当前位置:文档之家› 静电纺丝操作说明

静电纺丝操作说明

静电纺丝操作说明
静电纺丝操作说明

静电纺丝操作步骤(有粘结性的溶液)

溶液配制好后按如下步骤进行喷丝实验:

1.打开总开关,检查正负压电源的调节旋钮是否归零(左旋到底),紧急停机旋

2.控制面板上的钥匙电源开关右拧,此时进

入标签页面。点击来到推注控制页面。

3.或,快速将注射器的

活塞推到底,此时点击。

4.点击,使滑块迅速移退至一定位置,取出空的注射器,将纺丝液注入到

注射器中,固定到推注泵卡口处,通过或来调节滑块位置,使针头

此时显示框内出现负值,

的可用长度,在此范围内任意设定需要纺丝的距离。

5.

接收器:固定式的,平行式的,高转速的)

6.点击并修改、或参数。

7.通过设备底部滑台上的夹子调节喷丝头与连接器之间的距离,

确定好位置,高压夹头加紧,点击,此时推注装置开始单独运行。

8.将控制面板上的、红色按钮按下,此时正负高压开

启,调节旋钮;边观察纺丝现象边调节

(目的是调节喷丝效果),直至出现比较稳定的喷射流即可。

9.若启动平移装置,可以通过触摸屏点击,首先检查平移部分的中点,一

般将标尺的零点设定为中点,并设定平移行程和平移速度。也可以通过点击

“设为中点”即可将当前

位置设定为平移中点,

点击,此时平移装置开始单独运行。

10.若需启动接收装置,可以通过触摸屏点击,设定转辊接收速度,直接

以及。

11.若需要同时启动两个推注装置、平移装置、接收装置,可以分别在相应的标

签页面设置好运行参数之后,点击进入联动标签页面,点击,此时所有能动的装置都会启动,如需停止,点击“停止”即可,此为联动启动功能。

12.

完毕之后再打开正负高压继续进行实验。

13.

操作功能之后方可手触所收集的材料。

各模块相关说明

1.使用环境准备

产品应在如下环境中工作:

1.1环境温度:5~40 ℃,相对湿度不大于85%(非标设备除外);

1.2周围无强烈震动源及强磁场存在;

1.3应放置在平稳、水平,无严重粉末,无阳光直射,无腐蚀性气体存在的室内;

1.4产品供电电源为交流220V;

1.5必须确保室内电源插座接地线并且地线为真实可靠接地;

1.6必须确保实验空间溶剂密度不高于爆炸极限;

2.1 开机准备

将电源线插头插入设备右侧电源输出端,并打开电源开关,此时开关应亮红灯显示。将电源线左端灰色部分防漏电开关向上提起,此时电源安全开启,仪表红灯亮起。

2.2 开机操作

要进行正常工作时,请将控制板上带钥匙的电源开关向右拧45。,触摸屏开启。

3.1 操作步骤

触摸屏自检程序完成后,此时进入“联动”标签页面,如下图所示。

该标签是对各个装置参数设定的一个概览,可对各个装置同时进行控制。页面左

侧依次排列着标签页面,点击相应的按键则进入该标签页面。

控制设备顶部风扇的运行与停止。

页面右侧由上至下依次显示了实验操作中设定的工作参数,设定方法:手指触摸

点击白色部分即弹出对话框:点击

数值后,点击

面修改数值方法均相同。

点击推注A、推注B

装置的单独启动,也可以到相应的标签页面进行启动、修改。当推注A变为红色时,表明推注A装置正在运行,若要从”联动”标签页面进行停止,直接点击其即可。其他装置操作相同。

(推注A和推注B)、平移装置、接受转辊装置将会同时按照当前显示的工作参数开始运动。此时,启动按键变为停止按键,点击后上述部分同时停止工作。若要将当前所有参数保存,点击保存键后,当前参

击返回即可到系统首页,依次点击参数、手动进入到以下界面,此标签页面最多

可储存

程序停止,直接点击需要调用的数据下方的下载1

菜单,这时标签页面将显示刚才下载的一组数据,点击启动即可直接开始实验。

3.2 推注A/B标签页面

用手指轻触点击页面屏幕中推注A或推注B按键切换进入标签页面,如下图所示。

“推注A/B”标签页面

该标签是单独对推注装置的各项参数进行设定的控制页面,以实现在喷丝过程中对溶液流速的精确控制。

此标签页面,由上至下依次为增量控制、速度设定、时间设定、距离设定可分别对相关数值进行设定。当前位置、剩余时间为不可调节数值。

设为前止点的意义是:推注滑块允许运行的最前位置后不再前进,实验结束。为

了确保实验安全,通常情况下,

滑块推至注射器尾端,当滑块恰好与注射器相贴时,点击设为前止点即可。此时

0.000

位置判断溶液的长度为多少,点击距离设定的数值对话框,可在此长度范围内任意设定需要纺丝的行程(也可点击设定时间,此时时间设定将出现数值对话框)。点击速度设定的数值对话框,输入纺丝需要的速度,系统将根据已有两个数据自

动计算出另外一个数值。推注便会以当前页面设定值开始自动计

算出另一个数值。点击开始按键,推注便会以当前页面设定值开始运行,此时开始变换为停止。

3.3 平移标签页面

标签页面,如下图所示。

该页面是单独对平移部分的各项参数进行设定的控制页面,实现在喷丝过程中喷丝头的左右往复运动。该部分的主要控制参数为平移中点、速度和行程。

0.0,代表系统以当前位置为

者右移动,使平台迅速移动到指定位置后,再点击设为中点即可重新设定中点位

置;点击行程设定的数值对话框,设定左右往返一次的行程;点击速度设定的数值对话框后设置其往返速度;次数设定

若平台当前位置不在中点,可点击回到中点,使平台以最快速度移动到预先设定的中点位置。

3.4 接受标签页面

3.5 设置标签页面

标签页面,如下图所示。

该标签用于设置箱体内温度、湿度、加温加湿装置常用在创造恒温恒湿的环境,在区域化特殊的地方受气候影响较大的环境中需要借助这套装置来更好的创造实验环境。

1.把左侧箱体后面的绿色透明注水导管连接至小水壶下侧的出水口上,用胶带缠好避免漏水进电;

2.将水壶中加入去离子水并悬挂至设备上,水量应在1/3-2/3之间,避免因水量不够烧坏设备;

3.点击设置标签页面,点击设定温度、设定湿度数值对话框后,设定数值大于箱体内部温度、湿度时该功能自动启动;

