当前位置:文档之家› 高压熔断器行业分析

高压熔断器行业分析

高压熔断器行业分析
高压熔断器行业分析

高压熔断器行业分析

1.行业现状

高压熔断器制造属于机械制造业和电力电气业,其上游行业为金属加工和机械制造业,下游主要是成套电器系统设备制造业。根据《民经济行业分类》(GB/T4754-2017)所属分类西安科信熔断器有限公司属于配电开关控制设备制造(C3823),从细分行业看,西安科信熔断器有限公司为电器行业中的保护电器元件。

我国在五十年代大量引进苏联的生产技术和设备,熔断器行业普遍兴起。早期我国全面参照前苏联GOST定制的机械部“JB技术条件”,比IEC269-1标准要求相差一倍多。低压熔断器产品是RL1和RTO系列,中高压熔断器的代表产品时RN1系列。

改革开发后,国内大量引进欧美电子设备,带动了国内熔断器产品的更新和发展。国家机械部拟定仿欧洲形制的统一设计方案,但没有成功。同时上海电气陶瓷厂率先引进AEGON公司的NT、NG产品;西熔从英国Brush公司引进中压限流技术。欧洲标准逐渐成为主流产品。

目前在低压领域,国外熔断器生产公司逐渐设立经销处和生产厂部,国内形成了上海、西安和温州三大熔断器生产基地。

我国中高压熔断器制造基地的分布,主要以陕西为中心,江浙地区和温州柳市等地区为辐射。中高压熔断器生产基地,国家熔断器和相关政府机构和行业协会所在地(西安高压开关设备研究所)主要在西安。目前西安中高压熔断器产品生产企业超过30家。江浙沪以低压熔断器为住,是我国低压产品国内主要生产基地。

2.行业发展

近年来,全社会用电量已达万亿千瓦。2016全年全社会用电量59198亿千瓦时,同比增长5.0%。分产业看,第一产业用电量1075亿千瓦时,同比增长5.3%;第二产业用电量42108亿千瓦时,同比增长2.9%;第三产业用电量7961亿千瓦时,同比增长11.2%;城乡居民生活用电量8054亿千瓦时,同比增长10.8%。

据上述数据统计,全球每年生产的各种熔断器可达几十亿只。然而熔断器有不同结构形式、不同电压等级和电流等级。因此,只有极少数的几种熔断器采用了全自动化大批量生产。据统计大多数熔断器是属于微型和家用熔断器,工业用熔断器在数量上何其相比还是比较少,年产量大约为几亿只。

据1975-1985年的统计,我国每年生产的各类高压熔断器大约为22-53万

只左右(包括跌落式)。近年来由于国内对高压熔断器的生产制造技术有了很大的改进,理论研究工作有了更深入的开展,并引进国外先进的生产制造技术,加之电力部门和各工业用电单位的极力推广使用,高压熔断器的生产水平和市场需求量已经大大提高。

3.行业市场需求

2014年我国熔断器行业市场规模达9.82亿元,较上年增长4.2%;其中华东地区需求规模占比为33.4%,华北地区需求规模占17.1%;华中与华南占比分别为12.2%和12.1%。下图为我国当年度高压熔断器市场分布比例。

在宏观政策上,目前中国政府对熔断器产业尚未有相应的扶持或限制政策,政府和行业协会对外资的进入也无相关政策。

目前国内中高压熔断器市场整体需求旺盛,2005-2007年需求年增长速度达到8-10%。其中7.2KV增长最快,达11-14%;3.6KV需求量次之,9-11%;12KV 需求年增长7-10%;40.5KV需求年增长6-9%。而相应的中高压熔断器供给市场增长缓慢,2002-2004年略程下降趋势。主要由于12KV跌落式熔断器每年下降15%以上。其他产品程增长趋势,2005年7.2KV增长速度达6-7%,3.6KV增长速度在3%左右,40.5KV和24KV增长速度高达20%以上。

4.上下游行业对行业的影响

(1)上游行业:金属加工业和机械制造业

2017年下半年,金属加工业特别是铜材制造加工业,由于发展问题,铜材和铜制产品价格明显升高。高压熔断器涉及的铜材产品有,熔断器触头(外帽)、

内帽、连接件、连接片、部分熔体、底座配件的等产品,在高压熔断器中占有绝对重要的地位。铜材产品价格的提高,势必造成熔断器成本的提高。是熔断器行业发展的不利因素。

(2)下游行业:成套系统电气设备制造业

目前国内符合开关+熔断器产品以12KV为主,占总量的85%;40.5KV产品次之,占总量的15%,主要将在预装变及大城市中再分配电能配电所、户外架空线柱开关领域取代断路器。据专家了解:目前我国12KV产品逐渐向国际上通常的断路器、负荷开关、接触器、限流熔断器多元化方向发展,而断路器的使用比例逐步下降。熔断器作为和负荷开关配合使用的电气保护元件,这个对于熔断器的发展无疑是巨大的利好因素。

5.行业壁垒

(1)用户行为:

根据调查,目前部分开关厂/负荷开关厂/接触器厂和最终用户普遍对产品的质量比较关注,日本品牌在国内市场以质量的良好口碑见长。

各类开关厂和最终用户没有品牌偏好,在选购熔断器时并不在乎产品品牌,只要质量和价格适中即可,只有少部分用户会考虑著名品牌。但这对熔断器“著名品牌”的建立和发展造成了不良影响。

