当前位置:文档之家› 2017人教版高中物理选修11第三章第一节《电磁感应现象》同步检测

2017人教版高中物理选修11第三章第一节《电磁感应现象》同步检测

第一节电磁感应现象

建议用时实际用时满分实际得分

90分钟100分

一、选择题(本题包括12

小题,每小题给出的四个

选项中,有的只有一个选项正确,有的有多个

项正确,全部选对的得6分,选对但不全的得

3

分,有选错或不选的得0分,共72分)

1、关于感应电流,下列说法中正确的就是( )

A、只要闭合电路内有磁通量,闭合电路中就有

感应电流产生

B、穿过螺线管的磁通量发生变化时,螺线管

内部就一定有感应电流产生

C、线框不闭合时,即使穿过线圈的磁通量发生

变化,线圈中也没有感应电流

D、只要闭合电路的一部分导体做切割磁感线

运动,电路中就一定有感应电流

2、如图3-1-1所示,竖直放置的长直导线通

有图示方向的恒定电流,有一闭合矩形金属

框与导线在同一平面内,在下列情况中,

能在线框中产生感应电流的就是()

图3—1—1

A、线框向下平动

B、线框向右平动

C、线框以为轴转动

D、线框以直导线为轴转动

3、如图3—1-2所示,矩形闭合线圈平面跟磁

感线方向平行,下列哪种情况线圈中能产生感

电流( )

图3-1—2

A、线圈围绕轴转动

B、线圈垂直纸面向外平动

C、线圈在纸面内向下平移

D、线圈绕轴转动

4、关于磁通量的概念,下列说法中正确的就是

()

A、磁感应强度越大的地方,穿过线圈的磁通

量也越大

B、穿过线圈的磁通量为零,该处的磁感应强

度不一定为零

C、磁感应强度越大、线圈面积越大,则磁通

量越大

D、穿过线圈的磁通量大小可以用穿过线圈的

磁感线条数来衡量

5、某同学做观察电磁感应现象的实验,将电流

表、线圈与、蓄电池、开关用导线连接成如

图3—1-3所示的实验电路,当它接通、断开开

关时,电流表的指针都没有偏转,其原因就是

( )

图3-1-3

A、开关位置接错

B、电流表的正、负极接反

C、线圈的接头3、4接反

D、蓄电池的正、负极接反

6、如图3—1-4所示,导线与互相平行,则

下列四种情况下导线中无电流的就是( )

图3—1-4

A、开关S闭合或断开的瞬间

B、开关S就是闭合的,但滑动触头向左滑

C、开关S就是闭合的,但滑动触头向右滑

D、开关S始终闭合,不滑动触头

7、两个圆环如图3-1-5所示放置,且>,一条形磁铁轴线过两个圆环的圆心处,且与圆环平面垂直,则穿过环的磁通量与的关系就是( )

A 、>

B 、

C 、<

D、无法确定

图3—1-5

8、如图3—1-6所示,矩形线框放置在水平面内,磁场方向与水平方向成角,已知sin =4/5,回路面积为,磁感应强度为,则通过线框的磁通量为( )

图3—1—6

A 、

B 、

C 、

D 、

9、如图3—1—7所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中可行的就是()

图3-1—7

A、将线框向左拉出磁场

B 、以边为轴转动(小于90°)

C 、以边为轴转动(小于60°)

D 、以边为轴转动(小于60°)

10、如图3—1—8所示,在同一铁芯上有与两个线圈,其中线圈与滑动变阻器、电源、开关相连,线圈两端与灵敏电流表相连,在以下采取的做法中,能使电流表指针偏转的就是()

图3—1-8

A、开关S闭合的瞬间

B、开关S 闭合后,变阻器滑片向右滑动

C、开关S 闭合后,变阻器滑片保持不动

D、开关S断开的瞬间

11、如图3—1—9所示就是一种延时开关、当

闭合时,电磁铁将衔铁吸下,线路接通、

当断开时,由于电磁感应作用,将延迟一段

时间才被释放、则()

A 、由于线圈的电磁感应作用,才产生延时释

放的作用

B 、由于线圈的电磁感应作用,才产生延时释

放的作用

C 、如果断开线圈的开关,无延时作用

D 、如果断开线圈的开关,延时将变长

图3-1—9

12、唱卡拉OK用的话筒,内有传感器、其中有

一种就是动圈式的,它的工作原理就是在弹性

膜片后面粘接一个轻小的金属线圈,线圈处于

永磁体的磁场中,当声波使膜片前后振动时,

就将声音信号转变为电信号、下列说法中正确

的就是( )