4.加湿时等待1-2分钟将会看到明显效果;

5.加湿器在连续不断工作时,每小时消耗水900ml。

3.6 除湿附件的使用

除湿附件自动运行,可将其放置于箱体内不妨碍实验的位置进行除湿。

4.控制系统首页说明

4.1高级

注意(高级页面为公司出厂权限设置,不可更改)

4.2参数

“参数”存储页面,如下图所示:

点击手动即可进入标签页面查看并调用已保存数据组。

4.3帮助页面

控制系统首页,点击帮助,进入帮助系统页面,如下图所示:

该页面是为客户实验提供一些参考,以便更好的进行实验。点击相应的标签页面查看设备使用相关注意事项以及实验经验参考数值。

5.紫外/照明操作

紫外灯是在做生物材料及特殊需求杀菌功能的时候使用。紫外灯与LED灯不能同时开启,因为紫外灯开启的时候为避免紫外光对实验人员造成伤害,所以紫外灯开关和机器电源开关是相反互斥的。

开启方法:左拧45°紫外杀菌灯开;右拧45°LED灯开。实验结束时,开关恢复到原位。

6.激光校准器

激光校准器用于推注装置和接收装置之间的方向校准,以便制备的纳米纤维可以更准确地落在接收的位置上。

方法:打开箱体内部右下部分的开关,此时激光校准器红灯亮起,在接收辊上出现红色十字线。根据需要调整角度,使其与接收器位置合适。然后移动平移装置,调整位置,是注射器与接收器上的十字激光在一条直线上即可开始进行喷丝。7.接收装置切换

7.1转辊接收器

此为常用的接收器。

方法:点击触摸屏“接收速度r/min”来启动转辊接收,并调节接收辊的转速。最大能接收约30cm*30cm面积的片状纤维膜。

7.2支架接收器

可以通过切换不同直径的棒状模具来制得不同规格直径的支架材料。

方法:把转辊电击接触点连接线拔下来,安装到支架接收器电机上,负电压接触夹连接到负电压接触点位置,再点击触摸屏的“接收速度”接收器开始转动工作。可以通过切换不同直径的棒状模具来制备不同规格的支架材料。

7.3平板/网格接收器

方法:把该接收器直接放入卡口固定,接负电压夹头,该接收器不能转动。

7.4微球接收装置方法:

1.图中银色部位是微球接收区域,将烧杯中装入液体以及磁子,放置于底部银色位置。

2.将按下,打开搅拌器,通过左/右旋“搅拌调节”来调节旋转速度;

3.配置好喷球溶液,使用微球专用喷头连接注射器,夹上正电压接触夹;

4.调节推注角度,设置推注速度后,单独启动推注,启动正高压电源,调节正电压数值,即可在烧杯中收集到球形产品。

7.5高速取向接收器

用铝箔胶带将取向接收器的接收辊贴满,贴牢。

2.设备内部空间清理干净,确保其平稳。插上高速取向接收器的电源接上,并夹上负电压接触夹。

3.

置相对合适,将正高压夹头夹在喷丝头上。

4.做好准备工作后,关闭箱体门,将按下,这时高速取向器开始运行,有一定声响属正常。然后依次启动推注装置,打开正、负高压启动开关,调节正、负高压旋钮,一段时间后,即可在取向接受面上收集到取向纤维。

5.实验完成后,先将按钮按下(即关闭此开关)

7.6平行取向收丝器

方法:1.将设备内部空间清理干净,确保其平稳。把平行取向收丝器电源接上,并夹上负电压接触夹。

2.准备好纺丝溶液,调节推注装置角度(倾斜45°左右)使得喷丝头与接收器装置相对合适,将正高压夹头夹在喷丝头上。

3.点击触摸屏来启动接收器的平行转盘,依次启动推注装置,打开正、负高压启动开关,调节正、负高压旋钮,然后将要接收的基地手放于图A位置内,一段时间后即可在基地上得到一定程度的取向丝束。

静电纺丝注意事项

(1)请检查设备控制面板中,正高压和负高压旋钮是否均已调至零点,方法是将调节旋钮向左旋转到底。

(2)请检查紧急停机按钮是否处于解锁状态,若处于锁定状态,请顺时针拨起。(3)请检查设备的推注部分、平移部分和旋转接受部分的工作区域内是否有杂物阻碍相应部位的移动。

(4)请检查地线是否链接可靠,正高压线接触夹和负高压线接触夹是否正确固定在喷头和接受部件上。

(1

值,为设备运行时的相关参数,在此页面上的数值不可调。

(2

(3

接受速度讲义该数值为最小单位增量,

和减少,首页面增量控制与其他页面相关,即任意页面增量控制数值改变后,其他的页面的增量控制数值也同时改变。

(4)“联动”标签页面,启动和停止按键并不控制高压电源,启动后需要手动调节电源电压,设备运行结束后需要先关闭高压电源再进行其他操作。

(1)每个数字都具有特定的物理意义,因此在修改数值的对话框左上角标明了该值的设定范围,如果修改后的心智超出该范围则无法输入。系统默认的推注速度范围是0.001-90mm/min。

(2)前止点的意义是限制推注滑块安全运行的行程,是在实验开始之前设定好

的实验参数值,若未设置前止点的位置,系统将不允许开始实验,

(3)对于统一规格的注射器,若无其他人为操作改变,前止点设定一次即可,

即每次开关机之后,前止点位置不变,但使用不同规格的注射器是,前止点的位置需要重新设定。

(4)“当前位置”表示推注滑块当前位置与前止点之间的距离,“剩余时间”表

(5

(6

解锁,可对当前位置重新修改。

(1)“行程设定”指的是:平移部分左右往返一次总的有效行程值。设定的行程值一定不要大于当前设定中点王府运动行程与滑台两边间的距离,以免发生事故。原则上可以将平台上任一点设为中点,然后平台讲义当前位置为中心按照规定行程进行往复运动。但是,在启动前一定要确保中点位置和行程设定是否正确有效。(2)平移标尺上的单位为cm,要将其单位换成mm之后再输入至触摸屏的制定对话框中。

(3)平移速度通常不是影响纺丝效果的一个重要因素,因此一般建议将其速度设为300-500mm/min,若速度太小,肉眼可能观察不到其移动。

(1)因接收转辊只有一个参数需要调节,即接收速度。因此未单独为接收装置

设置标签页面。启动及数值调节,方法

(1)设备内部电离空气的味道,并伴有丝丝声是正常现象。加湿后空气更容易被高压电击穿,操作人员应注意确保配有安全防护设备,并提高安全距离。(2)内部有溢水口,设备在使用中发现有水流出,要停止操作。切断电源,查明原因。

(3)当停止加热加湿操作时,必须将温度湿度全部设置为“0”,避免消耗设备功率。

(4)温度设定范围:室温70℃左右,湿度设定范围:30-80%。

(5)加温功能开启后,黑色加热板温度会较高,小心烫伤!

