当前位置:文档之家› 半导体、光伏硅片、芯片、电池片清洗的清洗工艺

半导体、光伏硅片、芯片、电池片清洗的清洗工艺

半导体、光伏硅片、芯片、电池片清洗的清洗工艺
半导体、光伏硅片、芯片、电池片清洗的清洗工艺

半导体、光伏硅片、芯片、电池片的清洗工艺

一.硅片的化学清洗工艺原理

硅片经过不同工序加工后,其表面已受到严重沾污,一般讲硅片表面沾污大致可分在三类:

A. 有机杂质沾污:可通过有机试剂的溶解作用,结合超声波清洗技术来

去除。

B. 颗粒沾污:运用物理的方法可采机械擦洗或超声波清洗技术来去除粒径≥ 0.4 μm 颗粒,利用兆声波可去除≥ 0.2 μm颗粒。

C. 金属离子沾污:必须采用化学的方法才能清洗其沾污,硅片表面金属杂质沾污有两大类:

a. 一类是沾污离子或原子通过吸附分散附着在硅片表面。

b. 另一类是带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。

硅抛光片的化学清洗目的就在于要去除这种沾污,一般可按下述办法进行清洗去除沾污:

A. 使用强氧化剂使“电镀”附着到硅表面的金属离子、氧化成金属,溶解在清洗液中或吸附在硅片表面。

B. 用无害的小直径强正离子(如H+)来替代吸附在硅片表面的金属离子,使之溶解于清洗液中。

C. 用大量去离水进行超声波清洗,以排除溶液中的金属离子。

自1970年美国RCA实验室提出的浸泡式RCA化学清洗工艺得到了广泛应用,1978年RCA 实验室又推出兆声清洗工艺,近几年来以RCA清洗理论为基础的各种清洗技术不断被开发出来,例如:

⑴美国FSI公司推出离心喷淋式化学清洗技术。

⑵美国原CFM公司推出的Full-Flow systems封闭式溢流型清洗技术。

⑶美国VERTEQ公司推出的介于浸泡与封闭式之间的化学清洗技术(例Goldfinger Mach2清洗系统)。

⑷美国SSEC公司的双面檫洗技术(例M3304 DSS清洗系统)。

⑸日本提出无药液的电介离子水清洗技术(用电介超纯离子水清洗)使抛光片表面洁净技术达到了新的水平。

⑹以HF / O3为基础的硅片化学清洗技术。

目前常用H2O2作强氧化剂,选用HCL作为H+的来源用于清除金属离子。

SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除。

由于溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。

为此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。

SC-2是H2O2和HCL的酸性溶液,它具有极强的氧化性和络合性,能与氧以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。

在使用SC-1液时结合使用兆声波来清洗可获得更好的效果。

二. RCA清洗技术

传统的RCA清洗技术:所用清洗装置大多是多槽浸泡式清洗系统

清洗工序: SC-1 → DHF → SC-2

1. SC-1清洗去除颗粒:

⑴目的:主要是去除颗粒沾污(粒子)也能去除部分金属杂质。

⑵去除颗粒的原理:

硅片表面由于H2O2氧化作用生成氧化膜(约6nm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒也随腐蚀层而落入清洗液内。

①自然氧化膜约0.6nm厚,其与NH4OH、H2O2浓度及清洗液温度无关。

② SiO2的腐蚀速度,随NH4OH的浓度升高而加快,其与H2O2的浓度无关。

③ Si的腐蚀速度,随NH4OH的浓度升高而快,当到达某一浓度后为一定值,H2O2浓度越高这一值越小。

④ NH4OH促进腐蚀,H2O2阻碍腐蚀。

⑤若H2O2的浓度一定,NH4OH浓度越低,颗粒去除率也越低,如果同时降低H2O2浓度,可抑制颗粒的去除率的下降。

⑥随着清洗洗液温度升高,颗粒去除率也提高,在一定温度下可达最大值。

⑦颗粒去除率与硅片表面腐蚀量有关,为确保颗粒的去除要有一定量以上的腐蚀。

⑧超声波清洗时,由于空洞现象,只能去除≥0.4μm 颗粒。兆声清洗时,由于0.8Mhz 的加速度作用,能去除≥ 0.2 μm 颗粒,即使液温下降到40℃也能得到与80℃超声清洗去除颗粒的效果,而且又可避免超声洗晶片产生损伤。

⑨在清洗液中,硅表面为负电位,有些颗粒也为负电位,由于两者的电的排斥力作用,可防止粒子向晶片表面吸附,但也有部分粒子表面是正电位,由于两者电的吸引力作用,粒子易向晶片表面吸附。

⑶. 去除金属杂质的原理:

①由于硅表面的氧化和腐蚀作用,硅片表面的金属杂质,将随腐蚀层而进入清洗液中,并随去离子水的冲洗而被排除。

②由于清洗液中存在氧化膜或清洗时发生氧化反应,生成氧化物的自由能的绝对值大的金属容易附着在氧化膜上如:Al、Fe、Zn等便易附着在自然氧化膜上。而Ni、Cu则不易附着。

③ Fe、Zn、Ni、Cu的氢氧化物在高PH值清洗液中是不可溶的,有时会附着在自然氧化膜上。

④实验结果:

a. 据报道如表面Fe浓度分别是1011、1012、1013 原子/cm2三种硅片放在SC-1液中清洗后,三种硅片Fe浓度均变成1010 原子/cm2。若放进被Fe污染的SC-1清洗液中清洗后,结果浓度均变成1013/cm2。

b. 用Fe浓度为1ppb的SC-1液,不断变化温度,清洗后硅片表面的Fe浓度随清洗时间延长而升高。

对应于某温度洗1000秒后,Fe浓度可上升到恒定值达1012~4×1012 原子/cm2。将表面Fe浓度为1012 原子/cm2硅片,放在浓度为1ppb的SC-1液中清洗,表面Fe浓度随清洗时间延长而下降,对应于某一温度的SC-1液洗1000秒后,可下降到恒定值达4×1010~6×1010 原子/cm2。这一浓度值随清洗温度的升高而升高。

从上述实验数据表明:硅表面的金属浓度是与SC-1清洗液中的金属浓度相对应。晶片表面的金属的脱附与吸附是同时进行的。

即在清洗时,硅片表面的金属吸附与脱附速度差随时间的变化到达到一恒定值。

以上实验结果表明:清洗后硅表面的金属浓度取决于清洗液中的金属浓度。其吸附速度

与清洗液中的金属络合离子的形态无关。

c. 用Ni浓度为100ppb的SC-1清洗液,不断变化液温,硅片表面的Ni浓度在短时间内到达一恒定值、即达1012~3×1012原子/cm2。这一数值与上述Fe浓度1ppb的SC-1液清洗后表面Fe浓度相同。

这表明Ni脱附速度大,在短时间内脱附和吸附就达到平衡。

⑤清洗时,硅表面的金属的脱附速度与吸附速度因各金属元素的不同而不同。特别是对Al、Fe、Zn。若清洗液中这些元素浓度不是非常低的话,清洗后的硅片表面的金属浓度便不能下降。对此,在选用化学试剂时,按要求特别要选用金属浓度低的超纯化学试剂。例如使用美国Ashland试剂,其CR-MB级的金属离子浓度一般是:H2O2 <10ppb 、HCL <10ppb、NH4OH <10ppb、H2SO4<10ppb

⑥清洗液温度越高,晶片表面的金属浓度就越高。若使用兆声波清洗可使温度下降,有利去除金属沾污。

⑦去除有机物。

由于H2O2的氧化作用,晶片表面的有机物被分解成CO2、H2O而被去除。

⑧微粗糙度。

晶片表面Ra与清洗液的NH4OH组成比有关,组成比例越大,其Ra变大。Ra为0.2nm 的晶片,在NH4OH: H2O2: H2O =1:1:5的SC-1液清洗后,Ra可增大至0.5nm。为控制晶片表面Ra,有必要降低NH4OH的组成比,例用0.5:1:5

⑨ COP(晶体的原生粒子缺陷)。

对CZ硅片经反复清洗后,经测定每次清洗后硅片表面的颗粒≥2 μm 的颗粒会增加,但对外延晶片,即使反复清洗也不会使≥0.2 μm 颗粒增加。据近几年实验表明,以前认为增加的粒子其实是由腐蚀作用而形成的小坑。在进行颗粒测量时误将小坑也作粒子计入。小坑的形成是由单晶缺陷引起,因此称这类粒子为COP(晶体的原生粒子缺陷)。

