当前位置:文档之家› 疾病发病情况的时间序列分析

疾病发病情况的时间序列分析

疾病发病情况的时间序列分析
疾病发病情况的时间序列分析

某市恶性疾病的时间序列分析

摘要:本文对某市1990~2007年间某恶性疾病的发病情况进行统计,运用时间序列分析,建立ARIMA模型对该病发病情况进行研究,并对未来几年的发病情况做出了预测。

关键字:时间序列ARIMA,拖尾截尾

时间序列分析的简介

时间序列分析(Time series analysis)是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

时间序列是把反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的一组统计数字序列。时间序列又称动态数列或时间数列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。时间序列分析常用在国

民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。

时间序列分析主要用途:①系统描述。根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。②系统分析。当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。

③预测未来。一般用ARMA模型拟合时间序列,预测该时间序列未来值。④决策和控制。根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

基本步骤:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、

滑动平均模型或组合ARMA 模型等来进行拟合。当观测值多于50个时一般都采用ARMA 模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。 ARIMA 的三种模型 1)建立p 阶自回归)(p AR 模型:

t

p t p t t t x x x x εφφφφ+++++=--- 22110 2)建立q 阶移动平均)(q MA 模型: q

t q t t t t x -------+=εθεθεθεμ 2211

3)),(q p ARMA 模型:

q

t q t t t p t p t t t t x x x x -----------+++++=εθεθεθεφφφφ 221122110

三个模型的拖尾、截尾性

建模的步骤:

图6.0 自回归滑动平均(ARMA)模型建模步骤数据搜集

对数据进行平稳化和检验处理

在SAS中,使用Gplot过程作出swl的时序图

在sas编辑框输入

proc gplot data=fb;

plot swl*year=1 ;

symbol c=red i=join v=star;

run;

得到时序图为

很明显看出其不是平稳序列,故我们要对其平稳化处理。我们再在sas 编辑框输入

proc gplot data=fb;

plot cfswl*year=1 ;

symbol c=red i=join v=star;

run;

得出了死亡率一阶差分的时序图

初步判断基本上符合平稳性,下面再对其进行平稳性检验和白噪声检验,输入

proc arima data= fb;

identify var=cfswl stationarity =(adf=3) nlag=12;

run;

得到

用Q LB统计量作的2检验结果表明:差分后的swl序列的Q LB统计

量的P值为0.0127(<0.05),故序列为非白噪声序列。

该序列的自相关图和偏自相关图为

从中可以看出自相关图拖尾,偏自相关图2阶截尾,初步判断该模型为ARIMA(2,1,0)

注意:AS白噪声自相关检验结果:

To lag—延迟阶数

Chi-Squre—是Q LB统计量,服从卡方分布

Df—是Q LB统计量服从的卡方分布的自由度

Pr>Chisq—该Q LB统计量的P值

另自相关函数图中:

Lag—延迟阶数

Covariance—延迟阶数给定后的自协方差函数

Correlation—延迟阶数给定后的自相关函数

Std Error—自相关函数的标准差

“.”—2倍标注差范围

下面我们要用最有模型定阶函数对该序列定阶。在编辑框输入

proc arima data=fb;

identify var=cfswl nlag=6minic p=(0:7) q=(0:7);

run;

得到了

看出sas系统给出定阶为p=1 q=0,即为ARIMA(1,1,0)下面对该模型检验看其是否合适。在编辑框输入

proc arima data=fb;

identify var=cfswl;

estimate p=1q=0;

run;

得到了残差检验自相关矩阵

很明显Chi-Squre统计量的p值为0.0199(<0.05)故拒绝原假设(原假设残差为白噪声序列),即不满足条件,因为死亡率一阶差分序列的信息未提取完,有待提取,说明该模型不行。我们从自相关图和偏自相关图中看到自相关图拖尾,偏自相关图2阶截尾,故我们可以将p从2一直试验到7,在满足残差白噪声的前提下,还要参数估计的t值尽可能明显以及AIC最小准则和SBC最小准则。经过测试,我们得出了p=2时最优。因此我们把模型定位为ARIMA(2,1,0)。预测和分析

在编辑框中输入

proc arima data=fb;

identify var=cfswl nlag=16;

estimate p=2 q=0;

forecast lead=2id=year out=results;

run;