“高级”标签页面为我公司出厂权限设置,其不可更改。

(1)高速取向接收装置的转速是2800r/min且不可调,没运行半个小时后,要暂停一段时间缓冲后在重复使用,长时间不间断使用高速电机会因长时间高速运转而损坏。

(2)实验操作步骤要严格按照上面文字进行,否则会因为功率不够导致控制其无法重启。

(3)高速取向接收装置电源插口上配有绝缘帽,平时一定要将绝缘帽盖好,乙方同学误碰插口触电。

(1)平行取向接收丝器的转速可调,与转辊接收为一个调节按钮。此装置接收时,需要选择一个尺寸小于接收区域的接收基底,且需要一直用手拿着放在相应的接受位置,无需移动。

(2)由于平行转盘边缘较薄,因此开启接收器后,手放置时需注意个人安全,以防切伤。也可以采用其他接收工具代替手,如竹镊子等,夹住接收基底,且置于接受区域“A”内接收丝束。

静电纺丝实验

静电纺丝实验 方案一: 2.2.3 插层复合静电纺丝溶液的制备及其基本性质的研究 按比例准确称取一定质量的O-MMT,在20 mL 的DMF 中超声分散3 h,然后加入 3 g 聚丙烯腈粉末,搅拌24 h 后待用。本实验中,O-MMT 的加入量占PAN/O-MMT 复合材料总质量的0 wt.%、1 wt.%、3 wt.%及5 wt.%,用PAN、PAN/O-MMT-1、PAN/O-MMT-3 及PAN/O-MMT-5 分别表示。原料O-MMT、PAN 固体粉末使用前在50 oC温度下干燥处理12 小时后使用。 对含有不同比例O-MMT 的PAN/O-MMT 复合静电纺丝液的基本性质(粘度、电导率、表面张力)进行测试。纺丝液的粘度采用旋转式粘度计(NDJ-79)进行测试,表面张力的测试则是通过QBZY-1 型全自动表面张力仪测试得到的,电导率的测试是利用DDS-11A 型数显电导率仪测试得到的。 2.2.4 静电纺丝法制备插层复合纳米纤维 将已配置好的纺丝液倒入带针头的标准容量为20 mL 注射器,在针头加上正电势,用被铝箔覆盖的滚筒作为接收装置,纺丝工艺为:纺丝电压15 kV,推进速度0.5 mL/h,收集距离15 cm。纺丝结束后,收集铝箔上的纳米纤维,在室温下存放,待残留溶剂挥发。 方案二: 1。1复合材料的制备 选用分子量为90000的PAN粉末和平均粒径为35nm的硅粉为主要原料.先将PAN粉末加入二甲基甲酰胺DMF溶剂中形成质量分数为12%的高分子聚合物溶液再按质量比mSi∶mPAN=1∶6.5加入硅粉形成悬浊液.上述液体在室温下搅拌12h后超声分散30min形成均一稳定的前驱体溶液.将前驱体溶液置于15mL注射器中针头孔径0.6mm通过推进泵控制移动速度进行静电纺丝.纺丝电压为17kV接收板为22m铝箔接收距离为21.5cm.所得纺丝前驱体在290℃预氧化1h后置于通有氩气保护的管式炉中烧结烧结温度为600℃烧结时间为5h.为了进行对比分析本文采用相同的静电纺丝工艺制备了PAN原丝.先将PAN粉末加入DMF溶剂中形成质量分数为12%的高分子聚合物溶液该溶液未加硅粉其静电纺丝过程前驱体预氧化过程和烧结过程的参数与上述SiC复合材料制备参数一致. 方案三: 2.3.3.1 SiOz纳米粒子表面固定ATRP引发剂 使用前的Si02粒子经150"C真空干燥24小时,氮气保护的冰水浴四孔烧瓶中加入2.Og纳米Si02粒子,3.09(9.5mm01)4一苄基三氯硅烷和20ml无水四氢呋喃(使用前经金属钠回流6小时),磁力搅拌后,溶于5.Oral四氢呋喃的三乙胺1.2ml(8.6 mm01)缓慢地滴加入上述体系,滴加完毕后O'C放置24,时,撤去冰水浴窒温反应244,时。反应完毕后,离心的下层粉状固体,用甲醇/水混合溶剂(v/v,1/1)清洗3次后,室温真空干燥24小时,大约共得到约1.89l 兰l色粉末状固体。 2.3.3.2纳米粒子表面引发GMA的ATRP反应

实验八 模拟法测绘静电场

实验八 模拟法测绘静电场 模拟法本质上是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的状态和过程,要求这两种状态或过程有一一对应的两组物理量,且满足相似的数学形式及边界条件。 一般情况,模拟可分为物理模拟和数学模拟,对一些物理场的研究主要采用物理模拟(物理模拟就是保持同一物理本质的模拟),数学模拟也是一种研究物理场的方法,它是把不同本质的物理现象或过程,用同一个数学方程来描绘。对一个稳定的物理场,若它的微分方程和边界条件一旦确定,其解是唯一的。两个不同本质的物理场如果描述它们的微分方程和边界条件相同,则它们的解也是一一对应的,只要对其中一种易于测量的场进行测绘,并得到结果,那么与它对应的另一个物理场的结果也就知道了。由于稳恒电流场易于实现测量,所以就用稳恒电流场来模拟与其具有相同数学形式的静电场。 我们还要明确,模拟法是在实验和测量难以直接进行,尤其是在理论难以计算时,采用的一种方法,它在工程设计中有着广泛的应用。 【实验目的】 本实验用稳恒电流场分别模拟长同轴圆形电缆的静电场、平行导线形成的静电场、劈尖形电极和聚焦。具体要求达到: 1、学习用模拟方法来测绘具有相同数学形式的物理场。 2、描绘出分布曲线及场量的分布特点。 3、加深对各物理场概念的理解。 4、初步学会用模拟法测量和研究二维静电场。 【实验仪器】 GVZ 一3型导电微晶静电场描绘仪(包括导电微晶、双层固定支架、同步探针等),如图所示,支架采用双层式结构,上层放记录纸,下层放导电微晶。电极已直接制作在导电微晶上,并将电极引线接出到外接线柱上,电极间有电导率远小于电极且各项均匀的导电介质。接通直流电源〔10v)就可进行实验。在导电微晶和记录纸上方各有一探针,通过金属探针臂把两探针固定在同一手柄座上,两探针始终保持在同一铅垂线上。移动手柄座时,可保证两探针的运动轨迹是一样的。由导电微晶上方的探针找到待测点后,按一下记录纸上方的探针,在记录纸上留下一个对应的标记。移动同步探针在导电微晶上找出若干电位相同的点,由此便可描绘出等位线。 【实验原理】 (一)模拟长同轴圆柱形电缆的静电场 稳恒电流场与静电场是两种不同性质的场,但是它们两者在一定条件下具有相似的空间分布,即两种场遵守规律在形式上相似,都可以引入电位U,电场强度U E -?=,都遵守高斯定律。 对于静电场,电场强度在无源区域内满足以下积分关系: 图1导电微晶静电场描绘仪