据介绍直径200 mm 硅片按SEMI要求:

256兆≥ 0.13 μm,<10个/ 片,相当COP约40个。

2.DHF清洗。

a. 在DHF洗时,可将由于用SC-1洗时表面生成的自然氧化膜腐蚀掉,而Si几乎不被腐蚀。

b. 硅片最外层的Si几乎是以 H 键为终端结构,表面呈疏水性。

c. 在酸性溶液中,硅表面呈负电位,颗粒表面为正电位,由于两者之间的吸引力,粒子容易附着在晶片表面。

d. 去除金属杂质的原理:

①用HF清洗去除表面的自然氧化膜,因此附着在自然氧化膜上的金属再一次溶解到清洗液中,同时DHF清洗可抑制自然氧化膜的形成。故可容易去除表面的Al、Fe、Zn、Ni等金属。但随自然氧化膜溶解到清洗液中一部分Cu等贵金属(氧化还原电位比氢高),会附着在硅表面,DHF清洗也能去除附在自然氧化膜上的金属氢氧化物。

②实验结果:

据报道Al3+、Zn2+、Fe2+、Ni2+ 的氧化还原电位E0 分别是 - 1.663V、-0.763V、-0.440V、0.250V比H+ 的氧化还原电位(E0=0.000V)低,呈稳定的离子状态,几乎不会附着在硅表面。

③如硅表面外层的Si以 H 键结构,硅表面在化学上是稳定的,即使清洗液中存在Cu 等贵金属离子,也很难发生Si的电子交换,因经Cu等贵金属也不会附着在裸硅表面。但是如液中存在Cl—、Br—等阴离子,它们会附着于Si表面的终端氢键不完全地方,附着的Cl—、Br—阴离子会帮助Cu离子与Si电子交换,使Cu离子成为金属Cu而附着在晶片表

面。

④因液中的Cu2+ 离子的氧化还原电位(E0=0.337V)比Si的氧化还原电位(E0=-0.857V)高得多,因此Cu2+ 离子从硅表面的Si得到电子进行还原,变成金属Cu 从晶片表面析出,另一方面被金属Cu附着的Si释放与Cu的附着相平衡的电子,自身被氧化成SiO2。

⑤从晶片表面析出的金属Cu形成Cu粒子的核。这个Cu粒子核比Si的负电性大,从Si吸引电子而带负电位,后来Cu离子从带负电位的Cu粒子核得到电子析出金属Cu,Cu 粒子状这样生长起来。Cu下面的Si一面供给与Cu的附着相平衡的电子,一面生成SiO2。

⑥在硅片表面形成的SiO2,在DHF清洗后被腐蚀成小坑,其腐蚀小坑数量与去除Cu 粒子前的Cu粒子量相当,腐蚀小坑直径为0.01 ~ 0.1 μm,与Cu粒子大小也相当,由此可知这是由结晶引起的粒子,常称为金属致粒子(MIP)。

3. SC-2清洗

1、清洗液中的金属附着现象在碱性清洗液中易发生,在酸性溶液中不易发生,并具有较强的去除晶片表面金属的能力,但经SC-1洗后虽能去除Cu等金属,而晶片表面形成的自然氧化膜的附着(特别是Al)问题还未解决。

2 、硅片表面经SC-2液洗后,表面Si大部分以 O 键为终端结构,形成一层自然氧化膜,呈亲水性。

3、由于晶片表面的SiO2和Si不能被腐蚀,因此不能达到去除粒子的效果。

a.实验表明:

据报道将经过SC-2液,洗后的硅片分别放到添加Cu的DHF清洗或HF+H2O2清洗液中清洗、硅片表面的Cu浓度用DHF液洗为1014 原子/cm2,用HF+H2O2洗后为1010 原子/cm2。即说明用HF+H2O2液清洗去除金属的能力比较强,为此近几年大量报导清洗技术中,常使用HF+H2O2来代替DHF清洗。

三.离心喷淋式化学清洗抛光硅片

系统内可按不同工艺编制贮存各种清洗工艺程序,常用工艺是:

FSI“A”工艺: SPM+APM+DHF+HPM

FSI“B”工艺: SPM+DHF+APM+HPM

FSI“C”工艺: DHF+APM+HPM

RCA工艺: APM+HPM

SPM .Only工艺: SPM

Piranha HF工艺: SPM+HF

上述工艺程序中:

SPM=H2SO4+H2O2 4:1 去有机杂质沾污

DHF=HF+D1.H2O (1-2%) 去原生氧化物,金属沾污

APM=NH4OH+ H2O2+D1.H2O 1:1:5或 0.5:1:5

去有机杂质,金属离子,颗粒沾污

HPM=HCL+ H2O2+D1.H2O 1:1:6

去金属离子Al、Fe、Ni、Na等

如再结合使用双面檫洗技术可进一步降低硅表面的颗粒沾污。

四. 新的清洗技术

A.新清洗液的开发使用

1).APM清洗

a. 为抑制SC-1时表面Ra变大,应降低NH4OH组成比,例:

NH4OH:H2O2:H2O = 0.05:1:1

当Ra = 0.2nm的硅片清洗后其值不变,在APM洗后的D1W漂洗应在低温下进行。

b. 可使用兆声波清洗去除超微粒子,同时可降低清洗液温度,减少金属附着。

c. 在SC-1液中添加界面活性剂、可使清洗液的表面张力从 6.3dyn/cm下降到19 dyn/cm。

选用低表面张力的清洗液,可使颗粒去除率稳定,维持较高的去除效率。

使用SC-1液洗,其Ra变大,约是清洗前的2倍。用低表面张力的清洗液,其Ra变化不大(基本不变)。

d. 在SC-1液中加入HF,控制其PH值,可控制清洗液中金属络合离子的状态,抑制金属的再附着,也可抑制Ra的增大和COP的发生。

e. 在SC-1加入螯合剂,可使洗液中的金属不断形成螯合物,有利抑制金属的表面的附着。

2).去除有机物: O3 + H2O

3).SC-1液的改进: SC-1 + 界面活性剂

SC-1 + HF

SC-1 + 螯合剂

4).DHF的改进:

DHF + 氧化剂(例HF+H2O2)

DHF + 阴离子界面活性剂

DHF + 络合剂

DHF + 螯合剂

5)酸系统溶液:

HNO3 + H2O2、

HNO3 + HF + H2O2、

HF + HCL

6).其它:电介超纯去离子水

B. O3+H2O清洗

1).如硅片表面附着有机物,就不能完全去除表面的自然氧化层和金属杂质,因此清洗时首先应去除有机物。

2).据报道在用添加2-10 ppm O3 的超净水清洗,对去除有机物很有效,可在室温进行清洗,不必进行废液处理,比SC-1清洗有很多优点。

C. HF + H2O2清洗

1. 据报道用HF 0.5 % + H2O2 10 %,在室温下清洗,可防止DHF清洗中的Cu等贵金属的附着。

2. 由于H2O2氧化作用,可在硅表面形成自然氧化膜,同时又因HF的作用将自然氧化层腐蚀掉,附着在氧化膜上的金属可溶解到清洗液中,并随去离子水的冲洗而被排除。

在APM清洗时附着在晶片表面的金属氢氧化物也可被去除。晶片表面的自然氧化膜不会再生长。

3. Al、Fe、Ni等金属同DHF清洗一样,不会附着在晶片表面。

4. 对n+、P+ 型硅表面的腐蚀速度比n、p 型硅表面大得多,可导致表面粗糙,因而不适合使用于n+、P+ 型的硅片清洗。

5. 添加强氧化剂H2O2(E0=1.776V),比Cu2+ 离子优先从Si中夺取电子,因此硅表面由于H2O2 被氧化,Cu以Cu2+ 离子状态存在于清洗液中。即使硅表面附着金属Cu,也会从