A、该传感器就是根据电流的磁效应工作的

B、该传感器就是根据电磁感应原理工作的

C、膜片振动时,穿过金属线圈的磁通量不变

D、膜片振动时,金属线圈中不会产生感应电动

二、填空题(本题共8分、请将正确的答案填到横

线上)

13、年,英国物理学家发现了

现象、

三、计算题(本题共小题,共分、解答时应写出

必要的文字说明、方程式与重要的演算步骤,

只写出最后答案的不能得分、有数值计算的题,答案中必须明确写出数值与单位)

14、(10分)如图--所示,环形金属软弹簧套在条形磁铁的中心位置,若沿其半径向外拉弹簧,使其面积增大,则穿过弹簧的磁通量将如何变化?

图3-1—10

15、(10分)如图3-1-11所示,线框与通电直导线均位于水平面内,当线框由实线位置在水平面内向右平动,逐渐移动到虚线位置,穿过线框的磁通量如何变化?

图3-1-11

第一节电磁感应现象

得分:

题号 1 2 3 4 5 6 7 8 9 10 答案

题号11 12

答案

二、填空题

13、

三、计算题

14、

15、

第一节电磁感应现象参考答案

一、选择题

1、CD

2、BC

3、A

4、BD

5、A 解析:题图中所示开关的连接不能控制含有电源的电路中电流的通断、而本

实验的内容之一就就是研究在开关通断瞬间,电流的变化导致磁场变化,进而产生感应电流的情况,因而图中的接法达不到目的、

6、D 解析:如果导线中无电流产生,则说明通过上面的闭合线圈的磁通量没有

发生变化,也就就是说通过导线段的电流没有发生变化、显然,A、B、C三种情况的过程都就是通过导线的电流发生变化的过程,都能在导线中产生感应电流、因此本题的正确选项应为D、

7、C 解析:穿过某面的磁通量就是指穿过它的磁感线的净条数、磁铁内部磁感线

的方向就是由→,向上穿过圆环的条数相同,而磁铁外部就是由→,与内部磁感线形成闭合曲线,如果圆环面积越大,向下的磁感线条数越多,这样,抵消的越多,净条数越少,因而、

8、B 解析:、

9、ABC

10、ABD

11、BC 解析:本题考查感应电流产生的条件,就是通电线圈,就是闭合线圈回

路、当断开时,通过线圈的磁通量减小,则在线圈中产生感应电流,其磁场对衔铁的吸引力使线路接通,起到延时作用、故B、C正确、

12、B 解析:当声波使膜片前后振动时,膜片后的金属线圈就跟着振动,从而使

处于永磁体的磁场中的线圈切割磁感线、穿过线圈的磁通量发生改变,产生感应电流,从而将声音信号转化为电信号,这就是电磁感应的工作原理,故B选项正确,A、C、D均错误、

二、填空题

13、法拉第电磁感应

三、计算题

14、磁通量减小解析:注意弹簧面所在处存在两个方向的磁场,即磁铁的内磁场与

外磁场,它们各自产生正负不同的磁通量,总的磁通量等于两者绝对值之差、当拉大弹簧面积时,内磁场的磁通量不变,而外磁场的磁通量却增大(穿过弹簧的外部磁感线条数增多),故=||-||应减小、

点评:当穿过某一面积的磁感线方向相反时,穿过该面积的磁感线条数可理解为两者抵消后的磁感线净条数、

15、增大→减小→增大→减小

解析:直线电流产生的磁场的磁感线的形状就是以导线上的点为圆心的在竖直平面的一组组同心圆、在电流的右边磁感线的方向垂直纸面向内;在电流的左边磁感线的方向垂直纸面向外、磁感线的疏密分布就是越靠近导线,磁感线越密;离导线越远,磁感线越稀疏、

线框的水平平动,可分为三个阶段:第一阶段,从实线位置开始至边到达直导线的位置,穿过线框的磁通量逐渐增大、第二阶段从边到达直导线处开始至边到达直导线为止,由于向外的磁感线逐渐减少,向内的磁感线逐渐增多,所以穿过线框的总磁通量先减小(当、两边中点连线与直导线重合时,磁通量为零)后增大、第三阶段从边离开直导线向右运动开始至线框到达虚线位置为止,穿过线框的磁通量逐渐减小、

