1 国外风力发电机的研制情况 美国从1974年起对风能进行系统的研究,能源部对风能项目的投资累计已达到25亿美 元。许多著名大学和研究机构都参加了风能的研究开发,目前己安装了8个巨型风力发电机 组。到19%年末,风力发电总装机容量己达到170x 4 10 kw,所提供的电力占全美电力需求量 的10%,居世界之首位,主要集中在加利福尼亚州。美国国会己通过了能源政策法,在能源 部的规划下, 将会改变风力发电集中于加利福尼亚的局面,在年平均风速达5.6m/s的中西部 12个州将建风力电站。据能源部预测,在未来15年内,风电将增加6倍。在今后2年内,在怀 俄明、伊阿华、明尼苏达、得克萨斯、佛蒙特、缅因州等修建大型风电场,这些风电场将使 美国风力发电能力再增加40x 4 10 kw, 预计到2010年, 风力发电总装机容量将达到630x 4 10 kw, 可满足全美电力需求量的25%。 德国是欧洲风力发电增长最快的国家,近年风力发电量急增,尤其沿海各州,风力发电 发展迅速,己超过丹麦,成为世界第二。到1995年己建成1035座风力发电装置,装机容量 49.4x 4 10 kw,1996年新装机约950座,装机容量为48x 4 10 kw,到19%年底德国己拥有4500座 风力发电装置,总装机容量达到约160x 4 10 kw,1997年估计可增加5x 4 10 kw,可为20多万个 家庭提供日常用电。这些风力发电装置中的1600个是政府投资建设的。装机容量超过1OO0kW 的风电场有250个,300OkW的最大风电场已投入使用,发电能力63x 4 10 kw,西部5x 4 10 kw风

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

小型风力发电机的构造原理

小型风力发电机介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。 以上总耗能为285Wh。 这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。 上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。 另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。 三,小型风力发电机的合理配套

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机的组成部件及其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

小型风力发电机基本常识

小型风力发电机基本常识 1.小型风力发电机一般都由那几部分组成的? 小型风力发电机部件很多,但一般都是由5部分组成的: 一是风轮,由二个或多个叶片组成,安装在机头上,是把风能转化为机械能的主要部件。 二是机头,主要是发电机和安装尾翼的支座等,它能绕塔架中的竖直轴自由转动。 三是尾翼,它一般装于机头之后,是用来保证在风向变化时,使风轮正对风向,现在也有不带尾翼的垂直轴发电机。 四是塔架,是支撑机头的构架,它把风力发电机架设在不受周围障碍物影响的空中。 五是控制系统,是用来控制发电机的输入输出和发电机工作状态的。 2.如何选购一台真正适合自已使用的风力发电机? 如何选购一台真正适合自已使用的风力发电机,其中是大有学问。首先,要看生产风力发电机的厂家。目前国内许多所谓的风力发电机生产厂家只是采购一些部件进行简单的组装,各部件之间根本不配套,故发电效率相对较小,故障也比较多,缺乏必要的科研能力,产品很难更新换代,还有一些厂家为了追求高利润.不惜偷工减料.其生产的发电机很难达到其标定的功率.更有一些产品经销商偷梁换柱.所以消费者在先购风力发电机时,一定要找正规的生产厂家.一般有能力有规模的生产厂家其产品大都配套齐全.其有较强的研发能力,其产品质量也都符合国家标准。

特别要查对电机的参数:(最好是拿几个厂家的对比就会很明显) 主要技术参数包括:起动风速,额定风速,额定电压,最大功率,额定功率,额定转速等。 其次用户要根据自已的使用要求和风力条件。选择相对应的风力发电机.比如在内地,由于风较小,更应选择一些功率小的发电机,因为他更容易被小风量带动而发电,特续不断的风,会比一时狂风更能供给较大的能量,而大功率的发电机.在小风的环境下动很难高效率的发电,甚至根本就无法发.这样,如果用户用电量大.可以选购几台小功率的发电机并联使用.其效果较购一台大功率的发电机效果好得多或者使用太阳板构成风光互补供电系统效果更稳定。同时,用户在选购风力发电机时还要注意以下几点:查看装箱单,数数配件是否齐全;用手转动一下各个转动部分,看是否转动灵活。 3.发电机的具体安装地点? 小型风力发电机安装场址的选择非常重要。性能很高的风力发电机,假如没有风,它也不会工作,而性能稍差一些的风力发电机,如果安装场址选择得好,也会使它充分发挥作用。关于小型风力发电机的选址条件包含着非常复杂的因素,原则上,在一年之中极强风及紊流少的地点应算最好,但有时很难选出这样的地点。 一般本着这样的原则: 第一风能丰富,年平均风速越大越好,其大体上数字是:年平均风速3m/s以上,3-20m/s有效风速累计时效3000h以上,全年3一20m /s平均有效风能密度100W/m2以上。只要能满足这个条件,小型

直流发电机直流电动机的工作原理和结构.