我们得到了

另外我们还可以画出预测图像如下

这就是用时间序列分析得出的预测结果,在对未来未知的情况下能做到这一步已经很不容易了。

参考文献

[1]徐国祥.统计预测和决策[M].上海:上海财经大学出版社

[2]周以祥.现代管理方法[M].南京:南京大学出版社

[3]贾俊平,统计学[M].北京:中国人民大学出版社

[4]Robert S.Pindyck,Daniel L.Rubinfeld.计量经济模型与经济预测[M].北京:机械工业出版社

[5]罗艳辉、吕永贵、李彬,基于ARMA 的混合卷烟销售预测模型,计算机应用研究[J]

[6]阮敬,SAS 统计分析从入门到精通[M],人民邮电出版社.

[7]王勇领,预测计算方法,北京:科学出版社

[8]张雄,城市用水量预测模型综合研究,水资源研究

[9] 吕谋,赵洪宾,等,城市13 用水量预测的组合动态建模方法.给水排水

[10]徐国强,统计预测和决策[M],上海财经大学出版社.

[11]黄信芳季节变动分析法在医院管理中的应用中国卫生统计

[12]社会经脐统计学原理电视讲座下册国束统计局事教育司印

[13]扬建南应用移动平均趋势剔除j 岳预测门I 参谚攻的探讨中国医院管理

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

《时间序列分析及应用:R语言》读书笔记

《时间序列分析及应用:R语言》读书笔记 姓名:石晓雨学号:1613152019 (一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。 (二)、下面是书上的几个例子 1、洛杉矶年降水量 问题:用前一年的降水量预测下一年的降水量。 第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。 win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口 data(larain) #TSA包中的数据集,洛杉矶年降水量 plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下 win.graph(width = 3,height = 3,pointsize = 8) plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA

从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。 2、化工过程 win.graph(width = 4.875,height = 2.5,pointsize = 8) data(color) plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o') win.graph(width = 3,height = 3,pointsize = 8) plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property') len <- length(color) cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549 第一幅图是颜色属性随着批次的变化情况。

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

时间序列分析ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

应用时间序列分析 -

姓名:葛国峰学号:1122307851 编号:33 习题2.3 2.解: data b; input y@@; time=intnx('month','1jan1975'd,_n_-1); format time data; cards; 330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31 329.41 330.63 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87 330.18 331.50 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73 332.05 333.53 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25 333.59 334.76 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69 335.05 336.53 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63 337.74 338.36 ; run; proc gplot; plot y*time; symbol1v=dot i=join c=black w=3; proc arima data=b; identify var=y nlag=24; run; (1)序列图:

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

时间序列分析及其应用

时间序列分析及其应用 摘要:本文介绍了目前时间序列分析的发展状况以及应用情况,对常见的几种趋势拟合及其预测方法进行了简要叙述。 关键词:时间序列趋势建模 1 引言 时间序列分析是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来 事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 2 时间序列分析的趋势及建模 时间序列分析的成分有:(1)长期趋势,即时间序列随时间的变化而逐渐增加或减少的长期变化的趋势;(2)季节变动,即时间序列在一年中或固定时间内,呈现出的固定规则的变动;(3)循环变动,即

沿着趋势线如钟摆般地循环变动;(4)不规则变动,即在时间序列中由于随机因素影响所引起的变动。 时间序列建模基本步骤是:用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据;根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。然后辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。 主要的趋势拟合方法有平滑法、趋势线法和自回归模型。对于很多情况,时间序列具有季节趋势,比如气象学中的气温、降雨量,水文学中雨季和干季的河流水量等等。这就需要分析时间序列时,将季节趋势考虑在内。季节性预测法的基本步骤是(1)对原时间序列求移动平均,以消除季节变动和不规则变动,保留长期趋势;(2)将原序列y除以其对应的趋势方程值(或平滑值),分离出季节变动(含不规则变动),即季节系数=tsci/趋势方程值(tc或平滑值);(3)将月度(或季度)的季节指标加总,以由计算误差导致的值去除理论加总值,得到一个校正系数,并以该校正系数乘以季节性指标从而获得调整后季节性指标;(4)求预测模型,若求下一年度的预测值,延长趋势线即可;若求各月(季)的预测值,需以趋势值乘以各月份(季

