当前位置:文档之家› 矿井通风作业设计

矿井通风作业设计

矿井通风作业设计
矿井通风作业设计

第一小组题目

如图1所示,某矿井分为东西两翼,东翼用水平分层深孔留矿法回采,西翼用分段采矿法回采。试按表1、表2所给条件作矿井通风设计。

题目要求:

1、采用传统的通风方法进行设计,并要求进行局部通风设计。承担者:

2、采用多风机多级机站通风方法进行设计(三级机站)。承担者:

3、采用多风机多级机站通风方法进行设计(四级机站)。承担者:

图1 某矿通风系统

表1 矿块特征

名称水平分层深孔留矿法分段采矿法同时生产的矿块数(个) 2 2

每一矿块的耙矿或二次破碎巷道数(个) 2 1

每一耙矿或二次破碎巷道破碎断面(m2) 4.5 4.6

每一耙矿或二次破碎巷道的长度(m)30 30

每一耙矿或二次破碎巷道的产量(吨/昼夜)300 350 每个矿块每次爆破间隔时间(周)2(两矿块不同时爆破)1(两矿块不同时爆破)每个矿块每次爆破炸药量(kg)1300 250

每个采场自由空间体积(m3)4500 2550

大爆破后加强通风时间(h) 2 2

每次二次破碎炸药量(kg) 1.4 1.4

松散后的矿石容量(t/m3) 2.5 2.5

分段平巷断面(m2)— 6

凿岩硐室断面(m2)10 —

凿岩设备型号YG-80 YG-40 使用凿岩设备台数(台)4(每个硐室2台)5(每个分段平巷1台)

表2 井巷规格

顺序名称支护型式断面形状断面积m2 长度m 周边长m 1-2 提升井筒混凝土支护,有管子间及梯子间圆形28.3 230 18.84

2-3 阶段石门无拱形9.9 100 12.89

3-4 阶段平巷无拱形 5.0 140 9.98

4-5 天井木框方形 2.0×1.5 60 7.0

5-7 回风平巷无拱形 5.8 60 9.98

9-10 回风平巷无拱形 5.8 760 9.98

10-11 回风平巷混凝土拱形 5.8 100 9.98

11-12 回风平巷混凝土拱形 5.8 100 9.98

12-13 回风井木框方形 2.0×3.5 120 11.0

13-14 回风石门混凝土拱形 5.8 100 9.98

14-15 回风井木框方形 2.0×3.5 100 11.0

3-16 阶段平巷无拱形 5.9 200 9.98

16-18 阶段平巷无拱形 5.8 60 9.98

18-19 穿脉无拱形 4.12 10 7.74

19-24 天井木框方形 1.9×2.9 60 9.6

24-25 穿脉无拱形 3.6 30 7.6

25-27 回风平巷无拱形 5.8 30 9.98

29-30 回风平巷无拱形 5.8 540 9.98

31-34 回风平巷同11-15

设计要求:

1、计算全矿所需风量,进行风量分配;

2、计算全矿总阻力(第一阶段的最大阻力);

3、选择扇风机,计算电动机功率。 解:1、计算全矿总风量及分配风量 Ⅰ 东翼水平分层深孔留矿法:

(1)电耙道所需风量 ① 二次破碎爆破通风所需风量

火药量 1.4A kg =;电耙道长度30L m =,断面24.5S m =,通风时间300t s =,则风量

31.17Q m s =

= ② 按排尘风速计算风量

电耙道风速0.5V m s =,则排尘风量

30.5 4.5 2.25Q VS m s ==?=

取风量大者,32.25Q m s =作为电耙道风量。 (2)采场作业面凿岩所需风量 ① 按爆破火药量计算

3

5002.3

lg ,/i V A Q m s K t V

= 式中 A ——火药量,A=1300kg

t ——通风时间,t=2×3600=7200s

V ——采场体积,V=4500m 3

K

i

1.5==,由《矿井通风与防尘》一书中的附录可查的K i =0.744 345005001300

2.3lg 4.17/0.74472004500Q m s ?=?=?

② 按排尘风速计算风量

30

,/0.772 4.1S Q m s n

=

+

式中,S 0——硐室采场入口巷道断面面积,S 0=36m

n ——风流受限系数,0/n b B ==1.2/7.5=0.16

36

4.2/0.772 4.10.16Q m s ==+?