氧化剂H2O2 夺取电子呈离子化。硅表面被氧化,形成一层自然氧化膜。因此Cu2+ 离子和Si电子交换很难发生,并越来越不易附着。

D. DHF +界面活性剂的清洗

据报道在HF 0.5%的DHF液中加入界面活性剂,其清洗效果与HF + H2O2清洗有相同效果。

E. DHF+阴离子界面活性剂清洗

据报道在DHF液,硅表面为负电位,粒子表面为正电位,当加入阴离子界面活性剂,可使得硅表面和粒子表面的电位为同符号,即粒子表面电位由正变为负,与硅片表面正电位同符号,使硅片表面和粒子表面之间产生电的排斥力,因此可防止粒子的再附着。

F. 以HF / O3 为基础的硅片化学清洗技术

此清洗工艺是以德国ASTEC公司的AD-(ASTEC-Drying) 专利而闻名于世。其HF/O3 清洗、干燥均在一个工艺槽内完成,。而传统工艺则须经多道工艺以达到去除金属污染、冲洗和干燥的目的。在HF / O3清洗、干燥工艺后形成的硅片H表面 (H-terminal) 在其以后的工艺流程中可按要求在臭氧气相中被重新氧化。

五. 总结

1. 用RCA法清洗对去除粒子有效,但对去除金属杂质Al、Fe效果很小。

2. DHF清洗不能充分去除Cu,HPM清洗容易残留Al。

3. 有机物,粒子、金属杂质在一道工序中被全部去除的清洗方法,目前还不能实现。

4. 为了去除粒子,应使用改进的SC-1液即APM液,为去除金属杂质,应使用不附着Cu的改进的DHF液。

5. 为达到更好的效果,应将上述新清洗方法适当组合,使清洗效果最佳。

电池片工艺流程

电池片工艺流程 一、电池片工艺流程: 制绒(INTEX)---扩散(DIFF)----后清洗(刻边/去PSG)-----镀减反射膜(PECVD)------丝网、烧结(PRINTER)-----测试、分选(TESTER+SORTER)------包装(PACKING) 二、各工序工艺介绍: (一)前清洗 1.RENA前清洗工序的目的: (1) 去除硅片表面的机械损伤层(来自硅棒切割的物理损伤) (2) 清除表面油污(利用HF)和金属杂质(利用HCl) (3)形成起伏不平的绒面,利用陷光原理,增加对太阳光的吸收,在某种程度上增加了PN结面积,提高短路电流(Isc),最终提高电池光电转换效率。 2、前清洗工艺步骤: 制绒?碱洗?酸洗?吹干 Etch bath:刻蚀槽,用于制绒。所用溶液为HF+HNO3,作用: (1).去除硅片表面的机械损伤层; (2).形成无规则绒面。 Alkaline Rinse:碱洗槽。所用溶液为KOH,作用: (1).对形成的多孔硅表面进行清洗; (2).中和前道刻蚀后残留在硅片表面的酸液。 Acidic Rinse:酸洗槽。所用溶液为HCl+HF,作用: (1).中和前道碱洗后残留在硅片表面的碱液; (2).HF可去除硅片表面氧化层(SiO2),形成疏水表面,便于吹干; (3).HCl中的Cl-有携带金属离子的能力,可以用于去除硅片 1/13页 表面金属离子。 3. 酸制绒工艺涉及的反应方程式: HNO3+Si=SiO2+NOx?+H2O SiO2+ 4HF=SiF4+2H2O SiF4+2HF=H2[SiF6] Si+2KOH+H2O ?K2SiO3+2H2 4.前清洗工序工艺要求 (1)片子表面5S控制 不容许用手摸片子的表片,要勤换手套,避免扩散后出现脏片。 (2)称重 a.每批片子的腐蚀深度都要检测,不允许编造数据,搞混批次等。 b.要求每批测量4片。 c.放测量片时,把握均衡原则。如第一批放在1.3.5.7道,下一批则放在2.4.6.8道,便于检测设备稳定性以及溶液的均匀性。 (3)刻蚀槽液面的注意事项: 正常情况下液面均处于绿色,如果一旦在流片过程中颜色改变,立即通知工艺人员。 (4)产线上没有充足的片源时,工艺要求: a.停机1小时以上,要将刻蚀槽的药液排到tank,减少药液的挥发。 b.停机15分钟以上要用水枪冲洗碱槽喷淋及风刀,以防酸碱形成的结晶盐堵塞喷淋口及风刀。 c.停机1h以上,要跑假片,至少一批(400片)且要在生产前半小时用水枪冲洗风

半导体IC清洗技术

半导体IC清洗技术 李仁 (中国电子科技集团公司第四十五研究所,北京 101601) 摘要:介绍了半导体IC制程中存在的各种污染物类型及其对IC制程的影响和各种污染物的去除方法, 并对湿法和干法清洗的特点及去除效果进行了分析比较。 关键词:湿法清洗;RCA清洗;稀释化学法;IMEC清洗法;单晶片清洗;干法清洗 中图分类号:TN305.97 文献标识码:B 文章编号:1003-353X(2003)09-0044-04 1前言 半导体IC制程主要以20世纪50年代以后发明的四项基础工艺(离子注入、扩散、外延生长及光刻)为基础逐渐发展起来,由于集成电路内各元件及连线相当微细,因此制造过程中,如果遭到尘粒、金属的污染,很容易造成晶片内电路功能的损坏,形成短路或断路等,导致集成电路的失效以及影响几何特征的形成。因此在制作过程中除了要排除外界的污染源外,集成电路制造步骤如高温扩散、离子植入前等均需要进行湿法清洗或干法清洗工作。干、湿法清洗工作是在不破坏晶圆表面特性及电特性的前提下,有效地使用化学溶液或气体清除残留在晶圆上之微尘、金属离子及有机物之杂质。 2污染物杂质的分类 IC制程中需要一些有机物和无机物参与完成,另外,制作过程总是在人的参与下在净化室中进行,这样就不可避免的产生各种环境对硅片污染的情况发生。根据污染物发生的情况,大致可将污染物分为颗粒、有机物、金属污染物及氧化物。 2.1 颗粒 颗粒主要是一些聚合物、光致抗蚀剂和蚀刻杂质等。通常颗粒粘附在硅表面,影响下一工序几何特征的形成及电特性。根据颗粒与表面的粘附情况分析,其粘附力虽然表现出多样化,但主要是范德瓦尔斯吸引力,所以对颗粒的去除方法主要以物理或化学的方法对颗粒进行底切,逐渐减小颗粒与硅表面的接触面积,最终将其去除。

电池片生产工艺流程汇总

电池片生产工艺流程 一、制绒 a.目的 在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面; 用酸处理是为了得到虫孔状绒面。不管是哪种绒面,都可以提高硅片的陷光作用。 b.流程 1.常规条件下,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应。 硅的氧化 硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化) Si+4HNO3=SiO2+4NO2+2H2O (慢反应 3Si+4HNO3=3SiO2+4NO+2H2O (慢反应 二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅。 2NO2+H2O=HNO2+HNO3 (快反应 Si+4HNO2=SiO2+4NO+2H2O (快反应(第一步的主反应)

4HNO3+NO+H2O=6HNO2(快反应 只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应,这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。 二氧化硅的溶解 SiO2+4HF=SiF4+2H2O(四氟化硅是气体 SiF4+2HF=H2SiF6 总反应 SiO2+6HF=H2SiF6+2H2O 最终反应掉的硅以氟硅酸的形式进入溶液。 2.清水冲洗 3.硅片经过碱液腐蚀(氢氧化钠/氢氧化钾),腐蚀掉硅片经酸液腐蚀后的多孔硅 4.硅片经HF、HCl冲洗,中和碱液,如不清洗硅片表面残留的碱液,在烘干后硅片的表面会有结晶 5.水冲洗表面,洗掉酸液 c.注意

一文看懂半导体硅片所有猫腻

一文看懂半导体硅片所有猫腻 半导体单晶硅片的生产工艺流程 单晶硅片是单晶硅棒经由一系列工艺切割而成的,制备单晶硅的方法有直拉法(CZ 法)、区熔法(FZ 法)和外延法,其中直拉法和区熔法用于制备单晶硅棒材。区熔硅单晶的最大需求来自于功率半导体器件。 单晶硅制备流程 直拉法简称CZ 法。CZ 法的特点是在一个直筒型的热系统汇总,用石墨电阻加热,将装在高纯度石英坩埚中的多晶硅熔化,然后将籽晶插入熔体表面进行熔接,同时转动籽晶,再反转坩埚,籽晶缓慢向上提升,经过引晶、放大、转肩、等径生长、收尾等过程,得到单晶硅。 区熔法是利用多晶锭分区熔化和结晶半导体晶体生长的一 种方法,利用热能在半导体棒料的一端产生一熔区,再熔接单晶籽晶。调节温度使熔区缓慢地向棒的另一端移动,通过整根棒料,生长成一根单晶,晶向与籽晶的相同。区熔法又分为两种:水平区熔法和立式悬浮区熔法。前者主要用于锗、GaAs 等材料的提纯和单晶生长。后者是在气氛或真空的炉室中,利用高频线圈在单晶籽晶和其上方悬挂的多晶硅棒的接触处产生熔区,然后使熔区向上移动进行单晶生长。由于硅熔体完全依靠其表面张力和高频电磁力的支托,悬浮于多

