当前位置:文档之家› 偏振式3D显示技术原理及优缺点分析

偏振式3D显示技术原理及优缺点分析

偏振式3D显示技术原理及优缺点分析
偏振式3D显示技术原理及优缺点分析

偏振式3D显示技术原理及优缺点分析

2010-11-05 16:10:55 文章来源:OFweek电子工程网我来说两句(0)

被动眼睛式3D技术的主要代表就是偏振式,当然还有其他如红蓝式、红绿式等,不过因为3D 效果太差以及色彩损失太严重,已经被淘汰。偏振式3D技术也叫偏光式3D技术、时分法3D 技术,英文为Polarization 3D,配合使用的是被动式偏振3D眼镜。

偏振式3D是利用光线有“振动方向”的原理来分解原始图像的,通过在显示屏幕上加放偏光板,可以向观看者输送两幅偏振方向不同的两幅画面,当画面经过偏振眼睛时,由于偏振式眼睛的每只镜片只能接受一个偏振方向的画面,这样人的左右眼就能接收两组画面,再经过大脑合成立体影像。

原理

为什么带上偏振眼睛后能使左右眼看到完全不同的图像?这确实不太容易理解,关于偏振光和偏振眼睛的原理,这里仅作简要介绍。

?光其实就是由互相垂直的电场和磁场形成的一种电磁波,自然光是很多电磁波的混合物,它在各个方向的振动是均匀的。当它以特定的角度(布儒斯特角)经过非金属表面后反射形成的眩光是偏振光。偏离了这个角度,就会有部分非偏振光混杂在偏振光里。部分偏振光是有程度的,偏离的角度越大,偏振光的成分越少,最终成为非偏振光。有了偏振光,

有时会给我们照相带来不利,玻璃表面的反射光,使我们拍摄不到玻璃橱窗里面的东西,水面的反射光使我们拍摄不到水中的鱼。

但利用偏振光的这种特性正好满足立体电影的需求——让左右眼看到完全不同的画面。通过给两个投影机加装偏振片,让投影机投射出互相垂直的完全偏振光波,然后观众通过特定的偏振眼镜,就能让左右眼看到各自不同的画面而互不干涉。

偏振放映技术目前在3D电影院中较为常见,在早期放映立体电影时,也曾经使用过偏振眼镜。但确切的说,那时使用的眼镜应该叫线偏振眼镜。而现在普遍使用的圆偏振技术是在线偏振的基础上发展的,原理基本一致,但它在观看效果上比线偏振有了质的飞跃。

以前我们在使用线偏振眼镜看立体电影时,应始终保持眼镜处于水平状态,使水平偏振镜片看到水平偏振方向的图像,而垂直偏振镜片看到垂直偏振方向的图像。如果眼镜略有偏转,垂直偏振镜片就会看见一部分水平方向的图像,水平偏振镜片也会看见一部分垂直方向的图像,左、右眼就会看到明显的重影。

左旋和右旋偏振光波示意图

而圆偏振光偏振方向是有规律的旋转着的,它可分为左旋偏振光和右旋偏振光,它们相互间的干扰非常小,它的通光特性和阻光特性基本不受旋转角度的影像。现在看偏振形式的3D电影时,观众佩戴的偏振眼镜片一个是左旋偏振片,另一个是右旋偏振片,也就是说观众的左右眼分别看到的是左旋偏振光和右旋偏振光带来的不同画面,通过人的视觉系统产生立体感。Real-D和Masterimage的3D放映辅助系统主要采用的就是这种技术。

优缺点

偏振式3D技术的色彩损失是最小的,色彩显示更为准确,更接近其原始值。鉴于眼镜的透镜本身几乎没有任何颜色,对用于偏振光系统的节目内容进行色彩纠正也更为容易。尤其是肤色,在一个偏振光系统中,看上去更为真实可信。偏振式3D技术的3D效果也比较突出,立体感觉真实。

观看角度大,偏振式3D技术不会像主动快门式技术一样只能水平观看3D影像,由于偏振光线的特性,左眼图像被右眼看到的情况几乎不可能发生,

所以偏振式3D眼睛倾斜到一定角度依然能显示高质量的3D画面,比如可以斜靠在沙发上看3D电视。

偏振式3D技术还有眼镜成本低、佩戴舒适、无大小限制、无电子元件无辐射等优点。

偏振式3D眼镜只是在普通眼镜的表层镀上偏光层,成本非常低廉,而且镜片可大可小,眼镜轻便佩戴舒适,原来戴眼镜的朋友也可以使用,眼镜边缘色彩均匀,不会因为镜片太小看到眼镜的黑框。同时偏振式3D眼镜不含电子元件,无辐射,更加健康环保。

偏振式3D技术也有它的缺点,首先是水平方向分辨率减半、亮度损失。因偏光原理,这种技术会使画面水平方向分辨率减半,很难实现真正的全高清分辨率3D影像,同时画面亮度因偏振光原理受到损失,所以偏振式3D技术对显示设备的要求较高。

其次,偏振式3D技术成本较高。因为偏振式3D技术对显示面板有特殊要求,不想主动快门式技术只要屏幕刷新率达到120Hz就可以导入,必须在面板外层加装偏光层,所以造成面板成本增加。

因偏振式3D技术的特点,目前主要应用于电影院等观看人数较多的公共场所,而3D 平板电视主要采用主动快门式3D技术。目前以三星、索尼等为代表厂商推出的3D电视都是使用主动快门式技术。偏振式3D电视目前只有TCL和LG各有一款产品,但是随着台湾液晶面板大厂友达光电宣布量产65英寸的偏光式3D液晶面板,部分电视厂商跃跃欲试,如果解决目前偏振式技术存在的问题,未来偏振式3D技术必将成为主流。