取风量大者,采场风量为4.23/m m

(3)掘进、采准作业面的风量,按排尘风速计算并考虑贯穿风流的风量大于独头巷道风量1.43倍,则

30.25 3.6 1.43 1.29d Q VSK m ==??=

(4)出矿平巷所需风量

按排尘风速计算,30.25 5.8 1.45Q VS m s ==?=。

Ⅱ 西翼分段采矿法 (1)电耙道所需风量 ①二次破碎爆破通风所需风量

火药量 1.4A kg =;电耙道长度30L m =,断面24.6S m =,通风时间300t s =,则风量

31.18Q m s =

== ②按排尘风速计算风量

电耙道风速0.5V m s =,则排尘风量

30.5 4.6 2.3Q VS m s ==?=

取风量大者,32.3Q m =作为电耙道风量。 (2)采场作业面凿岩所需风量

①按爆破后排出炮烟至安全浓度以下计算风量

32.83m /s Q ===

②按排尘风速计算,取风速0.25V m s =,巷道断面26S m =,

30.256 1.5Q VS m s ==?=

取风量大者,采场风量为2.833/m s

(3)掘进、采准作业面的风量,按排尘风速计算,则

30.256 1.5Q VS m ==?=

(4)放矿巷道所需风量

按排尘风速计算,30.25 5.8 1.45Q VS m s ==?=。

(5)火药库风量取23m s 。 (6)矿井总风量

m i i Q K Q N =∑

式中 i Q ——各类作业面所需风量,3m s ;

i N ——各类作业面的数量;

K ——风量备用系数,此例中 1.5K =。

则 ()31.5 2.44 1.753 2.15 1.3432 2.5254.4m Q m =??+?+?+?++?= 矿井漏风按总回风道集中漏风考虑,各巷道按需分配的风量如图1所示。

2、计算全矿总阻力

选择最大阻力路线(图2),东翼选取1-3-16-18-19-24-25-27-29-30-31-34,西翼选取1-2-3-4-5-7-9-10-11-12-13-14-15.各段巷道的摩擦阻力按下式计算

23,f PL

h a Q Pa S =

计算结果列于表3中,累计各段巷道摩擦阻力值可得东翼总摩擦阻力

1647.2f h Pa =。

矿井局部通风阻力按摩擦阻力的20%计算,则矿井总阻力

1.2 1.21647.21976.6m f h h Pa ==?=

东翼与西翼阻力相同。

3、选择扇风机,计算电动机功率

⑴扇风机风量

3

1.154.42

59.86

f m Q Q m s ρ==?= 式中,ρ——扇风机装置风量备用系数, 1.1ρ=。

⑵扇风机的全压t H

t m n r v

H h H h h =+++ 式中,r h ——扇风机装置阻力,r h =100Pa ;

v h ——扩散塔出口动压损失,v h =10Pa ; n H ——矿井反向自然风压,n H =96Pa 。 则

1045.496100101251.4t H Pa =+++=

查扇风机特性曲线,选用K40(B )型№19轴流式扇风机,转速980min n r =,叶片安装角32θ= ,实际风量可达603m ,风压可达1290Pa ,效率0.70f η=。扇风机的功率

129060

110100010000.70

t f f f

H Q N kW η?=

=

=?

电动机的功率

110

1.1

1270.95

f

e e

e

N N K kW η=== 式中 e K ——电机备用系数,取1.1;

e η——电机效率,取0.95。

矿井通风设计-毕业论文

辽源职业技术学院 毕业综合实训报告 题目:矿井通风设计 专业班级: 设计人: 指导人: 20XX年X月XX日

目录一、矿井通风设计的内容与要求 5 (一)矿井基建时期的通风 5 (二)矿井生产时期的通风 5 (三)矿井通风设计的内容 6 (四)矿井通风设计的要求7 二、优选矿井通风系统7 (一)矿井通风系统的要求7 (二)确定矿井通风系统8 三、矿井风量计算8 (一)矿井风量计算原则8 (二)矿井需风量的计算8 1.采煤工作面需风量的计算8 2.掘进工作面需风量的计算11 3.硐室需风量计算13 4.其他用风巷道的需风量计算机14 四、矿井通风总阻力计算15 (一)矿井通风总阻力计算原则15 (二)矿井通风总阻力计算15 五、矿井通风设备的选择16

(一)主要通风机的选择17 六、概算矿井通风费用21

前言 通风是关系到煤矿生产安全的重要环节。确保通风系统的稳定可靠,要做到随矿井生产变化即时进行通风系统改造与协调,严格控制串联通风,强化局部通风管理,杜绝局部通风机无计划断电,做到通风系统正规合理、可靠、稳定.

矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。 第一章矿井通风设计的内容与要求 矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通

风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。 矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。 第一节矿井基建时期的通风 矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 第二节矿井生产时期的通风 矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况: (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。 (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。 矿井通风设计所需要的基础资料如下:

第七章---矿井通风系统与通风设计

第七章 矿井通风系统与通风设计 本章主要内容 1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择 2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统 3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施 4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择 5、可控循环通风 第一节 矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。 一、矿井通风系统的类型及其适用条件 按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。 1、中央式 进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。 2、对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果 只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。 在井田的每一个生产区域开凿进、回风井, 分别构成独立的通风系统。如图。 4、混合式 由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。 二、主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。 1、抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2、压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。 3、压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。 三、矿井通风系统的选择 根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。 中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采 用。

矿井通风设计及风量计算方法

矿井通风设计施工时的基本原则和要求

通风系统合理可靠的含义

通风网络图的绘制 矿井风量计算办法 按照《煤矿安全规程》第一百零三条:“煤矿企业应根据具体条件制定风量计算方法,至少每5年修订1次”,要求,根据《煤矿井工开采通风技术条件》(AQ1028-2006)、《煤矿通风能力核定标准》(AQ1056-2008),结合本矿开采的实际情况,制定本办法。 一、全矿井需要风量的计算 全矿井总进风量按以下两种方式分别计算,并且必须取其最大值: 1、按井下同时工作的最多人数计算矿井风量: Q 矿进=4×N×K 矿通 (m3/min) 式中:Q 矿进 ——矿井总进风量,m3/min; 4——每人每分钟供给风量,m3/min.人; N——井下同时工作的最多人数,人; K 矿通——矿井通风需风系数(抽出式取K 矿通 =~)。 2、按各个用风地点总和计算矿井风量: 按采煤、掘进、硐室及其他巷道等用风地点需风量的总和计算: Q 矿进=(∑Q 采 +∑Q 掘 +∑Q 硐 +∑Q 其他 )×K 矿通 (m3/min) 式中:∑Q 采 ——采煤工作面实际需要风量的总和,m3/min; ∑Q 掘 ——掘进工作面实际需要风量的总和,m3/min; ∑Q 硐 ——硐室实际需要风量的总和,m3/min; ∑Q 其他 ——矿井除了采、掘、硐室地点以外的其他巷道需风量的总和,m3/min。 K 矿通——矿井通风需风系数(抽出式K 矿通 取~)。 二、采煤工作面需要风量 按矿井各个采煤工作面实际需要风量的总和计算: ∑Q 采=∑Q 采i +∑Q 采备i (m3/min) 式中:∑Q 采 ——各个采煤工作面实际需要风量的总和,m3/min; Q 采i ——第i个采煤工作面实际需要的风量,m3/min; Q 采备i ——第i个备用采煤工作面实际需要的风量,m3/min。 每个采煤工作面实际需要风量,按工作面气象条件、瓦斯涌出量、二氧化碳涌出量、人员和爆破后的有害气体产生量等规定分别进行计算,然后取其中最大值。有符合规定的串联通风时,按其中一个采煤工作面实际需要的最大风量计算。 1、按气象条件计算: Q 采=Q 基本 ×K 采高 ×K 采面长 ×K 温 (m3/min)

矿井通风系统与通风设计

矿井通风系统与通风设计 本章主要内容 1,矿井通风系统----类型,适应条件,主要通风机工作方式 ,安装地点,通风系统的选择 2,采区通风----基本要求,进回风上山选择,采煤工作面通风系统 3,通风构筑物及漏风----风门,风桥,密闭,导风板;矿井漏风,漏风率,有效风量率,减少漏风措施 4,矿井通风设计----内容与要求,优选通风系统,矿井风量计算,阻力计算,通风设备选择 5,可控循环通风 第一节矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气,排出污浊空气的通风网路,通风动力和通风控制设施的总称. 一,矿井通风系统的类型及其适用条件 按进,回井在井田内的位置不同,通风系统可分为中央式,对角式,区域式及混合式. 1,中央式 进,回风井均位于井田走向中央.根据进,回风井的相对位置,又分为中央并列式和中央边界式(中央分列式). 2,对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果只有一个回风井,且进,回风分别位于井田的两翼称为单翼对角式. 2)分区对角式 进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷. 3,区域式 在井田的每一个生产区域开凿进,回风井,分别构成独立的通风系统.如图. 4,混合式 由上述诸种方式混合组成.例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等. 二,主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式,压入式,压抽混合式. 1, 抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态.当主要通风机因故停止运转时,井下风流的压力提高,比较安全. 2,压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态.在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出.当主要通风机因故停止运转时,井下风流的压力降低. 3,压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作.通风系统

矿井通风系统设计

课程设计说明书 设计题目: 矿井通风系统设计 助学院校: 理工大学 自考助学专业: 采矿工程 姓名: 自考助学学号: 成绩: 指导教师签名: 理工大学成人高等教育 2O 年月日

前言 矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排出各种粉尘及有毒有害气体,创造良好的气候条件,为井下作业人员提供安全舒适的工作环境。随着浅部矿产资源的日渐枯竭,矿产资源开采向纵深发展是必然的趋势。随着开采深度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。因此,矿井通风与安全的意义将更加重大。 80年代以来,随着煤矿机械化水平的提高,采煤方法和巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步。通风管理日益规化、系列化、制度化,通风新技术和新装备越来越多地投入应用,以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使矿井通风更好地为高产、高效、安全的集约化生产提高安全保障。 近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验、借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。为适应生产集中化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百座国有煤矿进行通风系统优化改造,配合一批有条件的生产矿井通过合并井田、扩大开采围、增加储量进行改扩建的任务。

矿井通风设计范例.