晶棒与单晶之间,故称为悬浮区熔法。 巨头垄断硅片市场进口替代可能性高 直拉法和区熔法的比较 单晶硅是从大自然丰富的硅原料中提纯制造出多晶硅,再通过区熔或直拉法生产出区熔单晶或直拉单晶硅,进一步形成硅片、抛光片、外延片等。直拉法生长出的单晶硅,用在生产低功率的集成电路元件。而区熔法生长出的单晶硅则主要用在高功率的电子元件。直拉法加工工艺:加料→熔化→缩颈生长→放肩生长→等径生长→尾部生长,长完的晶棒被升至上炉室冷却一段时间后取出,即完成一次生长周期。 悬浮区熔法加工工艺:先从上、下两轴用夹具精确地垂直固定棒状多晶锭。用电子轰击、高频感应或光学聚焦法将一段区域熔化,使液体靠表面张力支持而不坠落。移动样品或加热器使熔区移动。这种方法不用坩埚,能避免坩埚污染,因而可以制备很纯的单晶,也可采用此法进行区熔。 半导体单晶硅片加工工艺流程 工业生产中对硅的需求主要来自于两个方面:半导体级和光伏级。半导体级单晶硅和光伏级单晶硅在加工工艺流程中存在着一些差异,半导体级单晶硅的纯度远远高于光伏级单晶硅。半导体级单晶硅片的加工工艺流程:单晶生长→切断→外径滚磨→平边或V 型槽处理→切片,倒角→研磨,腐蚀--抛光→清洗→包装。

关于半导体硅材料的清洗方法探究

关于半导体硅材料的清洗方法探究 【摘要】在半导体这一领域内极为关键的一大步骤即对半导体原料实施清洁,这关系到半导体原料本身的质量与下游一类产品自身的特性。文章就对现阶段硅片关键的清洁方式相应的工作理念、清洁成效、运用面积等特征实施探究,并指出了各式清洁方式相关的优势、不足。生产企业应依据具体的生产状况与产品规定选取适宜的清洁方式。 【关键词】清洗方法;半导体硅材料;运用;分析 1.前言 从上个世纪中期,民众就意识到了干净的衬底表层在半导体微电子型元件内的必要性。而大范围集成型电路的持续进步、集成程度持续增强、线宽持续变小,就对硅片表层的干净程度予以了更多规定。硅片本身的干净程度对领域的进步无可或缺,因为细小污物潜藏,集成型电路在制作期间会丢失一半。如果半导体原料表层有痕量型杂质,在高温期间就会分散、传播,进到半导体原料中,伤害元件。所以,务必要在低温前后全方位消除表层的杂质。 2.国内半导体硅原料的进步进程 上个世纪五十年代,我国就把快速提升国内半导体这一领域当作急迫事宜归入到国务院公布的十二年科技进步规

划内,并构建了许多半导体试验室,以对半导体硅原料实施研发。那时,国内与西方各国差不多一同起步。至六十年代,逐步实施了工业型生产,并构建了很多半导体原料厂。国内硅产业自无至有,自试验室至工业化,迈入了迅速进步的轨道,不单具备研究处,还具备优良的生产企业,稳固了国内硅原料这一领域的根基。那时,国内硅原料的研发、工业化层次与日本这一国家的硅原料层次一致。至七十年代,因为被电子核心论与全民大办电子所制约,我国变成了无次序、盲目地进步,低层次多次构建,生产企业猛增。因为生产企业遍布、投入不多、面积不大、技术层次较低,其成果即产品本身质量较低、投入较大,产品无法售出,使得很多生产企业只有停产,导致资源被过多耗费,同时,减缓了国内硅原料这一领域的进步态势。 后来,我国对微电子这一领域报以了极大的注重。国务院构建了电子型计算机与大范围集成型电路领导团队。此间,国内硅原料这一领域二次收获了迅速进步的机遇[1]。虽然西方各国对国内实施技术型封锁,但是,在国内硅原料这一领域所有工作者的努力之下,很好地给国内的银河计算机一类关键科研与项目予以了更多新兴原料,给国内微电子与国防这类领域、讯息事务的进步予以了大量扶持。至八十年代,国内半导体硅这一领域面对着自计划经济这一机制变换成市场经济这一难题。而半导体硅原料在这时已实施了市场

硅片清洗原理与方法介绍

硅片清洗原理与方法介绍 1引言 硅片经过切片、倒角、研磨、表面处理、抛光、外延等不同工序加工后,表面已经受到严重的沾污,清洗的目的就是为了去除硅片表面颗粒、金属离子以及有机物等污染。 2硅片清洗的常用方法与技术 在半导体器件生产中,大约有20%的工序和硅片清洗有关,而不同工序的清洗要求和目的也是各不相同的,这就必须采用各种不同的清洗方法和技术手段,以达到清洗的目的。 由于晶盟现有的清洗设备均为Wet-bench类型,因此本文重点对湿法化学清洗的基本原理、常用方法及其它与之密切相关的技术手段等进行论述 3.1湿法化学清洗 化学清洗是指利用各种化学试剂和有机溶剂与吸附在被清洗物体表面上的杂质及油污发生化学反应或溶解作用,或伴以超声、加热、抽真空等物理措施,使杂质从被清除物体的表面脱附(解吸),然后用大量高纯热、冷去离子水冲洗,从而获得洁净表面的过程。化学清洗又可分为湿法化学清洗和干法化学清洗,其中湿法化学清洗技术在硅片表面清洗中仍处于主导地位,因此有必要首先对湿法化学清洗及与之相关的技术进行全面的介绍。 3.1.1常用化学试剂、洗液的性质 常用化学试剂及洗液的去污能力,对于湿法化学清洗的清洗效率有决定性的影响,根据硅片清洗目的和要求选择适当的试剂和洗液是湿法化学清洗的首要步骤。

表一、用以清除particle、metal、organic、nature-oxide的适当化学液 3.1.2溶液浸泡法 溶液浸泡法就是通过将要清除的硅片放入溶液中浸泡来达到清除表面污染目的的一种方法,它是湿法化学清洗中最简单也是最常用的一种方法。它主要是通过溶液与硅片表面的污染杂质在浸泡过程中发生化学反应及溶解作用来达到清除硅片表面污染杂质的目的。 选用不同的溶液来浸泡硅片可以达到清除不同类型表面污染杂质的目的。如采用有机溶剂浸泡来达到去除有机污染的目的,采用1号液(即SC1,包含H2O2、NH3OH化学试剂以及H2O)浸泡来达到清除有机、无机和金属离子的目的,采用2号液(即SC2,包含HCL、H2O2化学试剂以及H2O)浸泡来达到清除AL、Fe、Na等金属离子的目的。 单纯的溶液浸泡法其效率往往不尽人意,所以在采用SC1浸泡的同时往往还辅以加热、超声或兆声波、摇摆等物理措施。

中国半导体硅片外延片行业发展概述

中国半导体硅片外延片行业发展概述 1.1 半导体硅片、外延片行业概述 (1)半导体硅片、外延片定义及分类 在半导体制造业中广泛使用各种不同尺寸与规格的硅片,目前12英寸硅片的出货量占比超过60%,是目前主流的硅片尺寸。18英寸晶园世代的技术和机台设备有不少方针已开始确立,但依目前半导体业的态势观察,现在还很难取得实质性的进展。 硅片是生产集成电路的主要原材料。硅片尺寸越大则每片硅片上可以制造的芯片数量就越多,从而制造成本就越低。硅片尺寸的扩大和芯片线宽的减小是集成电路行业技术进步的两条主线。目前12英寸硅片的出货量占比超过60%,是目前主流的硅片尺寸。 半导体硅片通常由高纯度的多晶硅锭釆用查克洛斯法(CZ Method)为主拉成不同电阻率的硅单晶锭,然而经过晶体定向→外园滚磨→加工主、副参考面→切片→倒角→热