3D打印技术的缺点及解决办法

一、结合现有3D打印技术的研究现状,阐述现有3D打印技术的缺点,以及该缺点的解决办 法,针对现有某一种3D打印方法进行改进。简述3D打印技术未来的发展方向(2000字以上)。 现有3D打印技术的缺点及解决方法 1、材料的限制 目前主流的3D打印技术可以实现聚合物塑料、某些金属或者陶瓷打印,但目前无法实现打印的材料还非常多。材料的限制主要表现为两个方面的限制,一方面,目前的3D打印技术可打印的材料种类有限,无法完全适应工业生产中所需的各种各样的材料的打印。这使得3D 打印技术只能应用于一些特定场合,普及推广仍有很大的障碍。另一方面,针对特定的3D打印机,可打印的材料种类更是特定的几种或几类,这使得针对每种或每类材料,就需要设计专属的3D打印机,通用性不如传统的机械加工好。虽然目前在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。 解决方法:针对以上两方面问题,可以以这样的思路寻求解决方案。一、研发新材料,这也是国家目前大力发展的方向。通过研发新型的打印性能好、材料性能还能达到传统材料要求材料,提高3D打印技术的通用性。二、提高3D打印机本身的通用性。可以从模块化设计角度出发,本体结构保持一致,对不同种类或类型的材料,只改变部分部件如喷头,而且部件的拆装性能要好,方便更换。 2、打印效率低效率低可以从两个角度进行分析。一、与传统机械加工比较,机械加工是在毛坯的基础上减材形成,通常毛坯和零件之间相差的材料较少,即需要去除的材料少,加工比较快;而3D打印技术必须将所有零件实体所需材料通过增材方式堆叠,材料体积大。所以从去除或堆叠得材料体积量来比较,增材的体积量通常比减材的体积量要大。二、从成型运动方面考虑,传统的机械加工主运动多为旋转运动,而3D打印技术为直线运动,旋转运动更容易达到更大的速度,而且保持一定的稳定性,3D打印技术的扫描运动为直线运动,很难达到较大的速度。因此,3D打印技术不仅所需加工的体积量大,而且运动速度受限,所以综合加工效率低。 解决方法:针对问题一,可以考虑在一定的规则毛坯材料上增材,减少需要打印的材料量,主要是用于大批量生产情况下,预先设计一系列实体轮廓中所包含的最小毛坯,在毛坯的基础上打印。针对问题二,从机构学角度,可以设计可高速运动的机构,如并联机构。另外也需要协调设计材料,增快其熔融速度或凝固速度。还可以从软件及轨迹规划角度着手,采用梯度

3D立体显示技术综述

3D立体显示技术综述 Tuesday, May 24, 2011 09:44 引言 理想的视觉显示与日常经历中的场景对比,在质量、清晰度和范围方面应该是无法区分的,但是当前的技术还不支持这种高真实度的视觉显示。随着2009年底卡梅隆导演的《阿凡达》热映,三维立体(3D Stereo)显示技术成为目前火热的技术之一,通过左右眼信号分离,在显示平台上能够实现的立体图像显示。立体显示是VR虚拟现实的一个实现沉浸交互的方式之一,3D(3 dimensional)立体显示可以把图像的纵深,层次,位置全部展现,观察者更直观的了解图像的现实分布状况,从而更全面了解图像或显示内容的信息。 电影《阿凡达》热映的后时代,全民步入了3D立体的时代,随着技术的发展和对3D技术关注度的剧增,3D显示技术的普及化应用已进入紧锣密鼓的实用阶段。本文旨在介绍目前各种系统或设备对三维立体实现方式,推广三维立体的认知度。 1、3D立体显示原理 3D立体显示的基本原理如图表1所示。图中表示两眼光轴平行的情况,相当于两眼注视远处。内瞳距(IPD)是两眼瞳孔之间的距离。两眼空间位置的不同,是产生立体视觉的原因。F是距离人眼较近的物体B上的一个固定点。右面的两眼的视图说明,F点在视图中的位置不同,这种不同就是立体视差。人眼也可以利用这种视差,判断物体的远近,产生深度感。这就是人类的立体视觉,由此获得环境的三维信息。 人眼的另一种工作方式是注视近处的固定点F。这时两眼的光轴都通过点F。两个光轴的交角就是图中的会聚角。因为两眼的光轴都通过点F,所以F点在两个视图中都在中心点。这时,与F相比距离人眼更远或更近的其他点,会存在视差。人眼也可以利用这种视差,判断物体的远近,产生深度感。

不同类型3D打印机成型原理及优缺点的介绍

不同类型3D打印机成型原理及优缺点的介绍现在是一个科技的时代,3D的发展范围也在不断扩大,3D电影、3D建模、3D打印等等。在3D打印设备运用越来越广的今天3D打印机成型的原理你了解到了吗?更好的了解3D打印机成型原理才可以 更好的运用它。今天巨影小编就带大家了解一下在这个3D的时代,3D打印设备的形成原理是什么。 3D打印技术从狭义上来说主要是指增材成型技术,从成型工艺上看,3D打印技术突破了传统成型方法,通过快速自动成型系统与计算机数据模型结合,无需任何附加的传统模具制造和机械加工就能够制造出各种形状复杂的原型,这使得产品的设计生产周期大大缩短,生产成本大幅下降。3D打印设备,俗称“三维打印技术”或“快速成型”,是对一系列“增材制造”技术的总称。

FDM成型原理:熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。 FDM成型技术的优点: 1、成本低。熔融沉积造型技术用液化器代替了激光器,设备费用低;另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。 2、原材料以材料卷得的形式提供,易于粉末材料搬运和储存以及快速更换; 3、原材料在成型过程中无化学变化,相对金属粉末,树脂固化制件成型的变形小。 FDM成型技术的缺点: 1、需要配合支撑结构打内腔模型时,支撑面效果欠佳。

国内外的立体显示技术研究情况概述

国内外的立体显示技术研究情况概述立体摄影技术是立体成像技术的先导,本世纪二、三十年代,人们进行了一系列机械快门、红绿分色、偏振光式等立体照相技术的实验。在此基础上,英国首先进行了机械快门式立体电视的实验,标志着立体显示研究的开端,近半个世纪以来,国外相继有人提出并研制了分路式立体电视系统、分色式立体电视系统、偏振光式立体电视系统、普氏摆效应立体电视系统、时分式立体电视系统等立体电视方案。其中分路式立体电视系统是最早研制出的一种立体电视系统,分路式系统由同一同步发生器控制的两路普通二维电视系统和一个光学装置组成。在系统的发送端,视差图像的产生是由相隔一定距离的两台普通摄像机同时对同一景物并列摄像来实现。左摄像机模拟人的左眼,右摄像机模拟右眼,两台摄像机的相隔距离模拟人眼的瞳孔距。这样,左摄像机靶面上的像相当于观看景物时左眼视网膜上的像;右摄像机靶面上的像相当于右眼视网膜像。从而,从左、右摄像机获得了具有视差的左图像和右图像。摄像机输出的具有视差的左、右图像信号经两路传输通道分别送至接收端的两台电视机进行显示。两台电视机各自显示的左、右路图像经过一个光学装置分别送至左、右眼,实现了视差图像的分离。观看者利用一个光学装置观看显示的图像,大脑根据左、右眼看到的视差图像融合成立体视觉像。由于在这个系统中,左、右图像的摄取、传输、显示都是各占一路,因此需要两套电视信号发射、传输