在购买渠道上大多数各类开关厂和最终用户,偏爱从生产商处直接购买熔断器,40%用户会从熔断器经销商处购买。这对新客户的开发造成了一点难度。

在采购方式上,大部分用户偏爱提取现货,但只有少部分用户接受现金交易,国内发货的等待时间以2-3天居多,外地为1周到10天左右。这要求生产厂家要拥有客观数量的库存和充足的资金链。

(2)国家电网的入网允许

凡事应用于国家电网的产品,包括设备、配件、元器件等产品及其厂家,必须向国家电网的申请入网资格,并接受相关审核,审核合格后才能获得入网资格。

(3)技术壁垒

高压熔断器产品按照国标(GB/T15166.2-2008)规定,所有熔断器产品必须在有资质的单位进行型式试验,试验合格并取得试验报告,方可进行批量生产工作。高压熔断器型式试验项目包括:绝缘试验(仅对熔断器底座),温升完成实验,开断试验,时间-电流特性试验,撞击器的试验等项目。

(4)技术革新:

由于计算机技术的发展,熔断器计算机模拟技术得到发展和推广。各厂家可以很容易的研究和计算出熔体参数变化和对熔断器动作性能产生的影响,而不需要进行大量的研究和试验。这使得熔断器设计方面的技术已不再是“某家公司的经验值”,行业壁垒看似下降。但结合成套设备需求的增长,熔断器行业竞争愈发激烈,要求熔断器厂家不断提高新产品的开发和设计能力,对厂家生产工艺水平和成本控制能力的要求大大提高。

6.行业法律法规和政策

在宏观政策上,目前中国政府对熔断器产业尚未有相应的扶持或限制政策,政府和行业协会对外资的进入也无相关政策。

但随着一带一路政策的实施和国家对新能源产品发展的扶持,为熔断器产品走出国门,进入新领域提供了有力的发展机遇。

7.行业发展存在的问题

熔断器的作为高压成套系统的必备配件和保护元件,其发展必将作为成套系统发展的有一部分。我国供配电系统,正在朝着模块化、智能化、节能减排、方向发展。而且国家不断加强新能源产品的开发和应用力度,据预测未来几十年国家电网系统可能迎来革命性的改革,太阳能发电供配电网络的建立势在必行。高压熔断器行业,必须尽快跟上加紧新产品的开发力度,不断向新材料、新工艺、新功能几个方面靠拢。熔断器企业必须加快向新能源领域进军的步伐,研发设计和新能源产配套的保护产品,尽早的占领市场。

如何选择熔断器

(1)熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。 图熔断器的安秒特性 每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 表1-2熔断电流与熔断时间之间的关系 (2)熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥(1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 3)保护多台长期工作的电机(供电干线) IRN ≥(1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合 为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。 常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列

高压熔断器说明书(1)

RW12-12系列 户外高压跌落式熔断器 产 品 使 用 说 明 书 河南亚丰电瓷电器有限公司

1主要用途及适用范围 熔断器是一种当电流超过规定值一定时间后,以它本身产生的热量使熔体熔化而开断电路的开关装置。跌落式熔断器是动作后载熔件自动跌落,形成端口的熔断器。RW、HRW、PRWG及HPRWG系列跌落式熔断器适用于交流50HZ系统电压10KV~35KV的电力系统中,用于输电线路和电力变压器的短路和过负荷保护。 2使用环境 2.1环境温度:-40℃~+40℃; 2.2相对湿度:日平均值不大于95%,月平均值不大于90%; 2.3海拔高度不超过34m/s; 2.5安装地点应无火灾、爆炸危险、化学腐蚀及剧烈震动。 3产品型号和名称 □□□□□□□□ 额定电流:A 其它标志:F-带有负荷开断装置 B-带有避雷器 额定电压:KV 设计序号 保护对象:T-保护变压器用M-保护电动机用 C-保护电容器用P-保护电压互感器用 安装场所:N-户内W-户外 产品名称:R-瓷绝缘熔断器 HR-复合绝缘熔断器 结构特征:X-限流式 P-喷射式 例:HRW11-12/100 12KV系统用11型户外交流高压复合绝缘跌落式熔断器,额定电流为100A 4产品结构及原理 跌落式熔断器主要由绝缘支架和熔丝管两部分组成,绝缘支架两端安装静触头,熔丝管两端安装动触头,熔丝管由内层的消弧管和外层的酚醛纸管(或环氧玻璃布管)组成。带负荷开断装置跌落式熔断器增加弹性辅助触头及灭弧室罩,用以分、合负载电流。 跌落式熔断器在正常运行时,熔丝管借助熔丝张紧,形成闭合位置。当系统发生故障时,故障电流使熔丝迅速熔断,并形成电弧,消弧管受电弧灼热,分解出大量的气体,在管内形成很高压力,并沿管道形成纵吹,电弧被迅速拉长而熄灭,熔丝熔断后,下部动触头失去张力而下翻,锁紧机构释放熔丝管,熔丝管跌落,形成明显的开断位置。 带复合开端装置跌落式熔断器需要开断负荷时,绝缘杆拉开动触头,此时辅助触头仍然接触,继续用绝缘杆拉动触头,辅助触头也分离,在辅助触头之间产生电弧,电弧在灭弧罩中消逝能量,同时灭护罩产生气体,在电流过零时,将电弧熄灭。 5技术参数