应用时间序列分析简答题

1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。优点:原理简单;操作方便;易于理解。缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。 2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义: (1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。(2)时间序列数据分析的结构有它的特殊性。对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。序列的平稳性概念的提出可以有效地解决这个困难。 3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p ?和移动平均阶数q ?的过程即是模型识别过程。ARMA 模型定阶基本原则如下表: 4.简述单整和协整分析的含义。(1)单整是处理伪回归问题的一种方式。如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。(2)假定回归模型t k 1i it i 0t y εχββ++=∑=

时间序列分析简介与模型

第二篇 预测方法与模型 预测是研究客观事物未来发展方向与趋势的一门科学。统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。 预测包含定性预测法、因果关系预测法和时间序列预测法三类。本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。 第五章 时间序列分析 在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。本章介绍其中的时间序列分析预测法。此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。 第一节 时间序列简介 所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。它的时间单位可以是分钟、时、日、周、旬、月、季、年等。

一、时间序列预测法 时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。 二、时间序列数据的特点 通常,时间序列经过合理的函数变换后都可以看作是由三个部分叠加而成,这三个部分是趋势项部分、周期项部分和随机项部分。 1. 趋势性 许多序列的一个最主要的特征就是存在趋势。这种趋势可能是向下的也可能是向上的,也许比较陡,也许比较平缓,或者是指数增长,或者近似线性。总之,时间序列的趋势性是依据时间序列进行预测的本质所在。 2. 季节性/周期性 当数据按照月或季观测时,通常的情况是这样的:时间序列会呈现出明显的季节性。对季节性也不存在一个非常精确的定义。通常,当某个季节的观测值具有与其它季节的观测值明显不同的特征时,就称之为季节性。 3. 异常观测值 异常观测值指那些严重偏离趋势围的特殊点。异常观测值的出现往往是由于某些不可抗 1958 年自然灾害和1966年左右“文化大革命”对我国经拒的外部条件的影响。如1960 济的影响,造成经济指标陡然下降现象;1992年,我国银行紧缩政策造成的房地产业泡沫破灭,而使得房地产业的经济数据发生突然变化的例子等等。 4. 条件异方差性 所谓条件异方差性,表现出来就是异常数据观测值成群地出现,故也称为“波动积聚性”。由于方差是风险的测度,因此波动存在的积聚性的预测对于评估投资决策是很有用的,对于期权和其它金融衍生产品的买卖决策也是有益的。 5. 非线性 对非线性的最好定义就是“线性以外的一切”。非线性常常表现为“机制转换”(regime witches)或者“状态依赖”(State pendence)。其中状态依赖意味着时间序列的特征依赖于其现时的状态;不同的时刻,其特征不一样。当时间序列的特征在所有的离散状态都不一样时,就成为机制转换特性。 三、时间序列的分类 1. 按研究的对象的多少可分为单变量时间序列和多变量时间序列。 如果所研究的对象是一个变量,如某个国家的国生产总值,即为单变量时间序列。果所研究的对象是多个变量,如按年、月顺序排列的气温、气压、雨量数据,为多变量时间序列。多变量时间序列不仅描述了各个变量的变化规律,而且还表示了各变量间相互依存关系的动态规律性。 2. 按时间的连续性可将时间序列分为离散时间序列和连续时间序列。 如果某一序列中的每一个序列值所对应的时间参数为间断点,则该序列就是一个离散时间序列。如果某一序列中的每个序列值所对应的时间参数为连续函数,则该序列就是一个连续时间序列。 3. 按序列的统计特性可分为平稳时间序列和非平稳时间序列两类。

典型时间序列模型分析

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析与建模简介

时间序列分析与建模简介 Prepared on 22 November 2020

第五章时间序列分析与建模简介时间序列建模( Modelling via time series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box 和 Jenkins。本章扼要介绍吴宪民和 Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{ x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型 ARMA (n,m) 为(z-1) x k = (z-1) a k式(5-1-1) 其中: (z-1) = 1-1 z-1-…-n z-n (z-1) = 1-1 z-1-…-m z-m