静电纺丝法简介

CENTRAL SOUTH UNIVERSITY 硕士生课程论文 题目静电纺丝法简介 学生姓名张辉华 学号133511018 指导教师秦毅红 学院冶金与环境学院专业冶金工程 完成时间2014.5.27

静电纺丝法简介 摘要:静电纺丝法是聚合物溶液或熔体在静电作用下进行喷射拉伸而获得纳米级纤维的纺丝,作为一种新颖的纳米纤维制备方法,具有许多一般纳米纤维制备法没有的优点,在国内外一直引起广泛的关注。本文主要是介绍了静电纺丝的基本原理以及研究重点,同时简要地介绍了此方法在电池材料一起其他材料上的应用。 前言 静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,最终固化成纤维。静电纺丝技术在1934年首先由Formhals[1]提出, 随后的相当长一段时间又有多项专利出现。近年来,随着纳米材料研究的兴起,人们发现由电纺制得的纤维的直径可以达到纳米级,使得这种技术重新受到重视并出现了大量的文献[2]。目前, 主要是从事材料、化工和高分子领域的科学家在研究静电纺丝。 1 静电纺丝实验装置与基本原理 1.1 电纺过程 所需设备高压电源,溶液储存装置,喷射装置( 如内径 1 mm 的毛细管) 和收集装置( 如金属平板、铝箔等) 。图1为传统的单纺装置。 图1 经典的静电纺丝装置示意图

高压静电场(一般在几千到几万伏) 在毛细喷丝头和接地极间瞬时产生一个电位差,使毛细管内聚合物溶液或者熔融体(一般为非牛顿流体) 克服自身的表面张力和粘弹性力,在喷丝头末断呈现半球状的液滴。随着电场强度增加,液滴被拉成圆锥状即Taylor锥。当电场强度超过一临界值后,将克服液滴的表面张力形成射流(一般流速数m/s),在电场中进一步加速,直径减小,拉伸成一直线至一定距离后弯曲,进而循环或者循螺旋形路径行走,伴随溶剂挥发或熔融体冷却固化,终落在收集板上形成纤维,直径一般在几十纳米到几微米之间。 除去传统的单纺丝还有其他的一些纺丝方式,如同轴静电纺丝,共轴复合纺丝就是将两种不同聚合物溶液预先不经混合, 而是各自在电场力的驱动下共轴 喷射经过同一个毛细管或注射器针头出口,得到连续的复合纤维的方法,该纤维具有核-壳结构。共轴复合纺丝设备如图2(a)所示,核-壳结构纤维如图2(b)所示。 图2 同轴纺丝和复合纤维形貌 同轴纺丝能直接接一步制备复合微/纳米线,可以制备医用复合纳米线、空心纳米管,这种方法制备出来的材料品质要明显优于涂覆法制备的材料。此外可以将碳纳米管与挥发性溶剂混合液用作内纺液, 将聚合物溶液用作外纺液, 利用溶剂的挥发性就可以携带碳纳米管渗透到外层聚合物中, 形成连续的碳纳米管增强 的复合纳米纤维。

模拟法测静电场示范实验报告

实验七:模拟法测静电场 示范实验报告 【实验目的】 1. 理解模拟实验法的适用条件。 2. 对于给定的电极,能用模拟法求出其电场分布。 3. 加深对电场强度和电势概念的理解。 【实验仪器】 YJ-MJ-Ⅲ型激光描点模拟静电场描绘仪、白纸、夹子 【实验原理】 直接测量静电场,是非常困难的,因为: ① 静电场是没有电流的,测量静电场中各点的电势需要静电式仪表。而教学实验室只有磁电式仪表。任何磁电式电表都需要有电流通过才能偏转,所以想利用磁电式电压表直接测定静电场中各点的电势,是不可能的。 ② 任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,会使场源电荷的分布发生变化。 人们在实践中发现:两个物理量之间,只要具有相同的物理模型或相同的数学表达式,就可以用一个物理量去定量或定性地去模拟另一个物理量,这种测量方法称为模拟法。本实验用稳恒电流场模拟静电场进行测量。 从电磁学理论知道,稳恒电流场与静电场满足相同的场方程: 0E dl ?=? (静电场的环路定理) , 0E dS ?=?? (闭合面内无电荷时静电场的高斯定理); 0j dl ?=? (由?=?0l d E ,得?=?0l d E σ,又E j σ=,故?=?0l d j ) , 0j ds ?=?? (电流场的稳恒条件); 如果二者有相同的边界条件,则场分布必定相同,故可用稳恒电流场模拟静电场。 1.长直同轴圆柱面电极间的电场分布 在真空中有一个半径为r 1的长圆柱导体A 和一个内半径为r 2的长圆筒导体B ,其中心轴重合且均匀带电,设A 、B 各带等量异种电荷,沿轴线每单位长度上内外柱面各带电荷σ+和

静电纺丝论文

毕业论文(设计) 聚苯乙烯纳米纤维膜的PDMS功能化及润湿行 为研究 The Wetting Behavior Research of PDMS Functional Polystyrene Nanofiber Membrane 学生姓名: 指导教师: 合作指导教师: 专业名称:应用物理学 所在学院:理学院 2014年6月