简述变压器保护用熔断器的选择(高压侧)

简述变压器保护用熔断器的选择 与负荷开关开断能力的配合 目前采用负荷开关-熔断器组合电器对10kV变压器保护的数量极大,根据我们公司生产负荷开关多年的情况来看,负荷开关、熔断器、转移电流三者与变压器保护要求如何匹配是用户经常提出的问题,希望作如下简述: 一、熔断器额定电流的选择原则 变压器的额定容量为SN,额定电压为UN,则变压器高压侧一次额定电流IN1的大小由下式提供: 设变压器分接开关按-5%分接抽头计算,同时户内变压器过负荷按120%,那么变压器高压侧可能出现的电流IN可由下式确定: IN=IN1×120%×105% 一般情况下,限流式熔断器的额定电流I选用变压器额定电流的1.5~3倍,其大小可由下式确定:I=(1.5~3)×IN1综合变压器容量-SN、额定电流-IN、实际电流-IN1、熔断器电流-I 大小如下: 二、变压器励磁电流下熔断器持续时间 变压器投入时会产生励磁电流,要求该励磁电流不对所配熔断器构成损伤,那么熔断器的持续时间应大于励磁电流的持续时间,励磁电流 IS 的大小一般为变压器额定电流的10~20倍,绝大多数情况下不超过12倍,因此其值大小可由下式确定: IS=12×IN1 其持续时间为0.1S。为确定励磁电流下熔断器的持续时间,须引入反映熔断器动作特性的时间-电流特性曲线,如下图是我们公司常用的熔断器厂家提供的曲线,以IS作为横坐标值,分别求取对应纵坐标值,此值为不同熔断器规格的持续时间值t。

综合变压器容量-SN、励磁电流-IS 、熔断器电流-I、持续时间-t表如下: 由上表可以看出,熔断器按前表原则选择,变压器励磁电流持续时间均小于熔断器在该电流下的熔断持续时间,故励磁电流不会对所配熔断器造成损伤。 二、转移电流与负荷开关的开断能力熔断器应对变压器的短路故障进行保护,特别是最严重的低压侧短路故障保护,变压器阻抗电压按UK=4.5%(630KVA及以上为5%),变压器低压侧故障时,高压侧可能产生的最大故障电流IK可由下式求得: 有关转移电流在相关标准和文选中均有详细论述,我们公司生关的负荷开关中,熔断器撞击脱扣器触发负荷开关的分闸时间为T0=60ms,引入熔断器的时间—电流特性曲线,纵坐标中以T=0.9 T0作一水平线分别求出熔断器各规格曲线的电流值,即为熔断器熔断时首开相的电流值ISK,负荷开关二相开断的转移电流值IZ可由下式求得:IZ=0.87 ISK

熔断器种类及选择

对熔断器的选择要求是: 在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。 选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。 例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。 熔断器的额定电压要大于或等于电路的额定电压 熔断器的额定电流要依据负载情况而选择。 ①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。 ②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。

熔断器型号规格用途对照大全 第一位:产品字母代号(R-熔断器) 第二位:使用环境(N-户内,W-户外) 第三位:设计序号(1,2,3……) 第四位:额定电压(KV) 第五位:结构特点(H-带有限流电阻,Z-带重合闸,T-带热脱扣器) 第六位:额定电流(A) 1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。

高压熔断器

RN3系列户内高压限流熔断器 RN3-10/0.5A、RN3-10/1A、RN3-10/2A、RN3-10/3A、RN3-10/5A、RN3-10/7.5A、RN3-10/10A、RN3-10/15A、RN3-10/20A、RN3-10/30A、RN3-10/50A、RN3-10/75A、RN3-10/100A、RN3-10/150A、RN3-10/200A、RN3-6/0.5A、RN3-6/1A、RN3-6/2A、RN3-6/3A、RN3-6/5A、RN3-6/7.5A、RN3-6/10A、RN3-6/15A、RN3-6/20A、RN3-6/30A、RN3-6/50A、RN3-6/75A、RN3-6/100A、RN3-6/150A、RN3-6/200A户内高压限流熔断器 XRNT系列高压熔断器 一、用途 S型变压器保护用高分断能力高压限流熔断器适用于交流50HZ,额定电压3.6~40.5KV,额定电流至200A的电力系统中,作为变压器及其他电力设备的过载或短路保护用,也可与负荷开关、真空接触器等配合使用。本高压熔断器符合国家GB15166.2标准和国际电工委IEC282-1标准以及德国DIN标准。 二、型号含义 三、结构特点 1、分断能力高,开断电流可达63KV。 2、功耗小、升温低。 3、动作特别快,安一秒特性要比国内目前生产的同类产品动作快,例如额定电流100A的熔断体,通以1000A预期电流,弧前时间不超0.1S。 4、安-秒特性误差小于±10%。 5、配有弹簧式撞击器,该撞击器具有接触面大,压强小等有点。因此,在推动开关联动锁动作时,不会产生将开关与撞针接触面打碎或击穿的情况发生。 6、规格标准化。 7、有较大的限流作用。 8、产品性能符合GB15166.2国家标准及IEC60282-1国际标准。 9、能可靠开断最小开断电流至额定开断电流之间的任何故障电流。另外,还可根据用户需求,生产各类非标准产品。