高中物理选修公式

高中物理选修公式 The Standardization Office was revised on the afternoon of December 13, 2020

物理选修3-5公式 一、碰撞与动量守恒 1、动量:p =mv ,矢量,单位:kg ·m/s 2、动量的变化:△p =mv 2-mv 1 (一维) 是矢量减法,一般选初速度方向为正方向 3、动量与动能的关系:k mE p 2=,m p E k 22= 4、冲量: I =Ft ,矢量,单位:N ·s 5、动量定理: I =△p ,或Ft =mv 2-mv 1 (一维) 6、动量守恒定律: m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ (一维) 条件:系统受到的合外力为零. 7、实验——验证动量守恒定律: m 1·OP=m 1·ON+m 2·O ′M 8、弹性碰撞:没有动能损失 021211'v m m m m v +-=,0 2112'v m m v += (牛顿摆中m 1=m 2,故v 1′=0,v 2′=v 0,入射球... 损失的动能最多) 9、完全非弹性碰撞:系统.. 损失的动能最多 m 1v 0=(m 1+m 2)v ′ 10、若m 、M 开始均静止,且系统动量守恒,则:mv 1=Mv 2,ms 1=Ms 2

二、波粒二象性 1、光子的能量:λ hc hv E == v 为光的频率,λ为光的波长 其中h =×10-34J ·s 2、遏止电压:km E mv eU ==2max 2 1 3、爱因斯坦光电效应方程:W mv hv +=2max 2 1 4、光源发出的光子数:hc Pt n λ= 5、康普顿效应——光子的动量:λ h p = 6、德布罗意波的波长:p h =λ 三、原子结构之谜 1、汤姆生用电磁场测定带电粒子的荷质比:2 2d B Eh m q = 2、分子、原子的半径约为10-10m 原子核的半径约为10-14m 核子(质子、中子)的半径约为10-15m 3、巴耳末系(可见光区): 5... 4, ,3 ),121 (122=-=n n R λ 对于氢原子,R =×107m -1 4、氢原子的能级公式和轨道半径公式: 121E n E n =,12r n r n = 其中n 叫量子数,n =1, 2, 3…. E 1=-,r 1=×10-10m 5、能级跃迁:hv =E m -E n 四、原子核

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-1公式

高中物理选修3-1公式 第一章 静电场 1、库仑力:221r q q k F = (适用条件:真空中静止的点电荷) k = 9.0×109 N ·m 2/ c 2 静电力常量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场性质的物理量。是矢量。 定义式: q F E = 单位: N / C 或V/m 点电荷电场场强 2r Q k E = 匀强电场场强 d U E = 3、电势能:电势能的单位:J 通常取无限远处或大地表面为电势能的零点。 静电力做功等于电势能的减少量 PB PA AB E E W -= 4、电势: 电势是描述电场能的性质的物理量。是标量。 电势的单位:V 电势的定义式:q E p = ? 顺着电场线方向,电势越来越低。 一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。 5、电势差U ,又称电压 q W U = U AB = φA -φB 电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量(侧移距离): 做类似平抛运动 2 22022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角度 2 0tan mdv qUl v at v v x y == = θ 8、电容器的电容: 电容是表示电容器容纳电荷本领大小的物理量。单位:F 定义式: c Q U = 电容器的带电荷量: Q=cU 平行板电容器的电容: kd S c πε4= 平行板电容器与电源的两极相连,则两极板间电压不变

人教版高中物理选修3-1 全册知识点总结大全

人教版高中物理选修3-1 全册知识点总结大全 第一章 静电场 第1课时 库仑定律、电场力的性质 考点1.电荷、电荷守恒定律 自然界中存在两种电荷:正电荷和负电荷。例如:用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。同种电荷互相排斥,异种电荷相互吸引;电荷的基本性质:能吸引轻小物体 1. 元电荷:电荷量c e 191060.1-?=的电荷,叫元电荷。说明:任意带电体的电荷量都是 元电荷电荷量的整数倍。 2.使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 3电荷守恒定律:电荷既不能被创造,又不能被消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。 考点2.库仑定律 1. 内容:在真空中静止的两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在他们的连线上。 2. 公式:叫静电力常量)式中,/100.9(2 292 21C m N k r Q Q k F ??== 3. 适用条件:真空、点电荷。 4. 点电荷:如果带电体间的距离比它们的大小大得多,以致带电体的形状体积对相互作用力的影响可忽略不计,这样的带电体可以看成点电荷。 考点3.电场强度 1.电场 ⑴ 定义:存在电荷周围能传递电荷间相互作用的一种特殊物质。 ⑵ 基本性质:对放入其中的电荷有力的作用。 ⑶ 静电场:静止的电荷产生的电场 2.电场强度 ⑴ 定义:放入电场中的电荷受到的电场力F 与它的电荷量q 的比值,叫做该点的电场强度。