目录 摘要......................................................... I ABSTRACT .................................................... I I 第一章前言 (1) 1.1.静电纺纳米纤维膜技术原理 (1) 1.1.1. 静电纺复合纳米纤维膜实验装置 (1) 1.1.2. 静电纺丝装置技术现状与应用 (1) 1.1.3. 静电纺纳米纤维膜技术原理与发展方向 (2) 1.2.超疏水表面制备方法 (2) 1.3.本论文的主要研究工作 (3) 1.4.本论文的构成 (4) 第二章本课题相关研究技术简介 (5) 2.1.PDMS和PS的性质功能介绍 (5) 2.1.1 PDMS和PS的基本性质介绍 (5) 2.1.2 PDMS和PS的应用 (5) 2.2.复合纤维膜的疏水性与水的渗透通量的影响因素 (6) 2.3.静电纺丝技术的优势与局限性 (7) 第三章实验部分 (8) 3.1.实验试剂 (8) 3.2.实验仪器 (8)

3.3.实验步骤 (8) 3.3.1. PS溶液配制 (8) 3.3.2. 掺杂PDMS的PS溶液配制 (8) 3.3.3. PS及其复合物纳米纤维无纺布的制备 (9) 3.3.4. 薄膜表面疏水性能的评价 (9) 3.3.5. 纤维形貌的表征 (9) 第四章结果与讨论 (10) 4.1.纤维形貌的表征 (10) 4.1.1 PDMS浓度对静电纺丝情况的影响 (10) 4.1.2 掺杂PDMS的PS纳米纤维无纺布的形貌 (10) 4.2.纤维表面润湿性能的表征 (12) 第五章实验结论 (15) 致谢 (17) 参考文献 (18) 附录 (19)

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

用模拟法测绘静电场

用模拟法测绘静电场实验示范报告 物理实验中心 鲁晓东 【实验目的】 1.懂得模拟实验法的适用条件。 2.对于给定的电极,能用模拟法求出其电场分布。 3.加深对电场强度和电势概念的理解 【实验仪器】 双层静电场测试仪、模拟装置(同轴电缆和电子枪聚焦电极)、JDY 型静电场描绘电源。 [实验原理] 【实验原理】 1、静电场的描述 电场强度E 是一个矢量。因此,在电场的计算或测试中往往是先研究电位的分布情况,因为电位是标量。我们可以先测得等位面,再根据电力线与等位面处处正交的特点,作出电力线,整个电场的分布就可以用几何图形清楚地表示出来了。有了电位U 值的分布,由 U E -?= 便可求出E 的大小和方向,整个电场就算确定了。 2、实验中的困难 实验上想利用磁电式电压表直接测定静电场的电位,是不可能的,因为任何磁电式电表都需要有电流通过才能偏转,而静电场是无电流的。再则任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,使原场源电荷的分布发生变化。人们在实践中发现,有些测量在实际情况下难于进行时,可以通过一定的方法,模拟实际情况而进行测量,这种方法称为“模拟法”。 3、模拟法理由 两场服从的规律的数学形式相同,如又满足相同的边界条件,则电场、电位分布完全相类似,所以可用电流场模拟静电场。这种模拟属于数学模拟。 静电场(无电荷区) 稳恒电流场(无电流区) ??? ???????==?=?=???b a ab l d E U 0l d E 0S d D E D ε ??????????==?=?=?? ?b a ab l d E U 0l d E 0S d j E j σ 4、讨论同轴圆柱面的电场、电势分布 (1)静电场 根据理论计算,A 、B 两电极间半径为r 处的电场强度大小为 r E 02πετ = A 、 B 两电极间任一半径为r 的柱面的电势为

医学领域的静电纺丝技术

近年来,由于疾病、人口老龄化、意外事故等造成大量的人体器官和组织的损坏和功能缺失,如何实现人体组织和器官的快速修复和重建以及治疗药物在人体内的可控释放已成为生物医学研究领域面临的重要问题。 要使缺损的组织和器官得以修复和重建,其过程是构建有生物活性的细胞支架材料,这种支架可以载有生长因子或本体细胞,植入体内后支架材料逐渐被分解和吸收的同时,细胞增殖并形成新的组织,从而修复缺损组织替代器官,支架材料或作为一种体外装置,暂时替代器官功能,达到提高生命质量,延长生命的目的。 自20世纪60 年代以来,对于药物控制释放体系的研究,受到研究者的广泛关注。与传统给药模式相比药物控制释放具有显著的优点,除提高药物治疗的准确性、有效性、安全性外,还明显降低了药物的生产成本和不良反应,药物控制释放材料的研究得到迅速发展,其中制备性能优良的药物载体已成为药物控制释放技术的研究热点。 由于高分子材料的化学组成、加工工艺和性能易于调控,在一定尺度上通过调控聚合过程或加工工艺,可易于改变或调节材料的物化性能,因此把组织工程学和药物控制释放原理与高分子材料结合起来,合成具有生物相容性和刺激响应性的生物功能材料,具有重大的科学意义和广阔的应用前景。

静电纺丝作为一种简单、有效、方便而经济的高分子材料加工技术,其技术核心是将具有一定粘度且带有电荷的高分子熔体或溶液在高压静电场中喷射、拉伸细化、劈裂,终固化成微纳米级纤维状物质的过程。 静电纺聚合物纳米纤维具有比表面积大、孔隙率高、良好的三维结构和各向同性的力学性能等优点,能够满足组织工程中细胞支架和药物控释载体在比表面积、多孔结构和力学性能等方面的要求,而且具有纤维孔隙结构的支架材料与细胞增殖有良好的适配性,可有效模拟细胞外基质环境,同时比膜状材料更有利于细胞粘附。 国内纳米纤维和静电纺丝技术正在蓬勃发展,科研发文数量一直位居全球首位。近年来,电纺纤维及其纤维膜由于高的比表面积,高的孔隙率以及形貌可控等优点在伤口愈合方面引起了很多关注,电纺纤维膜一方面能够物理隔绝病毒和细菌,又能够透气保湿,给伤口营造一个良好的愈合环境。 另一方面,电纺纤维的直径以及纤维膜的孔径与细胞外基质的尺寸相仿,能够促进细胞生长,加速伤口愈合速度,减少疤痕产生,因此在创伤敷料方面有独特的优势。 但大多数电纺敷料通常是经过先制备再应用的过程,容易对伤口造成二次创伤。原位电纺目前是一种较为理想制备及应用电纺敷料的方法。便携式手持静电