与接收系统占用两个电视频道,无法与现行广播电视系统兼容而且体积较大,只能供一人观看 分路式立体电视系统原理图分色式立体电视系统的组成如图所示。这是一种只能传输黑白图像的立体电视系统。发送端视差图像的产生与分路式相似,也是用两台左、右相隔一定距离的普通摄像机并列摄像,不同的是分色式系统只能用两台黑白摄像机而不能用彩色摄像机。左、右摄像机摄取的左、右视差图像信号经两路信道传输后,分别送至接收端的两个黑白显像管,各自显示出左、右图像。为了实现两眼对视差图像的分离,使观看者左眼仅看见左图像、右眼仅看见右图像,必须先对显像管显示的左、右图像进行处理,人为地赋于左、右图像不同的特征,然后,人的左、右眼利用这些特征将左、右图像分离。在分色式系统中,是对显像管显示的左、右黑白图像进行分色处理,即使左、右黑白图像通过不同颜色的滤色片,成为彩色不同的左、右图像。彩色不同,即是光谱不同。因此,使左、右图像具有颜色不同的特征,就是使其在光谱上分开。如图及所示,在显示左图像的黑白显像管屏幕前放置红滤色片,显示右图像的显像管屏幕前放置绿滤色片。这样,通过红滤色片的左图像呈现为波长较长的

裸眼3D交互技术概述

裸眼交互技术概述 、裸眼虚拟交互技术简介 裸眼交互技术,是以虚拟现实交互技术为基础,融入了全新的裸眼显示技术,让观看者能够无须穿戴任何辅助设备,就能够直接在显示设备上观看到真实效果。更重要的是,借助虚拟现实交互的强大交互体验,观看者能够通过鼠标键盘、手势和语音等交互方式和虚拟场景进行互动。 裸眼显示可以说从技术层面全面革新了以往广告传媒、新闻等领域的展现实物的表现方式,这种极具感染力的表现方式将会成为日后发展的主流趋势。 、裸眼虚拟交互技术背景 >虚拟现实技术(简称) 又称灵境技术。是以沉浸性、交互性和构想性为基本特征的计算机高级人机界面。他综合利用了计算机图形学、仿真技术学、多媒体技术、人工智能技术、计算机网络技术、并行处理技术和多传感器技术,模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。使用者不仅能够通过虚拟现实系统感受到在客观物理世界中所经历的“身临其境”的逼真性,而且能够突破空间、时间以及其他客观限制,感受到真实世界中无法亲身经历的体验。 >立体显示技术 在虚拟现实系统中本来就是纯三维场景,传统的是二维显示,在本软件平台已经实现了一键切换红绿立体现实功能,带上红绿眼镜,整个场景就变成了立体感十足的立体效果,就像看立体电影的效果; >交互技术 虚拟现实技术中的人机交互目前处在了键盘和鼠标的模式,不久将来,利用数字头盔、数字手套等复杂的传感器设备,三维交互技术与语音识别、语音输入技术成为重要的人机交互手段; 、裸眼虚拟交互技术优势 >强烈的视觉冲击力,沉浸式的体验发挥到极致。

基于双眼视觉的立体显示技术概述

基于双眼视觉的立体显示技术概述 摘要:战场环境是一切军事行动的空间基础,战场环境仿真是目前军事作战模拟领域研究的热点。本文讨论了用于实现战场环境感知仿真的基于双眼视觉的立体显示技术。 运用虚拟现实技术(Virtual Reality,简称VR;又译作灵境、幻真)实现战场环境仿真,其目的就是构成多维的、可感知的、可度量的、逼真的虚拟战场环境,借此提高参训人员对战场环境的认知效率。对于大多数应用而言,营造立体视觉效果是实现“沉浸”的关键,即根据人类的双目立体视觉原理,借助于一定的设备,使观察者在生理水平上对被观察的场景产生强烈的立体感。由于在虚拟现实系统中,场景是由计算机生成的(非实地拍摄),为了达到立体效果,就需要对图像的生成、显示与观察各环节进行适人化的处理,因此该技术也被成为“人造立体视觉技术”。 一立体视觉基本原理 透视效果是观看三维世界时的基本规律,是画面产生立体感的基本要求。 人眼在看真实的圆柱体和看屏幕上显示的圆柱体时,视差角有明显的不同,看屏幕时的视差角实际上和看平板玻璃时是一样的,因此不管屏幕上显示的内容如何变化,立体感始终是一个平面,这也是普通显示器无法实现立体显示的原因。既然如此,首先想到的解决办法自然就是把显示器做成圆柱体形状,这样当然可以完美的显示圆柱体,不过这样的显示器不管显示什么内容时都会机械的制造出中间近、两边远的效果。 那么为了完美显示每一种物体,显示电风扇时就得用电风扇形的显示器,显示飞机又要用飞机形状的显示器,如果要显示宇宙该用什么形状的显示器呢?显