熔断器选择原则

熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路. (2)I N熔断器≥IN 线路. (3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。 熔断器在工矿企业的生产过程中和日常生活中主要用于保护低压电器设备,由于使用于不同的电气设备,其容量、大小的选择原则差别很大,在实践中必须严格按照规程规定选择配置。否则,将失去其应有的保护作用。

常用电气设备熔断器选择

熔断器的额定电流选择 由于各种电气设备都具有一定的过载能力,允许在一定条件下较长时间运行;而当负载超过允许值时,就要求保护熔体在一定时间内熔断。还有一些设备起动电流很大,但起动时间很短,所以要求这些设备的保护特性要适应设备运行的需要,要求熔断器在电机起动时不熔断,在短路电流作用下和超过允许过负荷电流时,能可靠熔断,起到保护作用。熔体额定电流选择偏大,负载在短路或长期过负荷时不能及时熔断;选择过小,可能在正常负载电流作用下就会熔断,影响正常运行,为保证设备正常运行,必须根据负载性质合理地选择熔体额定电流。 (1) 照明电路 熔体额定电流≥被保护电路上所有照明电器工作电流之和。 (2) 电动机: ①单台直接起动电动机 熔体额定电流=(1.5~2.5)×电动机额定电流。 ②多台直接起动电动机 总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。 ③降压起动电动机 熔体额定电流=(1.5~2)×电动机额定电流。 ④绕线式电动机 熔体额定电流=(1.2~1.5)×电动机额定电流。 (3) 配电变压器低压侧 熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。 (4) 并联电容器组 熔体额定电流=(1.3~1.8)×电容器组额定电流。 (5) 电焊机 熔体额定电流=(1.5~2.5)×负荷电流。 (6) 电子整流元件 熔体额定电流≥1.57×整流元件额定电流。 说明:熔体额定电流的数值范围是为了适应熔体的标准件额定值。

在3~66kV的电站和变电所常用的高压熔断器有两大类:一类是户内高压限流熔断器, 额定电压等级分3、6、10、20、35、66kV,常用的型号有RN 1、RN 3、RN 5、XRNM 1、XRN T 1、XRN T 2、XRN T3 型, 主要用于保护电力线路、电力变压器和电力电容器等设备的过载和短路;RN2和RN 4型额定电流均为0.5~10A , 为保护电压互感器的专用熔断器。另一类是户外高压喷射式熔断器,此类熔断器在熔体熔断产生电弧时,电弧烧损反白纸产气吹拉长电弧,弧感抗改变相位, 正好电流过零时产生零休,才能开断电路,限流作用不明显。常用的为跌落式熔断器,型号有RW 3、RW 4、RW 7、RW 9、RW 10、RW 11、RW 12、RW 13和PRW系列型等, 其作用除与RN 1 型相同外, 在一定条件下还可以分断和关合空载架空线路、空载变压器和小负荷电流。户外瓷套式限流熔断器RW 10- 35/0.5~50-2000MVA 型中RW10-35/0.5~1-2000MVA为保护35kV电压互感器专用的户外产品。所以根据熔断器的型式和不同的保护对象来选择。 2.2 按工作电压选择 (1) 一般条件: U e≥Uwe 式中: U e——熔断器额定电压 Uwe——安装处电网额定电压 即熔断器的额定电压(kV ) 应不小于熔断器安装处电网额定电压(kV )。 (2) 对于限流型熔断器: 以石英砂作为熔断器填充物的限流型熔断器只能按Ue=Uwe的条件选择, 这种情况下此类熔断器熔断产生的最大过电压倍数限制在规定的2.5 倍相电压之内, 此值并未超过同一电压等级电器的绝缘水平。如果熔断器使用在工作电压低于其额定电压的电网中, 过电压倍数造成威胁可能增大3.5~4。 2.3 按工作电流及保护特性选择 (1) 一般条件: I e≥Ije≥Ig·zd 式中: I e——熔断器熔管的额定电流,A I je——熔断器熔体的额定电流,A I g·zd——回路最大持续工作电流,A 此条件为选择熔断器额定电流的总体要求, 其中熔体额定电流的选择最为重要, 它的选择与其熔断特性有关, 应能满足保护的可靠性、选择性和灵敏度要求。 (2) 具体情况: ①保护配电设备(即35kV 及以下电力变压器) : Ije= K Ie 式中