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

实验十四-静电场的模拟测绘

实验十四 静电场的模拟测绘 实验目的 1.学会用模拟法测绘静电场。 2.加深对电场强度和电位概念的理解。 实验器材 静电场描绘仪,静电场描绘仪信号源(或稳压电源、电压表),滑线变阻器,万用电表、坐标纸等。 实验原理 带电体的周围存在静电场,场的分布是由电荷的分布。带电体的几何形状及周围介质所决定的。由于带电体的形状复杂,大多数情况求不出电场分布的解析解,因此只能靠数值解法求出或用实验方法测出电场分布。直接用电压表法去测量静电场的电位分布往往是困难的,因为静电场中没有电流,磁电式电表不会偏转;另外由于与仪器相接的探测头本身总是导体或电介质,若将其放入静电场中,探测头上会产生感应电荷或束缚电荷。由于这些电荷又产生电场,与被测静电场迭加起来,使被测电场产生显著的畸变。因此,实验时一般采用间接的测量方法(即模拟法)来解决。 1.用稳恒电流场模拟静电场 模拟法本质上是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的物理状态或过程,它要求这两种状态或过程有一一对应的两组物理量,而且这些物理量在两种状态或过程中满足数学形式基本相同的方程及边界条件。 本实验是用便于测量的稳恒电流场来模拟不便测量的静电场,这是因为这两种场可以用两组对应的物理量来描述,并且这两组物理量在一定条件下遵循着数学形式相同的物理规律。例如对于静电场,电场强度E 在无源区域内满足以下积分关系 ??=?S d 0S E (14-1) ?=?l d 0l E (14-2) 对于稳恒电流场,电流密度矢量j 在无源区域中也满足类似的积分关系 ??=?S d 0S j (14-3) ?=?l d 0l j (14-4) 在边界条件相同时,二者的解是相同的。 当采用稳恒电流场来模拟研究静电场时,还必须注意以下使用条件。 (1)稳恒电流场中的导电质分布必须相应于静电场中的介质分布。具体地说,如果被模拟的是真空或空气中的静电场,则要求电流场中的导电质应是均匀分布的,即导电质中各处的电阻率ρ必须相等;如果被模拟的静电场中的介质不是均匀分布的,则电流场中的导电质应有相应的电阻分布。

静电纺丝 - 东华大学精品课程网站

静电纺丝 1 实验简介: 静电纺丝法是聚合物溶液或熔体借助静电力作用进行喷射拉伸而获得纤维的一种方法。该方法涉及到高分子科学,应用物理学、流体力学、电工学、机械工程、化学工程、材料工程和流变学。通过这种方法能够制备超细纤维,其纤维直径在微米和纳米之间,比传统纺织纤维的直径范围要小1~2个数量级。这种小直径提供大比表面积,其范围在10 m2/g(当直径约为500nm时)~1000 m2/g(当直径约为50nm时)。这种超细纤维在过滤,防护织物和生物医药领域都有广阔的应用。 图1 2 实验目的: 了解静电纺丝原理及设备的基本特点。 了解影响静电纺丝的各种影响因素。 通过对纺丝原液的控制制备出具有不同形态的静电纺纤维。 3 原理

20~100μm。(如图2)

图3 不同曝光时间电纺射流图像 左图:快门速度20ms;右图:快门速度为1.0ms。 在产生了射流以后,射流路径在某一距离为直线。然后,在直线段下端产生静电,与空气阻力所引起的弯曲不稳定。这种弯曲允许射流在空间较小的区域内有较大的拉伸。在肉眼观察下或较慢快门的照片中,不稳定区域类似于射流从不稳定起始处的分裂喷射。然而在快门速度为1.0ms的照片中可以发现,射流并不是分裂,而是在进行螺旋运动。分裂现象只是由于射流快速飞行而产生的错觉。但是,在针对某些材料的实验中,也可以观察到射流的分裂和散布现象。静电力使射流伸长数千倍甚至数百万倍,于是射流变得非常细。在整个过程中,溶剂挥发或熔体固化,最终所得的连续纳米纤维收集在接地的金属板、卷绕转鼓或其它种类的收集器上。 静电纺丝的影响因素 现在采用的多为溶液静电纺,其纺丝过程中的影响因素有:纺丝原液浓度,静电场强度,喷丝头直径,纺丝原液特性(如:粘度、表面张力、电导率,饱和蒸汽压等),接收距离,挤出速度,纺丝环境的温度、湿度等。这些因素将会影响所纺纤维的直径,直径分布,纤维形态(串珠结构),结晶度,以及纤维毡的孔隙率,机械强度等性能。在这些影响因素中纺丝原液性质和静电场强度是最主要的影响因素。

静电纺丝操作说明

静电纺丝操作步骤(有粘结性的溶液) 溶液配制好后按如下步骤进行喷丝实验: 1.打开总开关,检查正负压电源的调节旋钮是否归零(左旋到底),紧急停机旋 。 2.控制面板上的钥匙电源开关右拧,此时进 入标签页面。点击来到推注控制页面。 3.或,快速将注射器的

活塞推到底,此时点击。 4.点击,使滑块迅速移退至一定位置,取出空的注射器,将纺丝液注入到 注射器中,固定到推注泵卡口处,通过或来调节滑块位置,使针头 此时显示框内出现负值, 的可用长度,在此范围内任意设定需要纺丝的距离。 5. 接收器:固定式的,平行式的,高转速的) 6.点击并修改、或参数。 7.通过设备底部滑台上的夹子调节喷丝头与连接器之间的距离, 确定好位置,高压夹头加紧,点击,此时推注装置开始单独运行。 8.将控制面板上的、红色按钮按下,此时正负高压开 启,调节旋钮;边观察纺丝现象边调节 (目的是调节喷丝效果),直至出现比较稳定的喷射流即可。 9.若启动平移装置,可以通过触摸屏点击,首先检查平移部分的中点,一 般将标尺的零点设定为中点,并设定平移行程和平移速度。也可以通过点击 “设为中点”即可将当前 位置设定为平移中点, 点击,此时平移装置开始单独运行。 10.若需启动接收装置,可以通过触摸屏点击,设定转辊接收速度,直接 以及。 11.若需要同时启动两个推注装置、平移装置、接收装置,可以分别在相应的标 签页面设置好运行参数之后,点击进入联动标签页面,点击,此时所有能动的装置都会启动,如需停止,点击“停止”即可,此为联动启动功能。 12. 完毕之后再打开正负高压继续进行实验。 13. 操作功能之后方可手触所收集的材料。

电磁场与电磁波实验指导书

电磁场电磁波实验 实验一电磁感应定律的验证 一、实验目的 1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 2、了解半波天线感应器的原理及设计方法 3、天线长短与电磁波波长的接收匹配关系 二、预习要求 1、麦克斯韦电磁理论的内容 2、什么是电偶极子? 3、了解线天线基本结构及其特性 三、实验仪器 HD-CB-IV电磁场电磁波数字智能实训平台:1套 电磁波传输电缆:1套 平板极化天线:1副 半波振子天线:1副 感应灯泡:1个 四、实验原理 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式: │ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过0.625 λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。 五、实验步骤 (一)测量电磁波发射频率 1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。 2、在液晶界面上同时显示出发射功率及频率。 3、已知电磁波发射源的频率F,求得波长:λ=F V光,比如,电磁波发射源频率为900MHz,