直流发电机直流电动机的工作原理和结构 直流电机工作原理和结构 一、直流电机工作原理 * 直流发电机的工作原理 * 直流电动机的工作原理 * 电机的可逆运行原理 两个定理与两个定则 1、电磁感应定理在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小 为: e = B·l·v 符 号 物理 量 单位 B 磁场的磁感应强 度 Wb/m2 v 导体运动速 度 米/秒 l 导体有效长 度 m

e 感应电 势 V 电势的方向用右手定 则 2.电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直 (见下图),作用在导体上的电磁力大小为:f = B·l·i 符 号 物理 量 单位 i 导体中的电 流 A l 导体有效长 度 m f 电磁 力 N

力的方向用左手 定则 (一)直流发电机的工作原理 1.直流发电机的原理模型

2.发电机工作原理 a、直流电势产 生用电动机拖动电枢使之逆时针方向恒速转动,线圈边 a b 和 c d 分别切割不同极性磁极下的磁力线,感应产生电动

势直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势因为电刷 A 通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。所以电刷 A 始终有正极性,同样道理,电刷 B 始终有负极性。所以电刷端能引出方向不变但大小变化的脉动电动势 b、结 论线圈内的感应电动势是一种交变电动势,而在电刷 A B 端的电动势却是直流电动势。(二)直流电动机的工作原理 1.直流电动机的原理模型(图1.1.5) 直流电动机的工作原理 要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。为此必须增添一个叫做换向器的装置,换向器配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转,这就是直流电动机的工作原理 (三)电机的可逆运行原理从上述基本电磁情况来看:一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,这种原理在电机理论中称为可逆原理 二、直流电机的结构 旋转电机结构形式 , 必须有满足电磁和机械两方面要求的结构

小型风力发电机

怎样利用风力来发电呢? 我们把风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵) 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V 市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 小型风力发电机介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

直流电机工作原理

第三章直流电机的原理 本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。本章共有10节课,内容和时间分配如下: 1.掌握直流电机的结构及工作原理。(2节) 2.掌握直流电机绕组有关的结构。(2节) 3.掌握直流电机绕组的电枢反应。(1节) 4.掌握直流电机的电枢电动势和电磁转矩。(1节) 5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。( 2.5节) 6.掌握直流电动机的基本方程式和运行特性。( 1.5节) 第一节直流电机的基本工作原理 一直流电机的用途 直流电动机的优点: 1 调速范围广,易于平滑调节 2 过载、启动、制动转矩大 3 易于控制,可靠性高 4 调速时的能量损耗较小 缺点: 换向困难,容量受到限制,不能做的很大。 应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。 直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。 二、直流电机的工作原理 原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。 为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。(一)直流发电机的工作原理 1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。 e=Blv。 B:磁密l:导体长度;v:导体与磁场的相对速度。 正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。

理解:电磁感应原理的变形(变化的磁通产生感应电动势) 2 发电机工作过程分析:两磁极直流发电机的工作原理图。 (1)构成: 磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。 电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。 换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。 电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

《小型风力发电机》

小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台300W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至3000W乃至更大的功率出。 使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家一年的用电只需20元电瓶液的代价。而现在的风力发电机比几年前的性能有很大改进,以前只是在少数边远地区使用,风力发电机接一个15W的灯泡直接用电,一明一暗并会经常损坏灯泡。而现在由于技术进步,采用先进的充电器、逆变器,风力发电成为有一定科技含量的小系统,并能在一定条件下代替正常的市电。山区可以借此系统做一个常年不花钱的路灯;高速公路可用它做夜晚的路标灯;山区的孩子可以在日光灯下晚自习;城市小高层楼顶也可用风力电机,这不但节约而且是真正绿色电源。家庭用风力发电机,不但可以防止停电,而且还能增加生活情趣。在旅游景区、边防、学校、部队乃至落后的山区,风力发电机正在成为人们的采购热点。无线电爱好者可用自己的技术在风力发电方面为山区人民服务,使人们看电视及照明用电与城市同步,也能使自