处理→研磨→化学腐蚀→抛光→清洗→检测→包装等工序。 根据硅纯度的不同要求,可分为太阳能等级6个“9”纯度,以及半导体等级11个“9”纯度。 (2)半导体硅片、外延片市场结构分析 1)行业产品结构分析 在半导体制造业中广泛使用各种不同尺寸与规格的硅片,通常包括4英寸、5英寸、6英寸、8英寸及12英寸,它们的基本规格如下表所示。 图表 1 半导体硅片分类情况(单位:毫米,微米,平方厘米,克,英寸)

图表来源:本研究中心整理 由于缺乏统一定义,硅片尺寸的过渡时间无法达成共识,其中有一种观点认为累积硅片的出货量超过100万片时,表示该硅片尺寸应进入下一阶段。实际上如英特尔等总是领先其他业者,率先采用更大尺寸的硅片。 现将SEMI于2006年的说法,全球硅片尺寸的过渡时间表列于如下:4英寸硅片于1986年;6英寸于1992年;8英寸于1997年及12英寸于2005年。而如果依英特尔的芯片生产线建设(见intel’s all fab list),它的3英寸生产线建于1972年FAB2;4英寸生产线建于1973年FAB4;6英寸生产线建于1978年FAB5;8英寸生产线建于1992年FAB15;第一条12英寸生产线建于2002年FAB12 in Hillsboro,与IBM同步。 业界较为公认的说法是,1980年代是4英寸硅片占主流,1990年代是6英寸占主流,2000年代是8英寸占主流,到2002年时英特尔与IBM率先建12英寸生产线,到2005年12英寸硅片已占总硅片的20%,到2008年占30%,而那时

半导体化学清洗总结

化学清洗总结 1.3各洗液的清洗说明;1.3.1SC-1洗液;1.3.1.1去除颗粒;硅片表面由于H2O2氧化作用生成氧化膜(约6mm;①自然氧化膜约0.6nm厚,其与NH4OH、H2;②SiO2的腐蚀速度随NH4OH的浓度升高而加快;③Si的腐蚀速度,随NH4OH的浓度升高而快当,;④NH4OH促进腐蚀,H2O2阻碍腐蚀;⑤若H2O2的浓度一定,NH4OH浓度越低,颗粒 1.3 各洗液的清洗说明 1.3.1 SC-1洗液 1.3.1.1 去除颗粒 硅片表面由于H2O2氧化作用生成氧化膜(约6mm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒也随腐蚀层而落入清洗液内。 ①自然氧化膜约0.6nm厚,其与NH4OH、H2O2浓度及清洗液温度无关。 ②SiO2的腐蚀速度随NH4OH的浓度升高而加快,其与H2O2的浓度无关。 ③Si的腐蚀速度,随NH4OH的浓度升高而快当,到达某一浓度后为一定值,H202浓度越高这一值越小。 ④NH4OH促进腐蚀,H2O2阻碍腐蚀。 ⑤若H2O2的浓度一定,NH4OH浓度越低,颗粒去除率也越低,如果同时降低H2O2浓度可抑制颗粒的去除率的下降。 ⑥随着清洗液温度升高,颗粒去除率也提高在一定温度下可达最大值。 ⑦颗粒去除率与硅片表面腐蚀量有关为确保颗粒的去除要有一定量以上的腐蚀。 ⑧超声波清洗时由于空化现象只能去除≥0.4μm颗粒。兆声清洗时由于0.8Mhz的加速度作用能去除≥0.2μm颗粒,即使液温下降到40℃也能得到与80℃超声清洗去除颗粒的效果,而且又可避免超声清洗对晶片产生损伤。 ⑨在清洗液中硅表面为负电位有些颗粒也为负电位,由于两者的电的排斥力作用可防止粒子向晶片表面吸附,但也有部分粒子表面是正电位,由于两者电的吸引力作用,粒子易向晶片表面吸附。

硅片清洗及原理

硅片清洗及原理 硅片的清洗很重要,它影响电池的转换效率,如器件的性能中反向电流迅速加大及器件失效等。因此硅片的清洗很重要,下面主要介绍清洗的作用和清洗的原理。 清洗的作用 1.在太阳能材料制备过程中,在硅表面涂有一层具有良好性能的减反射薄膜,有害的杂质离子进入二氧化硅层,会降低绝缘性能,清洗后绝缘性能会更好。 2.在等离子边缘腐蚀中,如果有油污、水气、灰尘和其它杂质存在,会影响器件的质量,清洗后质量大大提高。 3.硅片中杂质离子会影响P-N 结的性能,引起P-N 结的击穿电压降低和表面漏电,影响P-N 结的性能。 4.在硅片外延工艺中,杂质的存在会影响硅片的电阻率不稳定。 清洗的原理 要了解清洗的原理,首先必须了解杂质的类型,杂质分为三类:一类是分子型杂质,包括加工中的一些有机物;二类是离子型杂质,包括腐蚀过程中的钠离子、氯离子、氟离子等;三是原子型杂质,如金、铁、铜和铬等一些重金属杂质。目前最常用的清洗方法有:化学清洗法、超声清洗法和真空高温处理法。 1.目前的化学清洗步骤有两种: (1)有机溶剂(甲苯、丙酮、酒精等)→去离子水→无机酸(盐酸、硫酸、硝酸、王水)→氢氟酸→去离子水 (2)碱性过氧化氢溶液→去离子水→酸性过氧化氢溶液→去离子水 下面讨论各种步骤中试剂的作用。 a.有机溶剂在清洗中的作用 用于硅片清洗常用的有机溶剂有甲苯、丙酮、酒精等。在清洗过程中,甲苯、丙酮、酒精等有机溶剂的作用是除去硅片表面的油脂、松香、蜡等有机物杂质。所利用的原理是“相似相溶”。 b.无机酸在清洗中的作用 硅片中的杂质如镁、铝、铜、银、金、氧化铝、氧化镁、二氧化硅等杂质,只能用无机酸除去。有关的反应如下:

半导体硅片RCA清洗技术

半导体硅片RCA清洗技术 传统的RCA清洗技术:所用清洗装置大多是多槽浸泡式清洗系统 清洗工序:SC-1 →DHF →SC-2 1. SC-1清洗去除颗粒: ⑴目的:主要是去除颗粒沾污(粒子)也能去除部分金属杂质。 ⑵去除颗粒的原理: 硅片表面由于H2O2氧化作用生成氧化膜(约6nm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒也随腐蚀层而落入清洗液内。 ①自然氧化膜约0.6nm厚,其与NH4OH、H2O2浓度及清洗液温 度无关。 ②SiO2的腐蚀速度,随NH4OH的浓度升高而加快,其与H2O2的浓度无关。 ③Si的腐蚀速度,随NH4OH的浓度升高而快,当到达某一浓度后为一定值,H2O2浓度越高这一值越小。 ④NH4OH促进腐蚀,H2O2阻碍腐蚀。 ⑤若H2O2的浓度一定,NH4OH浓度越低,颗粒去除率也越低,如果同时降低H2O2浓度,可抑制颗粒的去除率的下降。 ⑥随着清洗洗液温度升高,颗粒去除率也提高,在一定温度下可达最大值。 ⑦颗粒去除率与硅片表面腐蚀量有关,为确保颗粒的去除要有一定量以上的腐蚀。 ⑧超声波清洗时,由于空洞现象,只能去除≥0.4 μm 颗粒。兆声清洗时,由于0.8Mhz的加速度作用,能去除≥0.2 μm 颗粒,即使液温下降到40℃也能得到与80℃超声清洗去除颗粒的效果,而且又可避免超声洗晶片产生损伤。 ⑨在清洗液中,硅表面为负电位,有些颗粒也为负电位,由于两者的电的排斥力作用,可防止粒子向晶片表面吸附,但也有部分粒子表面是正电位,由于两者电的吸引力作用,粒子易向晶片表面吸附。 ⑶. 去除金属杂质的原理:

半导体清洗设备制程技术及设备市场分析

半导体清洗设备制程技术与设备市场分析 (台湾)自?動?化?產?業?技?術?與?市?場?資?訊?專?輯 关键词 ?多槽全自动清洗设备Wet station ?单槽清洗设备Single bath ?单晶圆清洗设备Single wafer ?微粒particle 目前在半导体湿式清洗制程中,主要应用项目包含晶圆清洗与湿式蚀刻两项,晶圆(湿式) 清洗制程主要是希望藉由化学药品与清洗设备,清除来自周遭环境所附着在晶圆表面的脏污,以达到半导体组件电气特性的要求与可靠度。至于脏污的来源,不外乎设备本身材料产生、现场作业员或制程工程师人体自身与动作的影响、化学材料或制程药剂残留或不纯度的发生,以及制程反应产生物的结果,尤其是制程反应产生物一项,更成为制程污染主要来源,因此如何改善制程中所产生污染,便成为清洗制程中研究主要的课题。 过去RCA 多槽湿式清洗一直是晶圆清洗的主要技术,不过随着近年来制程与清洗设备的演进,不但在清洗制程中不断产生新的技术,也随着半导体后段封装技术的演进,清洗设备也逐渐进入封装厂的生产线中。以下本文即针对清洗设备与技术作一深入介绍,并分析清洗设备发展的关键机会及未来的发展趋势。 晶圆表面所残留脏污的种类非常多,约略可分成微粒、金属离子、有机物与自然氧化物。而这些污染物中,以金属离子对半导体组件的

电气特性有相当的影响力,其中尤其是重金属离子所引发的不纯度,将严重影响闸氧化层的临界崩溃电压、起始电压漂移与P-N 接合电压,进而造成制程良率的降低。所以,针对制程所使用的化学品与纯水,必须进行严格的纯度控制以有效降低生产过程所产生的污染源。由于集成电路随着制作集积度更高的电路,其化学品、气体与纯水所需的纯度也将越高,为提升化学品的纯度与操作良率,各家厂商无不积极改善循环过滤与回收系统,如FSI 公司提出point-of-generation (点产生)与point-of-use (点使用)相结合,比起传统化学瓶的供应方式,有着更佳的纯度。(注:POUCG点再生) 在半导体制程中,无论是在去光阻、化学气相沈淀、氧化扩散、晶圆研磨以后等各阶段制程都需反复清洗步骤,而在晶圆清洗部分也概略分为前后段清洗两部分(在晶圆生产处理过程中大致可区分为 前段与后段制程,前后段以金属制作蒸镀、溅镀为分界),在前段制程清洗方面,如Preclean、扩散、氧化层与氮化层的去除、复晶硅蚀刻与去除。后制程段清洗方面,包含金属间介电层与金属蚀刻后之清洗、光阻去除前后的清洗、CMP 制程后之清洗等。 由于晶圆污染来源除一般微粒(particle) 附着于晶圆表面上,并可能是污染物与晶圆表面之间产生连接,包含如多种化学键结,甚至于脏污被氧化层或有机物薄膜所深埋,即使经过多次的物理力洗濯或冲刷,均无法彻底去除此脏污,并有可能产生回污或交互污染。因此,清洗的方法除了物理力或溶解的洗净外,对于晶圆表面施予微量蚀刻(Micro-etching) 的化学清洗方式(如下表一),便成了不可或缺的关键

(工艺流程)2020年半导体硅片生产工艺流程及工艺注意要点

硅片生产工艺流程及注意要点 简介 硅片的准备过程从硅单晶棒开始,到清洁的抛光片结束,以能够在绝好的环境中使用。期间,从一单晶硅棒到加工成数片能满足特殊要求的硅片要经过很多流程和清洗步骤。除了有许多工艺步骤之外,整个过程几乎都要在无尘的环境中进行。硅片的加工从一相对较脏的环境开始,最终在10级净空房内完成。 工艺过程综述 硅片加工过程包括许多步骤。所有的步骤概括为三个主要种类:能修正物理性能如尺寸、形状、平整度、或一些体材料的性能;能减少不期望的表面损伤的数量;或能消除表面沾污和颗粒。硅片加工的主要的步骤如表1.1的典型流程所示。工艺步骤的顺序是很重要的,因为这些步骤的决定能使硅片受到尽可能少的损伤并且可以减少硅片的沾污。在以下的章节中,每一步骤都会得到详细介绍。 表1.1 硅片加工过程步骤 1.切片 2.激光标识 3.倒角 4.磨片 5.腐蚀 6.背损伤 7.边缘镜面抛光 8.预热清洗 9.抵抗稳定——退火 10.背封 11.粘片 12.抛光 13.检查前清洗 14.外观检查

15.金属清洗 16.擦片 17.激光检查 18.包装/货运 切片(class 500k) 硅片加工的介绍中,从单晶硅棒开始的第一个步骤就是切片。这一步骤的关键是如何在将单晶硅棒加工成硅片时尽可能地降低损耗,也就是要求将单晶棒尽可能多地加工成有用的硅片。为了尽量得到最好的硅片,硅片要求有最小量的翘曲和最少量的刀缝损耗。切片过程定义了平整度可以基本上适合器件的制备。 切片过程中有两种主要方式——内圆切割和线切割。这两种形式的切割方式被应用的原因是它们能将材料损失减少到最小,对硅片的损伤也最小,并且允许硅片的翘曲也是最小。 切片是一个相对较脏的过程,可以描述为一个研磨的过程,这一过程会产生大量的颗粒和大量的很浅表面损伤。 硅片切割完成后,所粘的碳板和用来粘碳板的粘结剂必须从硅片上清除。在这清除和清洗过程中,很重要的一点就是保持硅片的顺序,因为这时它们还没有被标识区分。 激光标识(Class 500k) 在晶棒被切割成一片片硅片之后,硅片会被用激光刻上标识。一台高功率的激光打印机用来在硅片表面刻上标识。硅片按从晶棒切割下的相同顺序进行编码,因而能知道硅片的正确位置。这一编码应是统一的,用来识别硅片并知道它的来源。编码能表明该硅片从哪一单晶棒的什么位置切割下来的。保持这样的追溯是很重要的,因为单晶的整体特性会随着晶棒的一头到另一头而变化。编号需刻的足够深,从而到最终硅片抛光完毕后仍能保持。在硅片上刻下编码后,即使硅片有遗漏,也能追溯到原来位置,而且如果趋向明了,那么就可以采取正确的措施。激光标识可以在硅片的正面也可在背面,尽管正面通常会被用到。

硅片清洗的方法

硅片清洗的方法 一、硅片清洗的重要性 硅片清洗是半导体器件制造中最重要最频繁的步骤,而且其效率将直接影响到器件的成品率、性能和可靠性。 现在人们已研制出了很多种可用于硅片清洗的工艺方法和技术,常见的有:湿法化学清洗、超声清洗法、兆声清洗法、鼓泡清洗法、擦洗法、高压喷射法、离心喷射法、流体力学法、流体动力学法、干法清洗、微集射束流法、激光束清洗、冷凝喷雾技术、气相清洗、非浸润液体喷射法、硅片在线真空清洗技术、RCA标准清洗、等离子体清洗、原位水冲洗法等。这些方法和技术现已广泛应用于硅片加工和器件制造中的硅片清洗。 表面沾污指硅表面上沉积有粒子、金属、有机物、湿气分子和自然氧化物等的一种或几种。超纯表面定义为没有沾污的表面, 或者是超出检测量极限的表面。 二、硅片的表面状态与洁净度问题: 硅片的真实表面由于暴露在环境气氛中发生氧化及吸附,其表面往往有一层很薄的自然氧化层,厚度为几个埃、几十个埃甚至上百埃。真实的硅片表面是内表面和外表面的总合,内表面是硅与自然氧化层的界面,。外表面是自然氧化层与环境气氛的界面,它也存在一些表面能级,并吸附一些污染杂质原子,而且不同程度地受到内表面能级的影响,可以与内表面交换电荷,外表面的吸附现象是复杂的。 完好的硅片清洗总是去除沾污在硅片表面的微粒和有害膜层,代之以氧化物的、氯化物的或其它挥发元素(或分子)的连续无害膜层,即具有原子均质的膜层。硅片表面达到原子均质的程度越高.洁净度越高。 三、硅片表面沾污杂质的来源和分类: 在硅片加工及器件制造过程中,所有与硅片接麓的外部媒介都是硅片沾污杂质的可能来源。这主要包括以下几方面:硅片加工成型过程中的污染,环境污染,水造成的污染,试剂带来的污染,工业气体造成的污染,工艺本身造成的污染,人体造成的污染等。