熔体静电纺丝发展及应用(魏取福)

熔体静电纺丝发展及应用 徐阳,王肖娜,黄锋林,魏取福﹒江南大学生态纺织教育部重点实验室 摘要:静电纺丝法是制备纳米纤维的一种有效方法,得到了广泛的关注和研究。而作为其分 支之一的熔体静电纺丝是近年来才逐渐有研究报道的。虽然其装置较为复杂,纺丝过程不易调控,但其原料适用性广、无毒无污染及产品转化率高等特点,使其在过滤防护、生物医药等领域有着广阔的应用前景。本文在总结熔体电纺典型装置、工艺及聚合物的基础上,分析了熔体射流的运动规律,探讨了熔体电纺纤维的应用,并对其发展方向进行了预测和展望。 关键词:熔体电纺;装置;聚合物;纤维物化性质;应用 引言 静电纺丝是指聚合物溶液或熔体在高压电场中拉伸成纤的过程。自1902年Cooley在其申请的专利[1]中阐明溶液的静电纺丝技术以来,已经100多年了,其间备受关注,研究广泛。而熔体电纺虽然在1936年Charles Norton等的专利中就已提出[2],但直到1981年才有相关的研究论文出现。Larrondo和Manley发表的三篇系列论文中的第一篇以聚丙烯(PP)和聚乙烯(PE)为原料,探究了熔体电纺的可能性,对比了溶液电纺和熔体电纺的临界电压,并对射流成丝过程进行了摄像记录[3]。此后对熔体电纺的研究依然是持续的空白。21世纪初,才真正掀起了熔体电纺的研究高潮。熔体电纺过程无毒无污染,克服了溶液电纺中溶剂残留和聚集的问题,可以弥补溶液电纺在某些对卫生、安全要求较高的领域如组织工程的应用缺陷。可能是受近年来生物工程研究热潮的推动,国内外学者都对熔体电纺展开了逐渐深入的研究。从2005年到2012年的研究论文达60余篇,并陆续有专利的申请。 熔体电纺装置 熔体电纺的装置目前均由各个研究机构自行搭建,尚无公认的成熟设备。其必要的组成部分是加热部件、给料部件、高压电源及接收部件。熔体电纺装置采取的加热方式主要有激光加热、电加热、流体加热、热风加热。电加热是最普遍的加热方式,笔者所在实验室搭建的熔体电纺装置采用的就是电加热的方式,如图1所示,使用电热圈加热,利用传感器和温控仪对熔体温度实现实时有效调控。实验中分别采用滚筒、平板作为接收装置得到的聚丙烯纤维膜的形态及其SEM 图如图1所示。

静电纺丝技术

摘要:文章介绍了静电纺丝制备纳米纤维的技术,详细地介绍了这种技术的优点,以及它在各个方面广泛的应用。此外,虽然它具有很多的优点,但目前也仍然存在一些问题,我们也对此进行了探讨。 关键词:静电纺丝纳米纤维应用原理 前言:近年来,纳米结构材料,如纳米纤维、纳米管,由于其尺寸效应十分显著,在光、热、磁、电等方面的性质和体材料明显不同,出现许多新奇特性,因此收到了研究人员的高度重视。纳米纤维最大的特点就是比表面积大,从而导致其表面能和活性的增大,产生小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理性质方面表现出特异性[1]。电纺技术是一种简单和通用的获得连续微米级别以下的超细纤维的方法。通过电纺的方法可以制备出多种纳米纤维,包括氧化物纤维,高子分聚合物纤维等。静电纺丝方法制备的纳米纤维,具有纳米尺寸的直径,高比表面以及纤维之间形成的微小孔隙[2]。 纳米纤维、静电纺丝都是一些新事物,具有广阔的发展前景。可以用于组织工程、人造器官、药物传递和创伤修复等。另外,对植物施用杀虫剂是纳米纤维可能大规模应用的又一个领域。但当前的静电纺丝技术还不成熟,有待于深入地研究,以制得高质量的纤维并能使纳米纤维的制备实现产业化[3]。 一静电电纺丝技术 静电纺丝技术(electrospinning)在国内一般简称为电纺,其是一种利用聚合物流体在强电场作用下,通过金属喷嘴进行喷射拉伸而获得直径为数十纳米到数微米的纳米级纤维的纺丝技术。通过静电纺丝技术得到的纳米级纤维具有直径小、表面积大、孔隙率高、精细程度一致等特点,在组织工程、传感器、工业、国防、农业工程等领域具有极大的发展潜力,而且其在医药领域诸如伤口敷料、控制释放体系等方面也有着巨大的应用前景[5]。从科学基础来看,这一发明可视为静电雾化技术的一种特例。静电雾化与静电纺丝的最大区别在于:两者所使用的工作介质不同。静电雾化采用的是粘度较低的牛顿流体;而静电纺丝采用的是粘度较高的非牛顿流体。由于静电雾化技术与静电纺丝技术原理类似,所以前者的研究也为后者提供了一定的理论基础[4]。因为静电纺丝过程涉及到的学科领域很多,所以至今对它的研究仍处于探索阶段,虽然早在1934年,Formals就发明了用静电力制备聚合物纤维的实验装置并申请了专利,在其专利中,他公布了如何以丙酮作为溶剂的醋酸纤维素溶液在电极间形成射流,从而在静电推力下产生聚合物纤维。 静电纺丝技术的思路最早来源于人们对液体在电场力作用下的电喷射行为的研究。Raleigh在1882年研究发现,当液滴承受的电场力超过表面张力时,其原本的平衡状态被打破,悬挂在金属喷丝头上的液滴就分裂成一系列带电小液