⑵ 定义式: q F E = E 与 F 、q 无关,只由电场本身决定。 ⑶ 单位:N/C 或V/m 。 ⑷ 电场强度的三种表达方式的比较 定义式 决定式 关系式 表达式 q F E /= 2/r kQ E = d U E /= 适用 范围 任何电场 真空中的点电荷 匀强电场 说明 E 的大小和方向与检验电荷 的电荷量以及电性以及存在与否无关 Q :场源电荷的电荷量 r:研究点到场源电荷的距离 U:电场中两点的电势差 d :两点沿电场线方向的距离 (5)矢量性:规定正电荷在电场中受到的电场力的方向为该点电场强度的方向,或与负电荷在电场中受到的电场力的方向相反。 (6)叠加性:多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的矢量和,这种关系叫做电场强度的矢量叠加,电场强度的叠加遵从平行四边形定则。 考点4.电场线、匀强电场 1. 电场线:为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。 2. 电场线的特点 ⑴ 电场线是为了直观形象的描述电场而假想的、实际是不存在的理想化模型。 ⑵ 始于正电荷或无穷远,终于无穷远或负电荷,电场线是不闭合曲线。 ⑶ 任意两条电场线不相交。 ⑷ 电场线的疏密表示电场的强弱,某点的切线方向表示该点的场强方向,它不表示电荷在电场中的运动轨迹。 ⑸ 沿着电场线的方向电势降低;电场线从高等势面(线)垂直指向低等势面(线)。 3. 匀强电场 ⑴定义:场强方向处处相同,场强大小处处相等的区域称之为匀强电场。 ⑵特点:匀强电场中的电场线是等距的平行线。平行正对的两金属板带等量异种电荷后,在

高中物理选修精选公式

高中物理公式定理定律概念大全 选修3-3 第七章 分子动理论 一、分子动理论的基本内容: 分子理论是认识微观世界的基本理论,主要内容有三点。 1、物质是由大量分子组成的。 我们说物质是由大量分子组成的,原因是分子太小了。一般把分子看成球形,分子直径的数量级 是1010 -米。 1摩尔的任何物质含有的微粒数都是×1023个,这个常数叫做阿伏加德罗常数。记作: 阿伏加德罗常数是连接宏观世界和微观世界的桥梁。已知宏观的摩尔质量M 和摩尔体积V ,通过常 数N 可以算出每个分子的质量和体积。 每个分子的质量m M N = 每个分子的体积v V N = 根据上述内容我们不难理解一般物体中的分子数目都是大得惊人的,由此可知物质是由大量分子组成的。 2、分子永不停息地做无规则运动。 ①布朗运动间接地说明了分子永不停息地做无规则运动。 布朗运动的产生原因:被液体分子或气体分子包围着的悬浮微粒(直径约为10 3 -mm ,称为“布朗 微粒”),任何时刻受到来自各个方向的液体或气体分子的撞击作用不平衡,颗粒朝向撞击作用较强的方向运动,使微粒发生了无规则运动。应注意布朗运动并不是分子的运动,而是分子运动的一种表现。 影响布朗运动明显程度的因素:固体颗粒越小,撞击它的液体分子数越少,这种不平衡越明显;固体颗粒越小,质量也小,运动状态易于改变,因此固体颗粒越小,布朗运动越显着。液体温度越高,布朗运动越激烈。 ②热运动:分子的无规则运动与温度有关,因此分子的无规则运动又叫做热运动。 3、分子间存在着相互作用的引力和斥力。 ①分子间同时存在着引力和斥力,实际表现出来的分子力是分子引力和斥力的合力。 ②分子间相互作用的引力和斥力的大小都跟分子间的距离有关。 当分子间的距离r r ==-01010m 时,分子间的引力和斥力相等,分子间不显示作用力;当分子间 距离从r 0增大时,分子间的引力和斥力都减小,但斥力小得快,分子间作用力表现为引力;当分子间距离从r 0减小时,斥力、引力都增在大,但斥力增大得快,分子间作用力表现为斥力。 ③分子力相互作用的距离很短,一般说来,当分子间距离超过它们直径10倍以上,即r >-109m 时,分子力已非常微弱,通常认为这时分子间已无相互作用。