半导体硅片项目投资计划书2020

半导体硅片项目 投资计划书 投资计划书参考模板,仅供参考

摘要 该半导体硅片项目计划总投资19013.48万元,其中:固定资产投 资13731.90万元,占项目总投资的72.22%;流动资金5281.58万元,占项目总投资的27.78%。 达产年营业收入41530.00万元,总成本费用31348.46万元,税 金及附加381.24万元,利润总额10181.54万元,利税总额11967.13 万元,税后净利润7636.16万元,达产年纳税总额4330.98万元;达 产年投资利润率53.55%,投资利税率62.94%,投资回报率40.16%,全部投资回收期3.99年,提供就业职位569个。 报告从节约资源和保护环境的角度出发,遵循“创新、先进、可靠、实用、效益”的指导方针,严格按照技术先进、低能耗、低污染、控制投资的要求,确保投资项目技术先进、质量优良、保证进度、节 省投资、提高效益,充分利用成熟、先进经验,实现降低成本、提高 经济效益的目标。 本半导体硅片项目报告所描述的投资预算及财务收益预评估基于 一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其 他因素的变化而导致与未来发生的事实不完全一致。

半导体硅片项目投资计划书目录 第一章半导体硅片项目绪论 第二章半导体硅片项目建设背景及必要性 第三章建设规模分析 第四章半导体硅片项目选址科学性分析 第五章总图布置 第六章工程设计总体方案 第七章风险应对评价分析 第八章职业安全与劳动卫生 第九章项目实施进度 第十章投资估算与经济效益分析

第一章半导体硅片项目绪论 一、项目名称及承办企业 (一)项目名称 半导体硅片项目 (二)项目承办单位 xxx有限公司 二、半导体硅片项目选址及用地规模控制指标 (一)半导体硅片项目建设选址 项目选址位于某经济开发区,地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,建设条件良好。 (二)半导体硅片项目用地性质及规模 项目总用地面积53179.91平方米(折合约79.73亩),土地综合 利用率100.00%;项目建设遵循“合理和集约用地”的原则,按照半导体硅片行业生产规范和要求进行科学设计、合理布局,符合规划建设 要求。 (三)用地控制指标及土建工程

半导体硅的清洗总结(标出重点了)

硅片的化学清洗总结 硅片清洗的一般原则是首先去除表面的有机沾污;然后溶解氧化层(因为氧化层是“沾污陷阱”,也会引入外延缺陷);最后再去除颗粒、金属沾污,同时使表面钝化。 清洗硅片的清洗溶液必须具备以下两种功能:(1)去除硅片表面的污染物。溶液应具有高氧化能力,可将金属氧化后溶解于清洗液中,同时可将有机物氧化为CO2和H2O;(2)防止被除去的污染物再向硅片表面吸附。这就要求硅片表面和颗粒之间的Z电势具有相同的极性,使二者存在相斥的作用。在碱性溶液中,硅片表面和多数的微粒子是以负的Z电势存在,有利于去除颗粒;在酸性溶液中,硅片表面以负的Z电势存在,而多数的微粒子是以正的Z电势存在,不利于颗粒的去除。 1 传统的RCA清洗法 1.1 主要清洗液 1.1.1 SPM(三号液)(H2SO4∶H2O2∶H2O) 在120~150℃清洗10min左右,SPM具有很高的氧化能力,可将金属氧化后溶于清洗液中,并能把有机物氧化生成CO2和H2O。用SPM清洗硅片可去除硅片表面的重有机沾污和部分金属,但是当有机物沾污特别严重时会使有机物碳化而难以去除。经SPM清洗后,硅片表面会残留有硫化物,这些硫化物很难用去粒子水冲洗掉。由Ohnishi提出的SPFM(H2SO4/H2O2/HF)溶液,可使表面的硫化物转化为氟化物而有效地冲洗掉。由于臭氧的氧化性比H2O2的氧化性强,可用臭氧来取代H2O2(H2SO4/O3/H2O称为SOM溶液),以降低H2SO4的用量和反应温度。H2SO4(98%):H2O2(30%)=4:1 1.1.2 DHF(HF(H2O2)∶H2O) 在20~25℃清洗30s 腐蚀表面氧化层,去除金属沾污,DHF清洗可去除表面氧化层,使其上附着的金属连同氧化层一起落入清洗液中,可以很容易地去除硅片表面的Al,Fe,Zn,Ni等金属,但不能充分地去除Cu。HF:H2O2=1:50。 1.1.3 APM(SC-1)(一号液)(NH4OH∶H2O2∶H2O) 在65~80℃清洗约10min 主要去除粒子、部分有机物及部分金属。由于H2O2的作用,硅片表面有一层自然氧化膜(Si02),呈亲水性,硅片表面和粒子之间可被清洗液浸透。由于硅片表面的自然氧化层与硅片表面的Si被NH4OH腐蚀,因此附着在硅片表面的颗粒便落入清洗液中,从而达到去除粒子的目的。此溶液会增加硅片表面的粗糙度。Fe,Zn,Ni等金属会以离子性和非离子性的金属氢氧化物的形式附着在硅片表面,能降低硅片表面的Cu的附着。体积比为(1∶1∶5)~(1∶2∶7)的NH4OH (27 %)、H2O2(30%)和H2O组成的热溶液。稀释化学试剂中把水所占的比例由1∶5增至1∶50,配合超声清洗,可在更短时间内达到相当或更好的清洗效果。 SC-1清洗后再用很稀的酸(HCl∶H2O为1∶104)处理,在去除金属杂质和颗粒上可收到良好的效果,也可以用稀释的HF溶液短时间浸渍,以去除在SC-1形成的水合氧化物膜。最后,常常用SC-1原始溶液浓度1/10的稀释溶液清洗,以避免表面粗糙,降低产品成本,以及减少对环境的影响。 1.1.4 HPM(SC-2)(二号液)(HCl∶H2O2∶H2O) 在65~85℃清洗约10min用于去除硅片表面的钠、铁、镁等金属沾污,。在室温下HPM就能除去Fe和Zn。H2O2会使硅片表面氧化,但是HCl不会腐蚀硅片表面,所以不会使硅片表面的微粗糙度发生变化。(1∶1∶6)~ (2∶1∶8)的H2O2(30%)、HCl(37%)和水组成的热混合溶液。对含有可见残渣的严重沾污的晶片,可用热H2SO4-H2O(2∶1)混合物进行预清洗。 1.2 传统的RCA清洗流程