高压熔断器

4.3高压熔断器(2版草稿,伍赛虎原创,欢迎继续批评指正) 高压熔断器是利用过载或短路电流将熔体熔断后,再依靠灭弧介质熄灭电弧以开断电路的电器。高压熔断器的主要功能是短路时对电路中的设备进行保护,有时也可做过负荷保护,通常由熔体、熔管、灭弧介质、触点、支柱绝缘子和底座组成。常用的熔体为铜、银的丝或片。常用的灭弧介质有空气、钢纸和 石英砂等。 熔断器按使用场合分为户内型和户外型两种 户外式高压熔断器以跌开式熔断器为主,主要型号有RW10-10,RW11F-10,RW11F-35等,广泛适用于3-35KV,额定电流1-200A的场合,可以做线路或变压器的过载和短路保护。一般采用杆上安装,其工作原理是当熔体通过过负荷或者短路电流时,熔丝迅速熔断,形成电弧,纤维质消弧管由于电弧燃烧而分解出大量气体,使管内压力巨增,形成强烈的纵向吹弧。熔丝熔断后,熔管的上触头因失去张力而下翻,使锁紧机构释放熔管,在熔管自重及触头弹力的作用下,熔管跌开,造成明显的断点。户外式高压熔 断器的外形见图 户内型高压熔断器以RN系列为主。其型号意义见图 高压熔断器XRN□-12(□□L*J),额定电压(kV)12,额定电流(A)6.3、10、16、20、25、31.5、40、50、 63、71、75、80、100、125 1、分断能力高:额定开断电流为31.5kA-50kA 2、功率损耗小:有较低的温升,当熔断器工作于全封闭绝缘子装置中间,该特点更为显著。 3、电弧电压低:在分断过程中电弧电压较低。 4、特性曲线误差小:时间—电流特性曲线误差小于±10%。 5、规格标准化:产品额定参数符合国际电工委员会IEC标准R10、R20系列。 6、可配撞击器,与熔体并联的撞击器,能在电弧刚刚开始的千分之几秒时间内动作,并以足够的能量给出信号,使其它电器动作,或提供连锁。符合德国DIN标准的熔断器撞击器输出能量为3~5焦 耳。 7、有很大的限流作用,这样在选择被保护元件导体时,只需按限制电流数值而不按全部短路电流 数值设计,可节省导电材料及其它材料用量。 户内高压限流式熔断器可以作为变压器、电动机、电压互感器以及其它电力设备过载与短路保护用,也可与负荷开关、真空接触器配合使用,在此给出XRNT3-12以及XRNP1-12采用支柱绝缘子安装的典型 示意图, 表

高压熔断器的应用和原理

高压熔断器的应用和原理 是最简单的保护电器,它用来保护电气设备免受过载和短路电流的损害;按安装条件及用途选择不同类型高压熔断器如屋外跌落式、屋内式,对于一些专用设备的高压熔断器应选专用系列;我们常说的保险丝就是熔断器类。 用途主要用于高压输电线路、电压变压器、电压互感器等电器设备的过载和短路保护。 工程原理其结构一般包括熔丝管、接触导电部分、支持绝缘子和底座等部分,熔丝管中填充用于灭弧的石英砂细粒。熔件是利用熔点较低的金属材料制成的金属丝或金属片,串联在被保护电路中,当电路或电路中的设备过载或发生故障时,熔件发热而熔化,从而切断电路,达到保护电路或设备的目的。工程原理其结构一般包括熔丝管、接触导电部分、支持绝缘子和底座等部分,熔丝管中填充用于灭弧的石英砂细粒。熔件是利用熔点较低的金属材料制成的金属丝或金属片,串联在被保护电路中,当电路或电路中的设备过载或发生故障时,熔件发热而熔化,从而切断电路,达到保护电路或设备的目的。 型式的选择 在3~66kV的电站和变电所常用的高压熔断器有两大类:一

类是户内高压限流熔断器,额定电压等级分3、6、10、20、35、66kV,常用的型号有RN 1、RN 3、RN 5、XRNM 1、XRN T 1、XRN T 2、XRN T3 型,主要用于保护电力线路、电力变压器和电力电容器等设备的过载和短路;RN2和RN 4型额定电流均为0.5~10A ,为保护电压互感器的专用熔断器。另一类是户外高压喷射式熔断器,此类熔断器在熔体熔断产生电弧时,电弧烧损反白纸产气吹拉长电弧,弧感抗改变相位,正好电流过零时产生零休,才能开断电路,限流作用不明显。常用的为跌落式熔断器,型号有RW 3、RW 4、RW 7、RW 9、RW 10、RW 11、RW 12、RW 13和PRW系列型等,其作用除与RN 1 型相同外,在一定条件下还可以分断和关合空载架空线路、空载变压器和小负荷电流。户外瓷套式限流熔断器RW 10- 35/0.5~50-2000MV A 型中RW10-35/0.5~1-2000MV A为保护35kV电压互感器专用的户外产品。所以根据熔断器的型式和不同的保护对象来选择。 2.2按工作电压选择 (1)一般条件: U e≥Uwe 式中:

熔断器的选择规范

电流1.2-2倍。 追问: 能说详细点吗 回答: 熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN ≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路.

主要高压电气设备安全要求标准范本

操作规程编号:LX-FS-A16032 主要高压电气设备安全要求标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

主要高压电气设备安全要求标准范 本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 高压电气设备主要包括高压熔断器、高压隔离开关、高压负荷开关、高压断路器、高压开关柜和电力变压器等。 一、高压熔断器 高压熔断器是指:交流电力线路和电力设备短路保护的保护器件。 在高压熔断器中,户内广泛采用RN型管式熔断器,户外广泛采用RW型跌落式熔断器。 1.RN型户内高压管式熔断器 户内高压管式熔断器型号标示为RN,R表示熔

断器,N表示户内型。 RN1和RN2是普通型熔断器、RN3和RN4是带有片状熔体的熔断器、RN5和RN6是改进型熔断器。其中,RN2、RN4、RN6是用于保护电压互感器的熔断器。 RN2—10型熔断器的额定电压为10kV;额定电流为0.5A;最大开断电流(有效值)约为50kA;熔管电阻为(100±7)Ω。当流过0.6~1.8A的电流时,1min内熔断。 RN3—10型熔断器的额定电压为10kV;额定电流有50A、75A和220A等三种规格;50A规格的可装有额定电流2、3、5、7.5、10、15、20、30、40及50A的熔丝;75A规格的装有额定电流75A的熔丝;200A规格的可装有额定电流100A和150A的熔丝。最小开断电流约为熔丝额定电流的