高中物理选修的内容和公式

高中物理选修3-1的内容和公式如下,仅供参考 一、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k= 9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q 8.电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量 (C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器 14.带电粒子在电场中的加速(V o=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表

高中物理选修3-1公式

选修3-1公式 第一章、电场 1、电荷先中和后均分:2 2 1q q q += (带正负号) 2、库仑定律:2 2 1r q q k F = (不带正负号) (k=9.0×109 N 〃m 2/C 2 ,r 为点电荷球心间的距 离) 3、电场强度定义式:q F E = 场强的方向:正检验电荷受力的方向. 4、点电荷的场强:2A A r Q k E = (Q 为场源电量) 5、电场力做功:AB AB qU W = (带正负号) 6、电场力做功与电势能变化的关系:P E W ?-=电 7、电势差的定义式:q W U AB AB = (带正负号) 8、电势的定义式:q W AP A = ? (带正负号) (P 代表零势点或无穷远处) 9、电势差与电势的关系:B A AB U ??-= 10、匀强电场的电场强度与电势差的关系: d U E = (d 为沿场强方向的距离) 11、初速度为零的带电粒子在电场中加速: m qU v 2= 12、带电粒子在电场中的偏转: 加速度——md qU a = 偏转量——2 2 2v md l qU y ??= 偏转角——2 tan v md l qU ??= θ 13、初速度为零的带电粒子在电场中加速并偏转: 1 2 2122422dU l U m qU md l qU y =? ?= 14、电容的定义:U Q C = 单位:法拉 F 15、平行板电容器的电容:kd S C ??=πε4 第二章、电路 1、电阻定律:S l R ρ= (l 叫电阻率) 2、串联电路电压的分配:与电阻成正比 2121R R U U =,总U R R R U 211 1+= 3、并联电路电流的分配:与电阻成反比 1221R R I I =,干I R R R I 212 1+= 4、串联电路的总电阻:)( 21nR R R R =+=串 5、并联电路的总电阻:)( 212 1n R R R R R R =+= 并 6、I-U 伏安特性曲线的斜率:R k 1tan == θ 7、部分电路欧姆定律:R U I = 8、闭合电路欧姆定律:r R E I += 9、闭合电路的路端电压与输出电流的关系: r I E U ?-= 10、电源输出特性曲线: 电动势E :等于U 轴上的截距 内阻r :直线的斜率短 I E r ==θtan

高中物理选修全套教案(人教版)

高二物理选修3-4教案 11、1简谐运动 一、三维目标 知识与技能 1、了解什么就是机械振动、简谐运动 2、正确理解简谐运动图象得物理含义,知道简谐运动得图象就是一条正弦或余弦曲线过程与方法 通过观察演示实验,概括出机械振动得特征,培养学生得观察、概括能力 情感态度与价值观 让学生体验科学得神奇,实验得乐趣 二、教学重点 使学生掌握简谐运动得回复力特征及相关物理量得变化规律 三、教学难点 偏离平衡位置得位移与位移得概念容易混淆;在一次全振动中速度得变化 四、教学过程 引入:我们学习机械运动得规律,就是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂得运动——简谐运动 1、机械振动 振动就是自然界中普遍存在得一种运动形式,请举例说明什么样得运动就就是振动? 微风中树枝得颤动、心脏得跳动、钟摆得摆动、声带得振动……这些物体得运动都就是振动。请同学们观察几个振动得实验,注意边瞧边想:物体振动时有什么特征? [演示实验] (1)一端固定得钢板尺[见图1(a)] (2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上得塑料球[见图1(e)] 提问:这些物体得运动各不相同:运动轨迹就是直线得、曲线得;运动方向水平得、竖直得;物体