用模拟法测绘静电场实验示范报告

用模拟法测绘静电场实验 示范报告 Prepared on 22 November 2020

用模拟法测绘静电场实验示范报告 【实验目的】 1.懂得模拟实验法的适用条件。 2.对于给定的电极,能用模拟法求出其电场分布。 3.加深对电场强度和电势概念的理解 【实验仪器】 双层静电场测试仪、模拟装置(同轴电缆和电子枪聚焦电极)、JDY型静电场描绘电源。 [实验原理] 【实验原理】 1、静电场的描述 电场强度E是一个矢量。因此,在电场的计算或测试中往往是先研究电位的分布情况,因为电位是标量。我们可以先测得等位面,再根据电力线与等位面处处正交的特点,作出电力线,整个电场的分布就可以用几何图形清楚地表示出来了。有了电位U 值的分布,由 便可求出E的大小和方向,整个电场就算确定了。 2、实验中的困难 实验上想利用磁电式电压表直接测定静电场的电位,是不可能的,因为任何磁电式电表都需要有电流通过才能偏转,而静电场是无电流的。再则任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,使原场源电荷的分布发生变化。人们在实践中发现,有些测量在实际情况下难于进行时,可以通过一定的方法,模拟实际情况而进行测量,这种方法称为“模拟法”。 3、模拟法理由 两场服从的规律的数学形式相同,如又满足相同的边界条件,则电场、电位分布完全相类似,所以可用电流场模拟静电场。这种模拟属于数学模拟。 静电场(无电荷区) 稳恒电流场(无电流区) 4、讨论同轴圆柱面的电场、电势分布 (1)静电场 根据理论计算,A、B两电极间半径为r处的电场强度大小为 A、B两电极间任一半径为r的柱面的电势为

静电纺丝技术

静电纺丝技术的研究 摘要:文章介绍了静电纺丝制备纳米纤维的技术,详细地介绍了这种技术的优点,以及它在各个方面广泛的应用。此外,虽然它具有很多的优点,但目前也仍然存在一些问题,我们也对此进行了探讨。 关键词:静电纺丝纳米纤维应用原理 前言:近年来,纳米结构材料,如纳米纤维、纳米管,由于其尺寸效应十分显著,在光、热、磁、电等方面的性质和体材料明显不同,出现许多新奇特性,因此收到了研究人员的高度重视。纳米纤维最大的特点就是比表面积大,从而导致其表面能和活性的增大,产生小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理性质方面表现出特异性[1]。电纺技术是一种简单和通用的获得连续微米级别以下的超细纤维的方法。通过电纺的方法可以制备出多种纳米纤维,包括氧化物纤维,高子分聚合物纤维等。静电纺丝方法制备的纳米纤维,具有纳米尺寸的直径,高比表面以及纤维之间形成的微小孔隙[2]。 纳米纤维、静电纺丝都是一些新事物,具有广阔的发展前景。可以用于组织工程、人造器官、药物传递和创伤修复等。另外,对植物施用杀虫剂是纳米纤维可能大规模应用的又一个领域。但当前的静电纺丝技术还不成熟,有待于深入地研究,以制得高质量的纤维并能使纳米纤维的制备实现产业化[3]。 一静电电纺丝技术 静电纺丝技术(electrospinning)在国内一般简称为电纺,其是一种利用聚合物流体在强电场作用下,通过金属喷嘴进行喷射拉伸而获得直径为数十纳米到数微米的纳米级纤维的纺丝技术。通过静电纺丝技术得到的纳米级纤维具有直径小、表面积大、孔隙率高、精细程度一致等特点,在组织工程、传感器、工业、国防、农业工程等领域具有极大的发展潜力,而且其在医药领域诸如伤口敷料、控制释放体系等方面也有着巨大的应用前景[5]。从科学基础来看,这一发明可视为静电雾化技术的一种特例。静电雾化与静电纺丝的最大区别在于:两者所使用的工作介质不同。静电雾化采用的是粘度较低的牛顿流体;而静电纺丝采用的是粘度较高的非牛顿流体。由于静电雾化技术与静电纺丝技术原理类似,所以前者的研究也为后者提供了一定的理论基础[4]。因为静电纺丝过程涉及到的学科领域很多,所以至今对它的研究仍处于探索阶段,虽然早在1934年,Formals就发明了用静电力制备聚合物纤维的实验装置并申请了专利,在其专利中,他公布了如何以丙酮作为溶剂的醋酸纤维素溶液在电极间形成射流,从而在静电推力下产生聚合物纤维。 静电纺丝技术的思路最早来源于人们对液体在电场力作用下的电喷射行为

静电纺丝

静电纺丝技术的应用及其发展前景 材料成型09-3 陈桂宏 14095543 “静电纺丝”一词来源于“electrospinning”或更早一些的“electrostaticspinning”,国内一般简称为“静电纺”、“电纺”等等。早在上世纪30年代就有人在电纺技术上申请了一系列的专利,是人们早已知晓的一项技术。1934年,Formalas发明了用静电力制备聚合物纤维的实验装置并申请了专利,其专利公布了聚合物溶液如何在电极间形成射流,这是首次详细描述利用高压静电来制备纤维装置的专利,被公认为是静电纺丝技术制备纤维的开端。但是,由于静电纺丝的可生产性较低,并没有引起人们的注意,直到近十年,由纳米技术 的迅速发展,静电纺丝才再次引起世界各国研 究学者的关注,并逐渐成为世界上用得到的最 普遍生产纳米纤维的方法。通过静电纺丝技术 制备纳米纤维材料是近十几年来世界材料科学 技术领域的最重要的学术与技术活动之一。静 电纺丝以其制造装置简单、纺丝成本低廉、可 纺物质种类繁多、工艺可控等优点,已成为有 效制备纳米纤维材料的主要途径之一。 图 1 静电纺丝装置图 1 静电纺丝技术原理及影响因素 静电纺丝的基本原理是:聚合物溶液或熔体在高压静电的作用下,会在喷丝口处形成 Taylor锥,当电场强度达到一个临界值时,电场力就能克服液体的表面张力, 在喷丝口处形成一股带电的喷射流。喷射过程中, 由于喷射流的表面积急速增大, 溶剂挥发, 纤维固化并无序状排列于收集装置上 ,从而得到我们需要的纳米纤维, 其装置图如图 1 所示。电纺技术制备的纤维直径可以在数十纳米到数百纳米之间。到目前为止, 已经报道有大约 100种聚合物利用静电纺丝技术制备出超细纳米纤维。 静电纺丝法的许多工艺参数相互密切联系,决定了纤维的直径大小和纤维的均匀性等性质。影响静电纺丝过程的因素主要有两个方面, 一是溶液的性质,包括溶液粘度, 表面张力等; 二是电纺设备参数, 如外加电压, 收集装置之间的距离等。除此之外还有温度、湿度等一些环境参数的影响。 影响电纺丝纤维形态的因素 (1)聚合物及其性质 一般情况下,用于电纺丝的材料都应是具有线性分子结构的聚合物,同时还应有

相关主题
文本预览
相关文档 最新文档