小型风力发电机性能测试

小型风力发电机性能测试 1.2 小型风力机开发背景 近三十年来随着世界资源的过度消耗,人类可用资源日益减少,石油价格不断上涨,世界各地频发石油短缺信号,并且由于化学能源的应用,人类居住环境日益恶化,人类迫切需要一种清洁的持续能源。由于风能取之不尽,用之不竭,不消耗资源,清洁卫生,分布范围广等特点,风能发电成为世界许多国家可持续发展战略的组成部分,由于在过去十年间,风能发电的年增长率达到28%,全球安装总量达到7,400万KW,意味着每年在该领域的投资额达到180亿欧元。2006年,全球风度资金9%投向了中国,总额打16.2亿欧元(约162.7亿元人民币)[1],中国有望成为全球最大的风力市场。 我国可开发的风力资源十分丰富,东南沿海及其附属岛屿属于风能资源丰富区,这些地区的年有效风能在200W/㎡以上,并且每年有7000——8000h的风速超过3.5m/s。东北、华北和西北北部,黑龙江、吉林东部,辽宁山东半岛的沿海地区,青藏高原北部,东南沿海20-100KM 的内陆地区,海南西部,台湾南北两端及新疆阿拉山等地区风能资源比较丰富,年有效风能在150W/㎡以上,全年有4000h的风速大于3.5m/s。长江、黄河中下游,西北和华北除上述资源丰富地区以外的地区,这类地区分布较广,属于风能资源可利用区[2][3]。 据统计,截止2005年底全国大概还有300万无电户(约1300万无电人口)[4],其中大部分人口居住在低风区,且居住相对分散,如果采用常规电网来供电,从经济效益上是不可行的,只有采用小型风力发电系统才能解决偏远地区的农、牧、渔民的供电问题。近几年来,各大城市在电力供应紧张时,经常采用拉闸限电的方式来解决电力供应不足的问题,由此给广大居民带来诸多不便,采用小型风力发电机组给居民供电,一方面可用大大缓解供电不足的困难,另一方面,小型风力发电设备属于一次性投资产品,后期维护费用低,可用大大节省家庭用户在电费上的开支。另外,若采用小型风能发电系统给城市路灯供电,给城市供电减少不小负担,由此带来的经济效益十分可观。由此看来小型风力机有着巨大的市场前景。 1.2 风力发电技术介绍 早在几千年前,中国人在明代就开始使用风车带动磨面,灌溉,提盐,直到公元12世纪欧洲才使用风车来磨面和车水[5]。中世纪后荷兰才发明了水平轴风车,并成为著名的风车王国,十九世纪末丹麦人首先研制了世界第一台风力发电机组,建成了世界第一台风力发电站[6],但是由于当时设计制造的局限性,风力发电发展缓慢,真正意义上的现代风力发电技术发展始于上世纪70年代。 风力发电机是将风能转化为电能的装置,按风能轴的安装位置不同可用将其分为两类:能量驱动链(风轮、主轴、增速箱、发电机)呈水平轴方向称之为水平轴风力机,能量驱动链呈垂直方向称之为垂直轴风力发电机[7]。 1.2.1水平轴风力发电机 水平轴风力发电机是目前国内研究最多、最常见、技术最成熟的一种风力机,水平轴风力发电机的叶片数一般为1-4片,水平轴风力机一般在风速较高时有较高的风能利用率(风能利用率表示风力机从自然风中吸取能量的多少),在大容量风力发电行业应用十分广泛。近些年来水平轴风力机的研究趋势主要集中在变浆距调节和变速恒发电机两方面。 按来流风向分,水平轴风力机分为上风向风力机和下风向风力机,上风向风力机需要加装一个调向装置,使风机和风向始终保持一致,下风向风力机能够自动跟随风向,无需安装调向装置,但是风流过塔架后载流向风轮,塔架会对流向风轮的风产生干扰,从而使分离机的效率下降[8]。水平风力发电机的技术已经非常成熟,在大型风力发电市场应用十分广泛,目前最大的水平轴风力发电机单机容量已经达到5MW。水平风力机叶片尖速比(尖速比表示风力机运行速度的快慢,

风力发电机安装使用

风力发电机安装使用 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (2)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。 以上总耗能为285Wh。 这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。 上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。 另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。 三,小型风力发电机的合理配套 小型风力发电机发出的电能首先经过蓄电池贮存起来,然后再由蓄电池向用电器供电。所以,必须认真科学地考虑,风力发电机功率与蓄电池容量的合理匹配和静风期贮能等问题。目前,小型风力发电机与蓄电池容量一般都是按照输入和输出相等,或输入大于输出的原则进行匹配的。即:100W风力发电机匹配120Ah蓄电池(60Ah2块);200W风力发电机匹配120-180Ah蓄电池(60或90Ah2块);300W风力发电机匹配240Ah蓄电(120Ah2块);750W 风力发电机匹配240Ah蓄电池(120Ah2块);1000W风力发电机匹配360Ah蓄电池(120Ah3块)。 实践证明:如果匹配的蓄电池容量不符合风力发电机发出能量的要求,将会产生下列问

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

相关主题
文本预览
相关文档 最新文档