各部分运动情况相同得、不同得……它们得运动有什么共同特征? 归纳:物体振动时有一中心位置,物体(或物体得一部分)在中心位置两侧做往复运动,振动就是机械振动得简称。 2、简谐运动 简谐运动就是一种最简单、最基本得振动,我们以弹簧振子为例学习简谐运动 (1)弹簧振子 演示实验:气垫弹簧振子得振动 讨论:a.滑块得运动就是平动,可以瞧作质点 b.弹簧得质量远远小于滑动得质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧得另一端固定,就构成了一个弹簧振子 c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力得理想条件下弹簧振子得运动。 (2)弹簧振子为什么会振动? 物体做机械振动时,一定受到指向中心位置得力,这个力得作用总能使物体回到中心位置,这个力叫回复力,回复力就是根据力得效果命名得,对于弹簧振子,它就是弹力。 回复力可以就是弹力,或其它得力,或几个力得合力,或某个力得分力,在O点,回复力就是零,叫振动得平衡位置。 (3)简谐运动得特征 弹簧振子在振动过程中,回复力得大小与方向与振子偏离平衡位置得位移有直接关系。在研究机械振动时,我们把偏离平衡位置得位移简称为位移。 3、简谐运动得位移图象——振动图象 简谐运动得振动图象就是一条什么形状得图线呢?简谐运动得位移指得就是什么位移?(相对平衡位置得位移) 演示:当弹簧振子振动时,沿垂置于振动方向匀速拉动纸带,毛笔P就在纸带上画出一条振动曲线 说明:匀速拉动纸带时,纸带移动得距离与时间成正比,纸带拉动 一定得距离对应振子振动一定得时间,因此纸带得运动方向可以代

高中物理选修-4公式

高中物理选修3-4公式 第十一章 机械运动 1、简谐运动的表达式 )sin(?ω+=t A x x 表示位移,A 振幅 单位m ω圆频率,单位rad/s,表示简谐运动振动的快慢。f T ππω22== 2、简谐振动的回复力: F=-kx 加速度x m k a -= 3、单摆: 回复力:x l mg F -= 振动周期: g L T π 2= (与摆球质量、振幅无关) 4、弹簧振子周期: k m T π2= 5、共振:驱动力的频率等于物体的固有频率时,物体的振幅最大 第十二章 机械波 1、机械波:机械振动在介质中传播形成机械波。它是传递能量的一种方式。 产生条件:要有波源和介质。 波的分类:①横波:质点振动方向与波的传播方向垂直,有波峰和波谷。 ②纵波,质点振动方向与波的传播方向在同一直线上。有密部和疏部。 波长λ:两个相邻的在振动过程中对平衡位置的位移总是相等的质点间的距离。 f v vT ==λ 注意:①横波中两个相邻波峰或波谷问距离等于一个波长。 ②波在一个周期时间里传播的距离等于一个波长。 波速:波在介质中传播的速度。机械波的传播速度由介质决定。 波速v 波长λ频率f 关系:f T v λλ == (适用于一切波) 注意:波的频率即是波源的振动频率,与介质无关。 第十三章 光 1、规律: (1)光的直线传播规律:光在同一均匀介质中是沿直线传播的。 (2)光的独立传播规律:光在传播时,虽屡屡相交,但互不干扰,保持各自的规律传播。 (3)光在两种介质交界面上的传播规律 ① 光的反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角。 ② 光的析射定律: 折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折 固 f

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理选修3-1公式 (1)

高中物理选修3-1公式 电磁学常用公式 库仑定律:F=kQq/r2 电场强度:E=F/q 点电荷电场强度:E=kQ/r2 匀强电场:E=U/d 电势能:E?=qφ 电势差:U??=φ?-φ? 静电力做功:W??=qU?? 电容定义式:C=Q/U 电容:C=εS/4πkd 带电粒子在匀强电场中的运动 加速匀强电场:1/2*mv2 =qU v2 =2qU/m 偏转匀强电场: 运动时间:t=x/v? 垂直加速度:a=qU/md 垂直位移:y=1/2*at? =1/2*(qU/md)*(x/v?)2偏转角:θ=v⊥/v?=qUx/md(v?)2 微观电流:I=nesv 电源非静电力做功:W=εq 欧姆定律:I=U/R 串联电路 电流:I?=I?=I?= …… 电压:U =U?+U?+U?+ …… 并联电路 电压:U?=U?=U?= …… 电流:I =I?+I?+I?+ …… 电阻串联:R =R?+R?+R?+ …… 电阻并联:1/R =1/R?+1/R?+1/R?+ …… 焦耳定律:Q=I2 Rt P=I2 R P=U2 /R 电功率:W=UIt 电功:P=UI 电阻定律:R=ρl/S 全电路欧姆定律:ε=I(R+r) ε=U外+U内 安培力:F=ILBsinθ 磁通量:Φ=BS 电磁感应 感应电动势:E=nΔΦ/Δt