简述变压器保护用熔断器的选择高压侧定稿版

简述变压器保护用熔断器的选择高压侧 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

简述变压器保护用熔断器的选择 与负荷开关开断能力的配合 目前采用负荷开关-熔断器组合电器对10kV变压器保护的数量极大,根据我们公司生产负荷开关多年的情况来看,负荷开关、熔断器、转移电流三者与变压器保护要求如何匹配是用户经常提出的问题,希望作如下简述: 一、熔断器额定电流的选择原则 变压器的额定容量为SN,额定电压为UN,则变压器高压侧一次额定电流IN1的大小由下式提供: 设变压器分接开关按-5%分接抽头计算,同时户内变压器过负荷按120%,那么变压器高压侧可能出现的电流IN可由下式确定: IN=IN1×120%×105% 一般情况下,限流式熔断器的额定电流I选用变压器额定电流的1.5~3倍,其大小可由下式确定:I=(1.5~3)×IN1综合变压器容量-SN、额定电流-IN、实际电流-IN1、熔断器电流-I 大小如下: 二、变压器励磁电流下熔断器持续时间

变压器投入时会产生励磁电流,要求该励磁电流不对所配熔断器构成损伤,那么熔断器的持续时间应大于励磁电流的持续时间,励磁电流 IS 的大小一般为变压器额定电流的10~20倍,绝大多数情况下不超过12倍,因此其值大小可由下式确定: IS=12×IN1 其持续时间为0.1S。为确定励磁电流下熔断器的持续时间,须引入反映熔断器动作特性的时间-电流特性曲线,如下图是我们公司常用的熔断器厂家提供的曲线,以IS作为横坐标值,分别求取对应纵坐标值,此值为不同熔断器规格的持续时间值t。 综合变压器容量-SN、励磁电流-IS 、熔断器电流-I、持续时间-t表如下: 由上表可以看出,熔断器按前表原则选择,变压器励磁电流持续时间均小于熔断器在该电流下的熔断持续时间,故励磁电流不会对所配熔断器造成损伤。

快速熔断器的选择及应用

快速熔断器的选择及应用 整流变电是氯碱行业中的重要环节,而快速熔断器在半导体电力整流变电保护中的配置至关重要,一旦设备定型后,快速熔断器的选用会直接影响直流供电的质量和用电的效率等整流变电参数。 电力半导体器件热容量小,在故障状态下必须要有快速熔断器保护,而快速熔断器具有与半导体器件类似的热特性,是一种良好的保护器件。本文涉及的是封闭式有填料式快速熔断器,在运行中没有外部现象。 1 快速熔断器的配置 快速熔断器在半导体电力整流器保护中的配置一般分2类。 1.1 变流臂内部并联支路配置保护式 此类型主要用于大功率和超大功率整流器的保护。当变流臂中某一支路器件因某种原因损坏时(每一支路根据设备功率不同,一般并联几对快速熔断器和半导体整流元件串联而成,图1仅标出1对快速熔断器与半导体整流元件),导致与之串联的快速熔断器保护分断后,一般情况下仅1个器件出故障,并不影响整个整流器的正常运行。目前,唐山三友集团冀东化工有限公司的半导体电力整流器保护中的配置就属于变流臂内部并联支路配置保护式,运行效果很好,如图1所示。

1.2 分相配置总体保护式 此类型主要用于中、小功率整流器的保护。当某一变流臂中的器件因某种原因损坏时,导致该相快速熔断器保护分断后,整流器的保护将自动切断供电电源,停止向整流器供电,氯碱行业不常用该配置,如图2所示。 2 快速熔断器的选用 也称电压电流法。线路变流变压器的线电压应低于快速熔断器的额定电压。经电力半导体器件与快速熔断器串联短路实验验证,以半导体额定电流乘以系数,做为所选用的快速熔断器的额定电流。因快速熔断器的额定电流是有效值,而半导体器件的额定电流是平均值,针对上述第一类配置方案(图1),对第一代产品RS0、RS3系列(我国快速熔断器的发展史可分为4个阶段,第一代是全国联合设计的RS0、RS3系列,参数为480A、750V以下,分断能力为50kA,是一种体积较大、价格低廉、电寿命短的初级产品,目前尚有相当装机量)而言,该系数可按整流管为1.4、晶体管1.2、快速晶体管为1来选配,如ZP1000配1400A快速熔断器。针对上述第二类配置方案(图2),则可依据阀电流Iv以及变流装置的负载特性选择快速熔断器,再按整流器可能产生的最大故障电流,来选择有足够分断能力的快速熔断器,如50kA或 100kA,其中50kA为合格品,100kA为一级品。