然,这样就走入了一条死胡同,因此必须找到其它的方法。 设法分别向两眼输送两个拍摄角度略有不同的画面,给左眼的画面只让左眼看到,给右眼的只让右眼看到,那么如同前面提到的立体眼镜,调节两幅画面之间的细微差距就相当于调节视差角。 既然可以人为的控制视差角,我们就可以在显示圆柱体时调节视差角产生圆柱体的立体感,显示电风扇、飞机时产生电风扇和飞机的立体感,显示宇宙时产生宇宙中每个星球的立体感等等。按照这个方法不就可以实现完美的立体显示了吗?事实上,当今主流的4种立体显示技术都是基于这个原理的。 实现基于双眼视觉的立体显示需要经过两大步骤,首先,要准备好两套分别供左眼和右眼观看的画面。目前,这种画面的来源有三种途径: 一、双机拍摄。拍摄电影或图片时将两台照像机或摄像机并排放置,两机间的角度和距离都模拟人的双眼。 二、从3D场景中提取。由于3D场景本来就被设计用来可供任何角度观看,所以从中提取两套画面自然不难,提取的两套画面相互间的角度要模拟人的双眼。 三、用软件智能模拟。这是利用计算机根据原始画面重新生成两套画面,可用于将现有的普通视频和图片转换为立体显示的片源,但效果略差。 片源准备好以后,第二个步骤就是将它们输送给双眼,并且要点是给左眼观看的画面只能让左眼看到。在输送时其实并不需要刻意的调节两套画面的差距,只要能将上述途径获得的片源按要求输送给双眼,那么人眼就会自动产生与画面对应的立体感了。为了实现这一步,各种立体显示技术采用了不同的方式,4种

裸眼3D成像的原理

不用戴眼镜就能看到立体图像的技术被称为“裸眼立体显示技术”,裸眼3D电视就属于这一类。裸眼立体显示可以通过在普通平面显示器前放置狭缝光栅或柱镜光栅实现。图1以双视图为例示意性说明了其原理。显示器的像素沿水平方向被分为两组,比如一组为奇数列的像素,另一组为偶数列的像素。这两组像素被分别用来显示左右视图,或者说,左右视图以列交错的方式显示在屏幕上。 图a在显示器平面前放置狭缝光栅,狭缝方向竖直并与像素分组配合。狭缝光栅类似于生活中的栅栏,光只能从狭缝中通过。观察者前后调整与显示器的距离,在某个特定距离下,透过狭缝每只眼睛刚好能看到属于其中一个视图的那组像素,而不能看到属于另一个视图的像素。这种效果也可由柱镜光栅实现(如图b所示),柱镜光栅由细长的半圆柱形透镜排列而成,其焦点落在显示屏表面,柱镜将像素发出的光平行投射出去。柱镜位置要与像素位置严格配准,使不同视图像素发出的光到达不同的眼睛。 狭缝光栅制作成本较低,但狭缝光栅法挡住了一部分光,图像看上去较暗。柱镜光栅加工精度要求高,而且由于显示平面发热还要考虑柱镜材料的热胀冷缩系数,这个问题在制作大尺寸显示器时尤为突出。这两种光栅实现方法一般适用于液晶显示器或等离子显示器,而不适用于旧式的CRT显示器,因为CRT显示器的像素显示位置会有漂移从而影响立体成像。光栅也可以用于纸质印刷品上,这就是我们见到的立体相册和立体画。 虽然光栅法能实现裸眼立体显示,但不能保证在任意位置都能看到立体效果,它有一个最优观看距离。从附图可以看出,在最优距离下左右移动头部有50%的机会看到的是左右颠倒的图像,而不能立体成像。如果不在这个最优观看距离上,则会进一步减少看到立体效果的机会。增加视图的个数可以改善这种情况。现在产品化的裸眼立体显示器多采用8个视图,此时在最优距离下也有1/8的可能性看不到正确的立体匹配。然而,增加视图数量却是以牺牲清晰度为代价。不同视图的像素按特定交错方式显示在屏幕上,视图总数越多,属于每个视图的像素数就越少,立体成像的分辨率也就越低。 除光栅法外,还有很多其他方法实现裸眼立体显示,如前面提到的帧切换方法和多投影仪方法。帧序列方法用单一的显示设备高速切换显示多视图,每个视图在时间上是断续的,

三维动画的文献综述-参考

一、前言部分 动画及三维动画技术简介 动画是一门通过在连续多格的胶片上拍摄一系列单个画面,从而产生动态视觉的技术和艺术,这种视觉是通过将胶片以一定的数率放映体现出来的.实验证明:动画和电影的画面刷新率为24帧/s,即每秒放映24幅画面,则人眼看到的是连续的画面效果[12]。 计算机动画是指采用图形与图像的处理技术,借助于编程或动画制作软件生成一系列的景物画面,其中当前帧是前一帧的部分修改。计算机动画是采用连续播放静止图像的方法产生物体运动的效果。计算机动画的关键技术体现在计算机动画制作软件及硬件上。计算机动画是计算机图形学和艺术相结合的产物,它是伴随着计算机硬件和图形算法高速发展起来的一门高新技术,它综合利用计算机科学、艺术、数学、物理学和其它相关学科的知识在计算机上生成绚丽多彩的连续的虚拟真实画面,给人们提供了一个充分展示个人想象力和艺术才能的新天地[12]。 其中三维动画特技可以说是电脑动画技术中的一大难题,因为这需要非常强大的软件和运算能力极强的硬件平台。当然,它所带来的视觉效果也是无可比拟的。当《侏罗纪公园》、《第五元素》、《泰坦尼克号》这些影片中逼真的恐龙、亦真亦幻的未来城市和巨大的“泰坦尼克号”让人沉浸在现代电影所营造的“真实”世界里时,你可知道创造了这些令人难以置信的视觉效果的幕后英雄是众多的三维动画制作软件和视频特技制作软件[3]。好莱坞的电脑特技师们正是借助这些非凡的软件,把他们的想像发挥到极限,也带给了我们无比的视觉享受。 三维动画特技制作包含了数字模型构建、动画生成、场景合成三大环节,而三维扫描、表演动画、虚拟演播室等新技术,恰恰给这三大环节都带来了全新的技术突破。综合运用这些新技术,可望获得魔幻般的特技效果,彻底改变动画制作的面貌。可以想像,先用三维扫描技术对一个80岁的白发老太太进行扫描,形成一个数字化人物模型,然后将乔丹的动作捕捉下来,用以驱动老人模型的运动,观众将会看到80岁老妪空中扣篮的场面。甚至还可以用演员的表演驱动动物的模型,拍摄真正的动物王国故事。利用表演动画技术还可以实现网上或电视中的虚拟主持人[3]。 三维动画技术比较 用于计算机三维动画制作的软件和工具目前很多,不同的动画效果,取决于不同的计算机动画软、硬件的功能以及各动画编程语言工具的特点。虽然制作的复杂程度不同,但动画的基本原理是一致的。 其中Java 3D是Java语言在三维图形领域的扩展,是一组应用编程接口(API)。利用Java 3D提供的API,可以编写出基于网页的三维动画、各种计算机辅助教学软件和三维游戏等等。利用Java 3D编写的程序,只需要编程人员调用这些API进行编程,而客户端只需要使用标准的Java虚拟机就可以浏览,因此具有不需要安装插件的优点。[1]它的这种体系结构既可以使其开发的程序“到处运行”,又使其能充分利用系统的三维特性。就因为JAVA 3D拥有如此的强大的三维能力,使得它在网络世界,特别是在游戏中能大展姿彩[1]。 与JAVA3D一样OPENGL也具有跨平台特性,许多人利用OPENGL编写三维应用程序,不过对于一个非计算机专业的人员来说,利用OPENGL编写出复杂的三维应用程序是比较困难的,且不说C/C++语言和java的掌握需要花费大量时间精力,当我们需要处理复杂问题的时候,我们不得不自己完成大量非常繁琐的工作。[7]当然,对于编程高手来说,OPENGL是他们发挥才能的非常好的工具。另外,以此开发出的图形要在