导线切割磁感线:ΔS=lvΔt E=Blv*sinθ 感生电动势:E=LΔI/Δt 高中物理电磁学公式总整理 电子电量为库仑(Coul),1Coul= 电子电量。 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、电路学 1.理想电池两端电位差固定为。实际电池可以简化为一理想电池串连内电阻r。实际电池在放电时,电池的输出电压,故输出之最大电流有限制,且输出电压之最大值等于电动势,发生在输出电流=0时。 实际电池在充电时,电池的输入电压,故输入电压必须大于电动势。 2.若一长度d的均匀导体两端电位差为,则其内部电场。导线上没有电荷堆积,总带电量为零,故导线外部无电场。理想导线上无电位降,故内部电场等于0。 3.克希荷夫定律 a.节点定理:电路上任一点流入电流等于流出电流。 b.环路定理:电路上任意环路上总电位升等于总电位降。 三、静磁学 1.必欧-沙伐定律,描述长的电线在处所建立的磁场

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

人教版高中物理选修全册教案完整

第四章电磁感应 划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学

生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的在这之前,科学研究领域存在怎样的历史背景 (2)奥斯特的研究是一帆风顺的吗奥斯特面对失败是怎样做的 (3)奥斯特发现电流磁效应的过程是怎样的用学过的知识如何解释 (4)电流磁效应的发现有何意义谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考法拉第持怎样的观点 (2)法拉第的研究是一帆风顺的吗法拉第面对失败是怎样做的 (3)法拉第做了大量实验都是以失败告终,失败的原因是什么 (4)法拉第经历了多次失败后,终于发现了电磁感应现象,他 发现电磁感应现象的具体的过程是怎样的之后他又做了大量的实 验都取得了成功,他认为成功的“秘诀”是什么 (5)从法拉第探索电磁感应现象的历程中,你学到了什么谈谈 自己的体会。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 三、科学的足迹 1、科学家的启迪教材P3 2、伟大的科学家法拉第教材P4 四、实例探究 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C)

人教版高中物理选修3-1知识点归纳总结

物理选修3- 1 知识总结 第一章第1节电荷及其守恒定律 、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分 ,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 、电荷量 1、 电荷量:电荷的多少。 2、 元电荷:电子所带电荷的绝对值 1.6 X 10 19C 3、 比荷:粒子的电荷量与粒子质量的比值。 第一章第2节库仑定律 一、 电荷间的相互作用 1、 点电荷:带电体的大小比带电体之间的距离小得多。 2、 影响电荷间 相互作用的因素 二、 库仑定律: 适用条件为真空中静止点电荷 计算时各量带入绝对值,力的方向利用电性来判断 第一章第3节电场电场强度 、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、 电场强度 1、 检验电荷与场源电荷 2、 电场强度 检验电荷在电场中某点所受的电场力 F 与检验电荷的电荷 q 的比值。 E F 国际单位:NC q 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、 点电荷的场强公式 F . Q E — k —2 q r 四、 电场的叠加 五、 电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线, 曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。 在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比, 成反比,作用力的方向在它们的连线上。 跟它们距离的平方 注意(1) (2)

高中物理选修-公式总结

十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W =Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U 总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。11.伏安法测电阻电流表内接法:电流表外接法:电压表示数:U=UR+UA 电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件Rx<Rx 便于调节电压的选择条件Rp

高中物理选修3知识点公式总结

1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。(元电荷常用符号e 自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。 2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。 3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间 9109? =k N ﹒m 2/C 2。 45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。 67、电场线的性质: a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷; b .任何两条电场线不会相交; c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。 9 q E P ?= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。 11A B BA U ?? -=( 电势差的正负表示两点间电势的高低) 12、电势差与静电力做功:q W U = qU W =? 表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。 13 14、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed = 15 电容的单位是法拉(F ) 决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。 ②对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况: 16、带电粒子在电场中运动: ①.带电粒子在电场中平衡。(二力平衡) ②.带电粒子的加速:动力学分析及功能关系分析:经常用2022 121qU mv mv -= ③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电 场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。 t v L 0= ,U d mv qL L md Uq y 202202)v (21=?=

相关主题
文本预览
相关文档 最新文档