硅片清洗技术详解

硅片清洗主要内容讲解 1、清洗的基本概念和目的。 硅片加工的目的是为器件生产制作一个清洁完美符合要求的使用表面,所谓清洗,就是清洗硅片的表面,去除附着在硅片上的污染物。 2、硅片清洗室的管理与维护; (1)人员流动的管理和清洁室的作业人数。 (2)清洗室内物品器具的管理。 (3)清洗室内其它影响清洗质量因素的管理维护。如;空气过滤系统、防静电处理、温度与湿度系统等! 3、硅片表面沾污的类型; (!)有机杂质沾污;如;胶黏剂、石蜡、油脂等。 (2)颗粒类型杂质沾污;一般来自加工中磨料和环境中的尘粒。 (3)金属杂质沾污;由生产加工的设备引起的金属杂质沾污。 4、硅片清洗处理方法分类; 硅片清洗处理方法分为湿法清洗和干法清洗两大类。而湿法清洗又分为化学清洗和物理清洗两种方法。 化学清洗——利用各种化学试剂对各种杂质的腐蚀、溶解、氧化及络合等作用去除硅片表面的沾污。 物理清洗——硅片的物理清洗法主要指的是利用超声波和兆声波清洗方法。 5、化学清洗的各种试剂的性质应用和分级; (1)有机溶剂清洗;有机溶剂能去除硅片表面的有机杂质沾污。主要溶液有;甲苯、丙酮、乙醇等。根据其性质须在使用甲苯、丙酮后在使用乙醇进行处理,最后在用水冲洗。(2)无机酸及氧化还原清洗;无机酸试剂主要为;盐酸(HCI)、硝酸(HNO3)、硫酸(H2SO4)、氢氟酸(HF)以及过氧化氢(H2O2)—双氧水。其中过氧化氢主要用于氧化还原清洗。 其它试剂按其本省性质进行应用清洗。硅片金属清洗主要是利用了它们的强酸性、强腐蚀性、强氧化性的特性从而达到去除表面金属沾污的目的。 (3)化学清洗的分级主要分为优级纯、分析纯和化学纯三个级别。视清洗的种类和场合进行合理选择。通常硅片切割片和研磨片的清洗可以使用分析纯试剂,抛光片须用优级纯试剂。具体试剂分类有国家规定标准。 6、超声波清洗原理、结构和应用要素; 原理—提供高频率的震荡波在溶剂中产生气泡和空化效应,利用液体中气泡破裂所产生的冲击来波达到清洗目地。 结构—系统主要有超声电源、清洗槽和换能器三个基本单元组成。电源用来产生高频率震荡信号,换能器将其转换成高频率机械震荡波,也就是超声波。清洗槽是放清洗液 和工作的容器。 要素—1、超声频率;频率越低产生的空化效应越强但方向性差。频率高后方向性强但空化效应弱,所产生的气泡冲击力就弱。造成清洗就弱。超声波清洗只能去除≥0.4um 的颗粒。兆声波能去除≥0.2um的颗粒。 2、超声波功率密度;密度越高空化效应越强,速度越快,清洗效果越好。但对于精 密、表面光洁度甚高的工件长时间清洗会对物体表面产生“空化”腐蚀。 3、超声波清洗介质;是指采用超声波清洗时的溶液,也就是清洗液。一般用于超声 清洗的有化学溶剂清洗液和水基清洗液两种。现在清洗工艺为了更好的效果一般采 用两者按比例相结合的方式清洗。 4、超声波清洗温度;因各种清洗剂中的化学成分不同,其分子最佳清洗的温度也不

电池组件生产工艺流程及操作规范

电池组件生产工艺 目录 太阳能电池组件生产工艺介绍 (11) 晶体硅太阳能电池片分选工艺规范 (55) 晶体硅太阳能电池片激光划片工艺规范 (88) 晶体硅太阳能电池片单焊工艺规范 (1212) 晶体硅太阳能电池片串焊工艺规范 (1616) 晶体硅太阳能电池片串焊工艺规范 (1818) 晶体硅太阳能电池片叠层工艺规范 (2121) 晶体硅太阳能电池组件层压工艺规范 (2727) 晶体硅太阳能电池组件装框规范 (3232) 晶体硅太阳能电池组件测试工艺规范 (3535) 晶体硅太阳能电池组件安装接线盒工艺规范 (3838) 晶体硅太阳能电池组件清理工艺规范 (4141)

太阳能电池组件生产工艺介绍 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1流程图: 电池检测——正面焊接—检验—背面串接—检验—敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试—外观检验—包装入库; 2组件高效和高寿命如何保证: 2.1高转换效率、高质量的电池片 2.2高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装 剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 2.3合理的封装工艺; 2.4员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 3太阳电池组装工艺简介:

硅片清洗原理

一.硅片的化学清洗工艺原理 硅片经过不同工序加工后,其表面已受到严重沾污,一般讲硅片表面沾污大致可分在三类: A.有机杂质沾污:可通过有机试剂的溶解作用,结合超声波清洗技术来去除。 B. 颗粒沾污:运用物理的方法可采机械擦洗或超声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒。 C. 金属离子沾污:必须采用化学的方法才能清洗其沾污,硅片表面金属杂质沾污有两大类: a. 一类是沾污离子或原子通过吸附分散附着在硅片表面。 b. 另一类是带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。硅抛光片的化学清洗目的就在于要去除这种沾污,一般可按下述办法进行清洗去除沾污。 a.使用强氧化剂使“电镀”附着到硅表面的金属离子、氧化成金属,溶解在清洗液中或吸附在硅片表面。 b.用无害的小直径强正离子(如H+)来替代吸附在硅片表面的金属离子,使之溶解于清洗液中。 c. 用大量去离水进行超声波清洗,以排除溶液中的金属离子。 自1970年美国RCA实验室提出的浸泡式RCA化学清洗工艺得到了广泛应用,1978年RCA实验室又推出兆声清洗工艺,近几年来以RCA清洗理论为基础的各种清洗技术不断被开发出来,例如:美国FSI公司推出离心喷淋式化学清洗技术。美国原CFM公司推出的Full-Flow systems封闭式溢流型清洗技术。⑶美国VERTEQ 公司推出的介于浸泡与封闭式之间的化学清洗技术(例Goldfinger Mach2清洗系统)。⑷美国SSEC公司的双面檫洗技术(例M3304 DSS清洗系统)。⑸日本提出无药液的电介离子水清洗技术(用电介超纯离子水清洗)使抛光片表面洁净技术达到了新的水平。⑹以HF / O3为基础的硅片化学清洗技术。 目前常用H2O2作强氧化剂,选用HCL作为H+的来源用于清除金属离子 SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除。 由于溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。为此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。 SC-2是H2O2和HCL的酸性溶液,它具有极强的氧化性和络合性,能与氧以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。在使用SC-1液时结合使用兆声波来清洗可获得更好的效果。 二. RCA清洗技术 传统的RCA清洗技术:所用清洗装置大多是多槽浸泡式清洗系统 清洗工序:SC-1 → DHF → SC-2 1. SC-1清洗去除颗粒:⑴目的:主要是去除颗粒沾污(粒子)也能去除部分金属杂质。

硅片超声波 清洗技术

硅片超声波清洗技术 在半导体材料的制备过程中,每一道工序都涉及到清洗,而且清洗的好坏直接影响下一道工序,甚至影响器件的成品率和可靠性。由于ULSI集成度的迅速提高和器件尺寸的减小,对于晶片表面沾污的要求更加严格,ULSI工艺要求在提供的衬底片上吸附物不多于500个/m2×0.12um,金属污染小于1010atom/cm2。晶片生产中每一道工序存在的潜在污染,都可导致缺陷的产生和器件的失效。因此,硅片的清洗引起了专业人士的重视。以前很多厂家都用手洗的方法,这种方法人为的因素较多,一方面容易产生碎片,经济效益下降,另一方面手洗的硅片表面洁净度差,污染严重,使下道工序化抛腐蚀过程中的合格率较低。所以,硅片的清洗技术引起了人们的重视,找到一种简单有效的清洗方法是当务之急。本文介绍了一种超声波清洗技术,其清洗硅片的效果显著,是一种值得推广的硅片清洗技术。 硅片表面污染的原因 晶片表面层原子因垂直切片方向的化学键被破坏而成为悬空键,形成表面附近的自由力场,尤其磨片是在铸铁磨盘上进行,所以铁离子的污染就更加严重。同时,由于磨料中的金刚砂粒径较大,造成磨片后的硅片破损层较大,悬挂键数目增多,极易吸附各种杂质,如颗粒、有机杂质、无机杂质、金属离子、硅粉粉尘等,造成磨片后的硅片易发生变花、发蓝、发黑等现象,使磨片不合格。硅片清洗的目的就是要除去各类污染物,清洗的洁净程度直接决定着ULSI向更高集成度、可靠性、成品率发展,这涉及到高净化的环境、水、化学试剂和相应的设备及配套工艺,难度越来越大,可见半导体行业中清洗工艺的重要性。 图:硅片表面黑点的扫面电子显微镜照片 实验及结果分析 1.实验设备和试剂 实验设备:SQX-3916硅片清洗机 实验使用的试剂:有机碱、Q325-B清洗剂、活性剂、去离子水、助磨剂 2.实验过程 (1)超声波清洗的基本原理 利用28KHz以上的电能,经超声波换能器转换成高频机械振荡而传入到清洗液中。超声波在清洗液中疏密相间地向前辐射,使液体流动,并不停地产生数以万计的微小气泡。这些气泡是在超声波纵向传播的负压区形成及生长,而在正压区迅速闭合。这种微小气泡的形成、生成迅速闭合称为空化现象,在空化现象中气泡闭合时形成超过1000个大气压的瞬时高压,连续不断产生的瞬时高压,像一连串小爆炸不停地轰击物体表面,使物体及缝

相关主题
文本预览
相关文档 最新文档