SLA 3D打印技术介绍优缺点分析以及行业应用

SLA 3D打印技术介绍优缺点分析以及行业应用我们都知道3D打印机器使用的方法有很多种,像SLA、SLM、SLS等等,每种技术都有各自的特点,今天就给大家科普一下SLA 3D打印技术。 SLA技术,全称为立体光固化成型法(StereolithographyAppearance),是用激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,周而复始,这样层层叠加构成一个三维实体。 SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。其

工艺过程是,首先通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;然后升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型。将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。 SLA光固化成型原材料一般为液态的光敏树脂,是由光引发剂,单体聚合物与预聚体组成的混合物,可在特定波长紫外光(250 nm~400 nm)照射下立刻引起聚合反应,完成固化,从而能够产出高精度的物体。 SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA 原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

光学三维测量技术综述精选文档

光学三维测量技术综述 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

光学三维测量技术综述 1.引言 客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工 程、生物与医学工程等领域有着广泛的应用[1]。 三维测量方法总的包括两大类,接触式以及非接触式。如图所示。 图三维测量方法分类 接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。但 是尽管如此,依然会有一些缺点[2]: (1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。 (2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。 (3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。 接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。

非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。核磁共振法、工业计算机断层扫描法、超声波数字化法等非光学的非接触式三维测量方法也都可以测量物体的内部及外部结构的表面信息,且不需要破坏被测物体,但是这种测量方法的精度不高。而光学三维轮廓测量由于其非接触性、高精度与高分辨率,在CAD /CAE、反求工程、在线检测与质量保证、多媒体技术、医疗诊断、机器视觉等领域得到日益广泛的 应用,被公认是最有前途的三维轮廓测量方法[3]。由于光不能深入物体内部,所 以光学三维测量只能测量物体表面轮廓,因此,本文中所言光学三维测量即指光学三维轮廓测量,此后不再单独解释。 光学三维测量技术总体而言可以分为主动式光学三维测量和被动式光学三维测量,根据具体的原理又可以分为双目立体视觉测量法、离焦测量法、飞行时间法、激光三角法、莫尔轮廓术和结构光编码法等。下面就刚刚提到的几种光学三维测量技术的原理进行逐一讲解。 2.测量原理 被动式光学三维测量 双目立体视觉测量法 双目成像采用视觉原理来获得同一场景的2幅不同图像。通过对物体上同一点在2幅图像上的2个像点的匹配和检测,可以得到该点的坐标信息。测量原理如图所示。设摄像机基线长为B,视差定义为D= P1- P2,其中P1、P2为空间点W(X,Y,Z)在2像面上的投影点,则由几何关系可得Z=Bf/ D。计算出物点的深度坐标后,其它2个坐标可以通过简单的几何透视关系得出。双目视觉成像原理简单,但由于需要在两幅图像中寻找对定点的匹配,实际计算过程较为复杂。 图双目立体视觉法三维测量原理图

3D打印技术的优缺点以及应用领域

3D打印技术的优缺点以及应用领域 3D打印技术经过这些年的发展,技术上已基本上形成了一套体系,同样,可应用的行业也逐渐扩大,从产品设计到模具设计与制造,材料工程、医学研究、文化艺术、建筑工程等等都逐渐的使用3D打印机技术,使得3D打印机技术有着广阔的前景。不断提高3D打印技术的应用水平就是推动这项技术发展的重点。 优点:一就是最直接的好处就就是节省材料,不用剔除边角料,提高材料利用率,通过摒弃生产线而降低了成本;二就是能做到很高的精度与复杂程度,除了可以表现出外形曲线上的设计;三就是不再需要传统的刀具、夹具与机床或任何模具,就能直接从计算机图形数据中生成任何形状的零件;四就是它可以自动、快速、直接与精确地将计算机中的设计转化为模型,甚至直接制造零件或模具,从而有效的缩短产品研发周期;五就是3D打印能在数小时内成形,它让设计人员与开发人员实现了从平面图到实体的飞跃;六就是它能打印出组装好的产品,因此它大大降低了组装成本,它甚至可以挑战大规模生产方式。 缺点:任何一个产品都应该具有功能性,而如今由于受材料等因素限制,通过3D打印制造出来的产品在实用性上要打一个问号。①强度问题:房子、车子固然能“打印”出来,但就是否能抵挡得住风雨,就是否能在路上顺利跑起来?②精度问题:由于分层制造存在“台阶效应”,每个层次虽然很薄,但在一定微观尺度下,仍会形成具有一定厚度。的一级级“台阶”,如果需要制造的对象表面就是圆弧形,那么就会造成精度上的偏差;③材料的局限性:目前供3D打印机使用的材料非常有限,无外乎石膏、无机粉料、光敏树脂、塑料等。能够应用于3D 打印的材料还非常单一,以塑料为主,并且打印机对单一材料也非常挑剔。 目前,3D打印技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。3D打印技术的实际应用主要集中在以下几个方面: 产品设计领域 在新产品造型设计过程中的应用3D打印技术为工业产品的设计开发人员建立了一种崭新的产品开发模式。运用3D打印技术能够快速、直接、精确地将设计思想转化为具有一定功能的实物模型(样件),这不仅缩短了开发周期,而且降低了开发费用,也使企业在激烈的市场竞争中占有先机。 建筑设计领域 建筑模型的传统制作方式,渐渐无法满足高端设计项目的要求。全数字还原不失真的立体展示与风洞及相关测试的标准,现如今众多设计机构的大型设施或场馆都利用3D打印技术先期构建精确建筑模型来进行效果展示与相关测试,3D 打印技术所发挥的优势与无可比拟的逼真效果为设计师所认同。机械制造领域由于3D打印技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用