10kVPt高压熔断器频繁熔断原因及处理方法

10kVPt高压熔断器频繁熔断原因及处理方法 【摘要】本文先介绍电压互感器的作用、概述电压互感器熔断器熔断的常见原因,然后就某变电站更换l0KV母线PT后出现高压熔断器频繁熔断这一现象进行原因分析,提出处理方法并消除故障,为今后可能出现的类似问题提供参考和借鉴。 【关键词】电压互感器;PT高压熔断器;频繁熔断;解决措施 0.引言 l0kV配电系统的电压互感器经常出现高压熔断器一相或两相熔断等异常故障,这不仅影响了电能表的准确计量,而且还容易造成保护装置和安全自动装置的误动作,严重危及配电网的安全可靠运行。 2009年2月某变电站更换两组l0kV互感器,将型号为JSJW—l0Q油浸式PT更换为型号为JDZX9—10Q干式PT后,该电压互感器多次出现高压熔断器熔断现象,本人结合自己多年变电运行经验,就该站l0kV电压互感器高压熔断器熔断这故障现象产生的原因、危害、故障分析及处理方法进行了分析和探讨。 1.电压互感器的作用 ①将一次回路的高电压转为二次回路的标准低电压,监视母线电压及电力设备运行状况。并提供测量仪表、继电保护及自动装置所需电压量,保证系统正常运行。 ②使二次回路可采用低电压控制电缆。且使屏内布线简单,安装、调试、维护方便,可实现远方控制和测量。 ③使二次与一次高压部分隔离,且二次可设接地点,确保二次设备和人身安全。 2.电压互感器损坏及高压熔断器熔断的危害 ①对变电设备的危害:一般情况下,l0kV系统中最常发生的异常运行现象是谐振过电压。虽然谐振过电压幅值不高,但可长期存在。尤其是低频谐波对电压互感器线圈设备影响的同时可能会危及变电其它设备的绝缘,严重的可使母线上的其它薄弱环节的绝缘击穿,造成严重的短路事故甚至大面积停电事故。 ②对运行方式的危害:出现电压互感器烧坏及高压保险熔断现象后,如不能马上修复,将导致10kV母线不能分段运行。 ③对人员的危害:一旦发生电压互感器损坏或高压保险熔断现象,将会给运

一般熔断器类型的选择

熔断器类型的选择(一) (一)熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流 IN熔体=Ist/(2.5~3) 式中 Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 请登陆:输配电设备网浏览更多信息 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4)电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用

一般熔断器选用

Ⅰ、一般熔断器选用: ①导线保护:线路中过载电流和短路电流会造成导线、电缆温度过高,导致导线、电缆的绝缘破坏,甚至断裂。熔断器作导线、电缆过载保护可布置在导线、电缆的进线端或出线端,熔断器额定电流约为线路电流的1.25倍;作短路保护时熔断器必须安装在导线、电缆的进线端,熔断器额定电流约为脱扣电流的1.45倍。 ②电动机保护:一套简单的电动机线路通常由熔断器、接触器、热继电器、电动机等组成。根据经验,在此线路中,选择熔断器额定电流约为电动机额定电流的1.2~1.5倍。 ③电容器开关设备保护:在电容器开关设备中,熔断器推存作短路保护,所选择的熔断器的额定电流不得小于电容器额定电流的1.6倍。 Ⅱ、半导体器件保护熔断器选用: 电力半导体器件热容量小,在故障状态下必须要有快速熔断器保护。而快速熔断器具有与半导体器件类似的热特性,所以是一种良好的保护器件。快速熔断器选用一般原则如下: ①额定电压:快速熔断器的额定电压U N应稍大于快速熔断器熔断后两端出现的故障电路的外加交流电压。若半导体设备的负荷是有源逆变器、逆变型制动的电动机等逆变型负载时,应考虑半导体器件失控等引起设备直流侧短路的可能性,此时快速熔断器熔断时,熔片两端交流电压与直流电压叠加现象,快速熔断器的额定电压应按下式计算:U N≥Uac+Udo×1/√2式中:Uac:快速熔断器熔断后外加交流电压;Udo:半导体设备负载端逆变型直流电压。 ②额定电流:熔断器的额定电流I NF是以电路中实际流过熔断器的电流有效值I F为基础,并考虑环境温度、冷却条件、电流裕度等因素影响进行计算。I NF≥K×I F式中:K值一般可取1.5~2。对于自冷式熔断器K取较大值,尤其对熔断器两端连接导线特别短的电路,需取最大值;对水冷式熔断器K取较小值。快速熔断器选用额定电流过大势必增加熔断器的I2tF 值,对半导体器件的保护是有害的。 ③分断I2t:当半导体器件与快速熔断器串联工作时,半导体器件允许通过的I2tD值应大于快速熔断器的I2tF值,不然熔断器熔断时,器件也被烧损。二者关系应满足:I2tF≤0.9I2tD。 ④分断过电压:熔断器在减弧过程中,在线路中产生的过电压,过高的过电压会使半导体器件产生反向击穿,因此分断过电压必须小于或者等于半导体器件允许反向峰值电压。快速熔断器熔断时产生的过电压(峰值)一般为故障电压(方均根值)的2~2.5倍左右。 ⑤额定分断能力:快速熔断器的额定分断能力应大于半导体设备中快速熔断器分断时流过的故障电流峰值,一般应包括半导体设备中的变压器阀侧内部短路电流值及直流侧短路电流值,不然将会引起快速熔断器炸裂、串弧等事故。