式(5-1-2) 为与参考书符号一致,以下用B 表示时间后移算子 即: B x k = x k-1 B 即z -1,B 2即z -2… (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数G i 格林函数G i 用以把x t 表示成a t 及a t 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.AR(1): x t - 1x t-1 = a t 即: G j = 1j (显示) 例2.ARMA (1,1): x t - 1x t-1 = a t - 1a t G 0= 1 ; G j = (1- 1) 1j-1 ,j 1 (显示) 例3.ARMA (2,1) (1 - 1B - 2 B 2)x t = (a t - 1 B ) a t 得出:G 0= 1 G 1 = 0G 0- 1 G 2 = 1G 1+ 2G 0 ∑∞ =-=0j j t j t a G x

实验·6-时间序列分析的spss应用

实验6 时间序列分析的spss应用 6.1 实验目的 学会运用SPSS统计软件创建时间数列,熟练掌握长期趋势线性模型拟合和季节变动测定的SPSS方法与技能。 6.2 相关知识(略) 6.3 实验内容 6.3.1 用SPSS统计软件创建时间序列的创建 6.3.2用SPSS统计软件处理长期趋势线性模型的拟合(最小二乘法、指数平滑法)及预测。 6.3.3掌握测定季节变动规律的SPSS测定方法。 6.4实验要求 6.4.1准备实验数据 6.4.2用SPSS统计软件创建彩电出口数量的时间序列 6.4.3用最小二乘法测定长期趋势,拟合线性趋势方程,并进行趋势预测。 6.4.4测定彩电出口数量的季节变动规律。 6.4.5用指数平滑法预测2014和2015年的彩电出口数量。 6.5 实验步骤 6.5.1 实验数据 为了研究某国彩电出口的情况,某研究机构收集了从2003-2013年某国彩电出口的月度数据,如表6-1所示。 表6-1 我国 2003-2013年的我国彩电出口的月度数据(单位:万台)1月2月3月4月5月6月7月8月9月10月11月12月2003年12.53 13.73 24.45 28.75 32.45 31.11 25.94 32.98 43.49 42.94 63.29 77.28 2004年30.01 39.63 29.77 42.74 32.25 31.94 32.27 32.59 32.92 30.98 47.44 52.82 2005年24.08 16.42 31.24 29.33 31.88 30.09 28.08 32.99 44.99 47.57 50.36 75.19 2006年39.02 25.81 43.38 37.34 39.22 39.87 51.10 50.99 55.16 62.78 57.75 72.20 2007年28.76 39.38 46.10 39.41 38.74 40.18 45.59 43.31 46.68 54.17 53.65 61.12 2008年28.87 21.23 35.82 26.97 32.33 24.53 29.39 31.96 38.22 39.24 52.95 68.41

时间管理-时间序列分析(数学建模)

第二讲 时间序列分析 1

1 时间序列成分分析 1.1 时间序列的构成因素 时间序列中的数据(也称为观测值),总是由各种不同的影响因素共同作用所至;换一句话说,时间序列中的数据,总是包含着不同的影响因素。我们可以将这些影响因素合并归类为几种不同的类型,并对各种类型因素的影响作用加以测定。对时间序列影响因素的归类,最常见的是归为3类: z长期趋势(SPSS的名称为Smoothed Trend-Cycle, 2

缩写stc),长期趋势是一种对事物的发展普遍和长期起作用的基本因素。受长期趋势因素的影响,事物表现出在一段相当长的时期内沿着某一方向的持续发展变化。这种变化最常见的是一种向上的发展,对于经济现象而言,通常由各种经济投入(如技术进步、劳动力、资金等)所引起,因此,长期趋势有时也可视作经济成长的因素。 3

z季节周期因子(SPSS的名称为Season Factors Component), 缩写saf,季节周期也称为季节变动,是一种现象以一定时期(如一年、一月、一周等)为一周期呈现较有规律的上升、下降交替运动的影响因素。 通常表现为现象在一年内随着自然季节的更替而发生的较有规律的增减变化(如某些季节性商品的销售额、旅游客流量、各月的降雨量等)。形成季节周期的原因, 4

除了自然因素,也有人为和社会因素。 z不规则变动因子(SPSS的名称为Irregular Component, 缩写err)。不规则变动是一种偶然性、随机性、突发性因素。受这种因素影响,现象呈现时大时小、时起时伏、方向不定、难以把握的变动。这种变动不同于前三种变动,它完全无规律可循,无法控制和消除,例如战争、自然灾害等。 5

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 - -c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2λ=3λ=

相关主题
文本预览
相关文档 最新文档