#三维动画的文献综述-参考

动画及三维动画技术简介 动画是一门通过在连续多格的胶片上拍摄一系列单个画面,从而产生动态视觉的技术和艺术,这种视觉是通过将胶片以一定的数率放映体现出来的.实验证明:动画和电影的画面刷新率为24帧/s,即每秒放映24幅画面,则人眼看到的是连续的画面效果[12]。 计算机动画是指采用图形与图像的处理技术,借助于编程或动画制作软件生成一系列的景物画面,其中当前帧是前一帧的部分修改。计算机动画是采用连续播放静止图像的方法产生物体运动的效果。计算机动画的关键技术体现在计算机动画制作软件及硬件上。计算机动画是计算机图形学和艺术相结合的产物,它是伴随着计算机硬件和图形算法高速发展起来的一门高新技术,它综合利用计算机科学、艺术、数学、物理学和其它相关学科的知识在计算机上生成绚丽多彩的连续的虚拟真实画面,给人们提供了一个充分展示个人想象力和艺术才能的新天地[12]。 其中三维动画特技可以说是电脑动画技术中的一大难题,因为这需要非常强大的软件和运算能力极强的硬件平台。当然,它所带来的视觉效果也是无可比拟的。当《侏罗纪公园》、《第五元素》、《泰坦尼克号》这些影片中逼真的恐龙、亦真亦幻的未来城市和巨大的“泰坦尼克号”让人沉浸在现代电影所营造的“真实”世界里时,你可知道创造了这些令人难以置信的视觉效果的幕后英雄是众多的三维动画制作软件和视频特技制作软件[3]。好莱坞的电脑特技师们正是借助这些非凡的软件,把他们的想像发挥到极限,也带给了我们无比的视觉享受。 三维动画特技制作包含了数字模型构建、动画生成、场景合成三大环节,而三维扫描、表演动画、虚拟演播室等新技术,恰恰给这三大环节都带来了全新的技术突破。综合运用这些新技术,可望获得魔幻般的特技效果,彻底改变动画制作的面貌。可以想像,先用三维扫描技术对一个80岁的白发老太太进行扫描,形成一个数字化人物模型,然后将乔丹的动作捕捉下来,用以驱动老人模型的运动,观众将会看到80岁老妪空中扣篮的场面。甚至还可以用演员的表演驱动动物的模型,拍摄真正的动物王国故事。利用表演动画技术还可以实现网上或电视中的虚拟主持人[3]。 三维动画技术比较 用于计算机三维动画制作的软件和工具目前很多,不同的动画效果,取决于不同的计算机动画软、硬件的功能以及各动画编程语言工具的特点。虽然制作的复杂程度不同,但动画的基本原理是一致的。 其中Java 3D是Java语言在三维图形领域的扩展,是一组应用编程接口(API)。利用Java 3D提供的API,可以编写出基于网页的三维动画、各种计算机辅助教学软件和三维游戏等等。利用Java 3D编写的程序,只需要编程人员调用这些API进行编程,而客户端只需要使用标准的Java虚拟机就可以浏览,因此具有不需要安装插件的优点。[1]它的这种体系结构既可以使其开发的程序“到处运行”,又使其能充分利用系统的三维特性。就因为JAVA 3D拥有如此的强大的三维能力,使得它在网络世界,特别是在游戏中能大展姿彩[1]。 与JAVA3D一样OPENGL也具有跨平台特性,许多人利用OPENGL编写三维应用程序,不过对于一个非计算机专业的人员来说,利用OPENGL编写出复杂的三维应用程序是比较困难的,且不说C/C++语言和java的掌握需要花费大量时间精力,当我们需要处理复杂问题的时候,我们不得不自己完成大量非常繁琐的工作。[7]当然,对于编程高手来说,OPENGL是他们发挥才能的非常好的工具。另外,以此开发出的图形要在网络上展示,必须先生成图像,然后将图形一帧一帧地传输过去,效果不佳,是一个瓶颈[7]。 另有VRML2.0技术(VRML97)自1997年12月正式成为国际标准之后,在网络上得到了广泛的应用,编写VRML程序非常简单(VRML语言可以说比BASIC、JAVASCRIPT

三维重建与可视化技术的进展

医学图像的三维重建与可视化技术的进展随着20世纪七十年代计算机断层技术(Computerized Tomography, CT)、核磁共振成像(Magnetic Resonance Imaging, MRI)等医学影像技术的应用,可以得到病人病变部位的一组二维断层图像,通过这些二维断层图像医生可以对病变部位进行分析,从而使得医学诊断和治疗技术取得了很大的发展。 但是,这些医疗仪器只能提供人体内部的二维图像,二维断层图像只是表达某一界面的解剖信息,医生们只能凭经验由多幅二维图像去估计病灶的大小及形状,“构思”病灶与其周围组织的三维几何关系,这就给治疗带来了困难。在放射治疗应用中,仅由二维断层图像上某些解剖部位进行简单的坐标叠加,也不能给出准确的三维影像,造成病变定位的失真和畸变。 三维重建与可视化技术利用一系列的二维图像重建为具有直观、立体效果三维图像模型,并进行定性、定量分析。该技术不仅给医生提供了具有真实感的三维图形,并让医生从任意角度观察图像,还可以从二维图像中获取三维结构信息,提供很多用传统手段无法获得的解剖结构信息,帮助医生对病变体和周围组织进行分析,极大地提高医疗诊断的准确性和科学性,从而提高医疗诊断水平。同时,三维重建与可视化技术还在矫形手术、放射治疗、手术规划与模拟、解剖教育和医学研究中发挥着重要作用。 本文首先介绍了医学图像三维重建的几种经典方法,以对该技术有个总体性的大致的了解;然后结合相关文献,深入研究了一个改进的MC(Marching Cubes)算法以及基于寰椎的X线图像的三维形态重建。 一、医学图像的三维重建的几种常见方法 目前,医学图像三维重建的方法主要有两大类:一类是通过几何单元拼接拟合物体表面来描述物体的三维结构,称为基于表面的面绘制方法;另一类是直接将体素投影到显示平面的方法,称为基于体数据的体绘制方法,又称直接体绘制方法。其中面绘制方法是基于二维图像边缘或轮廓线提取,并借助传统图形学技术及硬件实现的,而体绘制方法则是直接应用视觉原理,通过对体数据重新采样来合成产生三维图像。近来,产生了结合面绘制和体绘制两者特点的混合绘制方法,可以称为第三类三维重建方法。