F_C回路中高压限流熔断器参数的选择及动热稳定验算

F—C回路中高压限流 熔断器参数的选择及动热稳定验算武汉钢铁(集团)公司(武汉430080) 张铁军 梁修礼 李毓豪 刘巧珍 【摘 要】 介绍F—C回路中高压限流熔断器参数的计算方法,并验算其动、热稳定。 1 影响F—C回路中高压限流熔断器参数的因素 F—C回路主要由高压限流熔断器(简称高压熔断器)和高压真空接触器组成。前者的作用是回路发生短路故障时以熔断其内部熔片切断故障电流,达到保护系统、回路设备及器件的目的;后者的作用是实现生产工艺对被控对象的操作要求,当回路出现过载电流时,由配套的PT、CT及继电保护装置等配合真空接触器分断过载电流,此时高压熔断器不动作。当系统处于启动状态时,依靠调整继电保护的整定值及合理选择高压熔断器动作电流参数来避开启动电流。 应引起重视的是,对于启动时间长及电机在一定时间内连续启动次数过多的负载会因为熔片温升过高造成熔断。如连续出现过载电流或堵转的话,高压熔断器内的熔片温度升高,会使其应力发生变化而造成熔断。所以选择高压熔断器时须注意以下几点并注重参数配合即可满足安全运行要求。 1.1 外部因素及环境对高压限流熔断器参数的影 响 1.1.1 安装场所对参数的影响 (1)把高压熔断器安装在一个三相密封的箱内,这时熔断器额定电流必须减少15%使用,当额定电流小于20A时可不考虑降容; (2)把高压熔断器单支封闭在一个绝缘树脂浇注的筒内,这时高压熔断器额定电流应降低25%使用,才能保证不使高压熔断器过热而损坏,对于额定电流小于20A时仍可不考虑降容; (3)对于三相安装在封闭的柜体中,由于三相高压熔断器温升之间的相互干扰,熔断器额定电流一般应降容10%使用即可,额定电流小于20A时仍可不考虑降容; (4)有时为了增大高压熔断器电流等级,常采用2只并联使用。这时同样要考虑温度影响,一般降容10~20%使用。 1.1.2 环境温度对参数的影响 按IEC标准规定,高压熔断器可在环境温度-25~+40℃之间的范围内正常工作,当温度低于-25℃时,高压熔断器的机械性能受到影响,而当温度高于+40℃时,每升高1℃,高压熔断器额定电流应降低1%使用。 1.2 真空接触器与高压熔断器特性配合要求及满 足安全运行的基本条件 (1)真空接触器本身的机械特性要好,可靠性高,动热稳定参数符合系统要求; (2)高压熔断器的I2t特性与真空接触器动稳定特性相匹配; (3)高压熔断器的撞击器动作特性与真空接触器动作特性相匹配; (4)与之配套的继电保护系统应可靠。 2 保护电动机用高压限流熔断器  参数选择及计算 2.1 高压熔断器参数选择原则〔1〕 对于高压电动机保护,通常是由几种电器共同完成的,高压熔断器是一种很重要的保护电器,根据IEC644,我们推荐使用下列一组曲线来保护电动机,如图1所示。图上表示了保护装置与被保护装置电动机的曲线之间的关系图,它组成了一个典型的应用曲线。下面讨论各曲线之间的关系,并以此来指导设计。 (1)首先用高压熔断器安—秒特性曲线10s对应的电流值除以一个适当系数K所得到的电流坐标应位于电动机启动电流点A的右侧。

纯电动汽车高压熔断器计算及选型

一、概述 现阶段动力电池能量密度越来越高,单体电芯容量越来越大,各高压部件一旦出现短路现象而无相应的保护措施,轻则部件损坏,重则引起火灾(尤其动力电池),后果将不堪设想,所以各高压部件回路的保护至关重要,本文将阐述纯电动汽车高压直流熔断器计算及选型方法,并实例说明。电动汽车电气拓扑图如图一所示。 图一电动汽车电气拓扑图 二、熔断器选型 2.1 熔断器分类 1)按动作特性主要分为: 普通熔断器(gG/gL)、快速熔断器部分范围保护(aR)、快速熔断器全范围保护(gR)、Time-delay型及特殊熔断器; 2)按照外形形状主要分为: a、英标熔断器 英式熔断器壳体采用陶瓷材质,圆柱管体,具有体积小、浪湧耐受性能強、性价比高、弧电压小、功耗低等特点,一般小于100A的熔断器推荐采用英式系列熔断器。英标BS88熔断器样式如图二所示。 图二英标BS88熔断器

b、美标熔断器 美式熔断器系列的产品,两端触刀为一体式,熔体直接一次性焊接,可抗强冲击及振动,具备高阻燃、高绝缘性能,弧电压小,功耗低,此系列为电动汽车的优选,一般大于100A的熔断器推荐采用美标系列以增加可靠性。美标熔断器样式如图三所示。 图三美标熔断器 c、欧标熔断器 欧标方形熔断器壳体采用陶瓷材质,该产品具有运行温度低、功率损耗小、焦耳积分值小等特点,适用于要求结构紧凑、性能优越、大功率应用场合,尤其在手动维修开关(MSD)中大量使用。欧标方形熔断器样式如图四所示。 图四欧标方形熔断器 d、法标熔断器 法标熔断器具有循环性能强、体积小、构造独特等特点,模块化底座方便安装,结构紧凑,适用于占用空间小的PDU、BDU、小型交流驱动器以及其它小功率应用。法标圆形熔断器样式如图五所示。 图五法标圆形熔断器

相关主题
文本预览
相关文档 最新文档