(完整版)3D打印的十大优势和五大限制

3D打印的十大优势和五大限制 3D打印机不像传统制造机器那样通过切割或模具塑造制造物品。通过层层堆积形成实体物品的方法从物理的角度扩大了数字概念的范围。对于要求具有精确的内部凹陷或互锁部分的形状设计,3D打印机是首选的加工设备,它可以将这样的设计在实体世界中实现。下面是来自各个行业、具有不同背景和专业技术水平的人用类似的方式描述,3D打印帮助他们减少主要成本、时间和复杂性障碍。我们一起来看一下3D打印具有哪些优势。 3D打印的优势传统制造业无法企及 优势1:制造复杂物品不增加成本 就传统制造而言,物体形状越复杂,制造成本越高。对3D打印机而言,制造形状复杂的物品成本不增加,制造一个华丽的形状复杂的物品并不比打印一个简单的方块消耗更多的时间、技能或成本。制造复杂物品而不增加成本将打破传统的定价模式,并改变我们计算制造成本的方式。 优势2:产品多样化不增加成本 一台3D打印机可以打印许多形状,它可以像工匠一样每次都做出不同形状的物品。传统的制造设备功能较少,做出的形状种类有限。3D打印省去了培训机械师或购置新设备的成本,一台3D打印机只需要不同的数字设计蓝图和一批新的原材料。 优势3:无须组装 3D打印能使部件一体化成型。传统的大规模生产建立在组装线基础上,在现代工厂,机器生产出相同的零部件,然后由机器人或工人(甚至跨洲)组装。产品组成部件越多,组装耗费的时间和成本就越多。3D打印机通过分层制造可以同时打印一扇门及上面的配套铰链,不需要组装。省略组装就缩短了供应链,节省在劳动力和运输方面的花费。供应链越短,污染也越少。 优势4:零时间交付 3D打印机可以按需打印。即时生产减少了企业的实物库存,企业可以根据客户订单使用3D打印机制造出特别的或定制的产品满足客户需求,所以新的商业模式将成为可能。如果人们所需的物品按需就近生产,零时间交付式生产能最大限度地减少长途运输的成本。 优势5:设计空间无限 传统制造技术和工匠制造的产品形状有限,制造形状的能力受制于所使用的工具。例如,传统的木制车床只能制造圆形物品,轧机只能加工用铣刀组装的部件,制模机仅能制造模铸形状。3D打印机可以突破这些局限,开辟巨大的设计空间,甚至可以制作目前可能只存在于自然界的形状。 3D打印的十大优势和五大挑战

3D打印的优缺点

优缺点 在3D打印技术可以打印假肢、汽车、飞机的今天,它还在创造无限的可能。 首先3D打印技术可以加工传统方法难以制造的零件。过去传统的制造方法就是一个毛坯,把不需要的地方切除掉,是多维加工的,或者采用模具,把金属和塑料融化灌进去得到这样的零件,这样对复杂的零部件来说加工起来非常困难。立体打印技术对于复杂零部件而言具有极大的优势,立体打印技术可以打印非常复杂的东西。 其次实现了首件的净型成形,这样后期辅助加工量大大减小,避免了委外加工的数据泄密和时间跨度,尤其适合一些高保密性的行业,如军工、核电领域。再次由于制造准备和数据转换的时间大幅减少,使得单件试制、小批量出产的周期和成本降低,特别适合新产品的开发和单件小批量零件的出产。 这些速度快、高易用性等优势使得3D打印成为一种潮流,并且在很多领域得到了应用。如今3D打印机已经在建筑设计、医疗辅助、工业模型、复杂结构、零配件、动漫模型等领域都已经有了一定程度的应用。尤其在飞机、核电和火电等使用重型机械、高端精密机械的行业,3D打印技术“打印”的产品是自然无缝连接的,结构之间的稳固性和连接强度要远远高于传统方法。 事实上,3D打印技术要成为主流的生产制造技术还尚需时日。 3D打印机21世纪初的实际使用仍属于快速成型范畴,即为企业在生产正式的产品前提供产品原型的制造,业内也将这类原型称作手板。据统计,3D打印机生产的产品中80%依旧是产品原型,仅有20%是最终产品。虽然3D打印机技术在21世纪初已取得不小的进步,比如材料增多、打印机和原材料价格逐渐下降,但在2012年左右,依旧是一项年轻的技术,在没有变得更加成熟和廉价前,并不会被企业大规模采用。 3D打印的优缺点同样突出 上海同济大学教授、现代制造技术研究所名誉所长张曙认为:“过去,我们只是当3D打印是一种快速成形技术,但现在工业领域的应用,可以让设计、创意与生产分开,可以实现减少库存的生产,等于提供了新的商务模式,就势必会引起制造业的变革。但3D打印的技术还存在很多难题,加工精度、材料应用等方面,在制造业的应用不是一时半刻能够实现的”。 3D打印原理之一 从技术角度来看,3D打印是快速成型技术的一种,快速成型工艺目前有立体平板印刷术(SLA 法)、分层激光烧结法(SLS法)、逐层轮廓成型法(LOM法)、光掩膜法(SGC法)、融化沉积法(FDM法)、陶瓷壳发(DSPC法)等。 之前中央十套《我爱发明》(点击查看视频)节目中提到就是分层激光烧结法,用来烧结塑料制品效果不错,后来又实验来做了个钻头,效果就很差了。 3D打印的作品质量差强人意 从这里其实可以看出3D打印主要的适用范围以及缺点。对于一般要求较低、专业性不强的部件,3D打印可以满足要求,设计师能通过这种方法将电脑上的图形快速转换成物理实物模型,方便对设计和功能进行验证,缩短产品开发周期,及时发现问题,如果用传统方法,需要经过绘图、工艺设计、模具制造等多个环节,花费较多的时间和较高的成本。市场上的好多3D 打印机打印的物件只能当作模型使用,只有荷兰FELIX 3D公司研发的Felix 2.0 高精度 3D 打印机打印的物件可以作为零部件使用。 3D打印实际就是快速成型技术 如果是做钻头这种高硬度的产品,3D打印明显力不从心。这个不是改进技术就能够解决的,

裸眼3D技术原理全解析

常见的3D显示设备都是需要眼镜的,眼镜的作用就是通过技术手段让左眼看到左图像、右眼看到右图像,根据两幅图像之间微小的视察,就能给人脑模拟出立体的感觉。裸眼3D要做的就是把眼镜所实现的功能转移到屏幕上,下面就来详细解读。 我们知道3D眼镜有红蓝、快门、偏振这几种技术,而裸眼3D同样分为三种技术:视差屏障、柱状透镜、指向光源。 一. 视差障碍: 视差屏障技术利用液晶层和偏振膜制造出一系列明暗相间的条纹(视差栅栏)。在立体显示模式下视差栅栏会被激活,双眼的间距产生的微小视差会导致不透光条纹遮挡左右眼,使得左眼和右眼看到的像素并不相同。

视差屏障技术与既有的液晶工艺兼容,只在自屏幕表面额外镀一层膜,再对屏幕驱动电路做一些改造与匹配即可,因此在量产性和成本上较具优势,但由于挡光,其画面亮度只有2D屏的1/4。 二.柱状透镜 柱状透镜技术的原理是在液晶显示屏的前面加上一层柱状透镜,并使液晶屏的像平面位于透镜的焦平面上,这样柱状透镜就能以不同的方向每个子像素。于是双眼从不同的角度观看显示屏,就看到不同的子像素。

其实柱状透镜技术我们小时候就体验过了,那种从不同角度可以看到不同图案的塑料直尺,他们的原理是基本相同的。柱状透镜技术的画面亮度基本不受到影响,3D显示效果更好,但其相关制造与现有液晶工艺不兼容,需要投资新的设备和生产线,生产成本比较高。 三.指向光源 指向光源3D技术搭配分布在左右两侧的两组不同角度的,配合高刷新率的面板和反射棱镜模块,让画面以奇偶帧交错排序方式,分别反射给左右眼。

指向光源技术中最表层的汇聚透镜与柱状透镜类似,但内层还设有三棱镜、导光板和两组不同的光源,因此结构更加复杂成本也很高,目前还停留在研究室当中。 三种裸眼三D技术总结:

FDM和SLA3D打印技术类型的优缺点

3D打印(也称为增材制造)是一种基于数字模型文件的通用技术,该技术使用类似粉末的金属或非金属以及其他粘合材料逐层打印来构建模型。FDM(熔融沉积快速成型)和SLA(光固化成型)是市场上最常见的两种3D打印技术。由于这两种技术都有很长的发展历史,FDM 和SLA也是当前最成熟的3D打印技术,因此专业人士或业余爱好者在使用3D打印机时通常会选择这两种技术作为入门级选择。 尽管FDM和SLA打印技术都可以打印出各种模型,但是在实际生产中,如何选择最合适的3D打印机和材料时,仍然需要注意许多细节。那么,一起来看看两种不同技术的优缺点吧。 基于FDM技术的3D打印机的工作原理是将熔化的热塑性塑料逐层挤出到3D打印平台上,直到完成最终的3D模型。使用FDM技术的3D打印机材料种类更多,如PLA、ABS、尼龙等。同时,由于FDM技术是开源的,用户可以根据不同的需求更改打印设置和硬件配件,以适应更多特殊情况。SLA 3D打印机使用UV激光或投光器连续跟踪对象的每个切片层,将光敏树脂固化为硬化塑料,直到完成最终的3D模型。

▲FDM(熔融沉积快速成型) ▲SLA(光固化成型) FDM技术优势 一般情况下,FDM 3D打印机的尺寸比SLA打印机大。FDM 3D打印机除了可以进行大型,实用零件和模型的原型设计和打印外,还可以应用于批量生产。单一3D打印材料通

常具有较小的阻力和摩擦力,较高的强度以及一定的耐腐蚀性。复合材料通常是指包含增强材料的粉末或纤维混合物,例如聚碳酸酯和碳纤维,可以打印出更坚固,优质和稳定的零件。FDM 3D打印范围从模型展示,汽车的小型替换零件到航空航天公司的固定装置,使其成为需要机械功能和高性能的对象的强大选择。还有一些高精度的FDM 3d打印机,因此打印部件的表面是光滑且均匀的, FDM技术的缺点 由于打印分辨率低,常见的FDM 3d打印机有时会在模型表面上形成很少的覆膜,也称为“层纹”。这就需要对零件进行额外的抛光和研磨,以获得更光滑的表面。通常,FDM 3D打印也容易出现温度波动,从而导致热塑性长丝的冷却速度变慢/速度加快以及表面划界。常见的问题是故障和零件翘曲。 3D打印机在打印过程中同时由多个内部组件工作,在打印过程中,喷嘴,挤出或热端组件的任何问题都可能出现。硬件和耗材规格的设置也对3D打印模型有一定影响,在准备和切片3D模型时,必须特别注意打印设置。 SLA技术优势 SLA 3D打印可以达到至少25微米的分辨率,从而获得光滑细致的表面。表面细节是FDM所无法比拟的,类似于传统注塑成型的外观。因此,SLA 3D最适合用于产品展示或概念模型制作。SLA 3D打印机的错误要小得多,因为UV激光被用作数据校准部件。因此,它也已成为印刷高精度模型的理想选择,例如珠宝,医疗植入物,复杂的建筑模型和其他小零件。

相关主题
文本预览
相关文档 最新文档