4 矿井通风 4.1 通风系统 4.1.1 通风系统 4.1.1.1 通风方式和通风方法 根据煤层赋存条件,矿井采用平硐开拓,根据矿井开拓方式,本矿井走向较短,只有一个采区的走向长度,采用分列式通风方式,抽出式通风方法,采煤工作面利用全矿井负压通风,采用“U”型通风方式,掘进工作面采用局部通风机压入式通风。 4.1.1.2 通风系统 根据矿井开拓部署,该矿为平硐开拓方式,主平硐、副平硐和后期排水进风行人平硐进风,回风平硐回风。 矿井初期主要通风线路为: 主平硐/副平硐→+1690m水平运输巷/+1690m双龙炭运输巷 /+1728m运输巷/+1728m双龙炭运输巷→+1690m运输石门/+1728m运输石门→一采区轨道上山/一采区行人上山→+1756m运输石门→11011工作面运输巷→11011采煤工作面→11011工作面回风巷→回风石门 →+1798m正炭回风巷→总回风斜巷→+1788m总回风巷→回风平硐→ 地面。 矿井后期主要通风线路为: 主平硐/副平硐/排水进风行人平硐→+1690m水平运输大巷/+1728m运输巷和通风行人斜巷/+1630m排水行人巷→二采区轨道上山/二采区行人上山→+1548m水平运输巷→三采区轨道上山/三采区行人上山→区段运输石门→23013工作面运输巷→23013采煤工作面→23013工作面回风巷→区段回风石门→三采区回风上山→回风暗斜井→总回风斜巷→+1788m总回风巷→回风平硐→地面。

矿井初期开采一采区时为通风容易时期,后期二、三采区同采时为通风困难时期。通风系统图(初、后期)和通风网络图(初、后期)详见图C1795-171-1(修改)、C1795-171-2(修改)。 4.1.1.3 井筒数目、位置、服务范围及时间 矿井开采一采区时有3个井筒,即:主平硐、副平硐和回风平硐,主平硐、副平硐进风,回风平硐回风。矿井二、三采区开采时4个井筒,即主平硐、副平硐、排水进风行人平硐和回风平硐。主平硐、副平硐和排水进风行人平硐进风,回风平硐回风。各井筒均位于井田东部。主平硐为改造利用原基地一号井主平硐;副平硐为改造利用原基地一号井副主平硐;回风平硐为改造利用原基地一号井回风平硐;排水进风行人平硐为改造利用原顺风煤矿主平硐。矿井回风平硐井口坐标为:X=3278284,Y=18267648,Z=+1788.867,服务于全矿井生产期间。 通风系统(初、后期)详见图4-1-1、4-1-2; 通风网络(初、后期)详见图4-1-3、4-1-4。

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

矿井通风课程设计

矿井通风技术课程设计 题目:矿井通风技术课程设计 姓名:王冰雨 学号: 1545203115 学院:能源与交通工程学院 专业:矿井通风与安全 班级:通风 15-1 学制:三年 指导教师:张修峰 二○一七年一月

目录 1. 概况 (1) 2. 矿井通风系统选择 (3) 2.1.矿井通风系统设计原则及步骤 (5) 2.2.掘进通风方法.................. 错误!未定义书签。 3. 风量计算及风量分配 (7) 3.1.矿井需风量的计算原则 (9) 3.2.矿井需风量的计算方法 (10) 3.3.矿井总风量分配 (13) 4. 矿井通风阻力计算 (15) 4.1.计算原则 (17) 4.2.计算方法 (18) 5. 选择矿井通风设备 (21) 5.1.选择矿井通风设备的基本要求 (24) 5.2.选择矿井主要通风设备 (27) 6. 概算矿井通风费用 (30) 6.1.吨煤的通风电费 (32) 6.2.通风设备的折旧费和维修费 (37) 6.3.专为通风服务的井巷工程折旧费和维修费 (43) 6.4.通风器材和通风仪表等材料的购置费和维修费 (47) 6.5.通风工作全体人员的工资 (52)

1.概况 矿井通风设计是在进行矿井开拓、开采设计的同时,依据矿井的自然条件及生产技术条件,确定矿井通风系统、供风量、通风阻力和矿井主要通风设备的工作。 矿井通风设计是整个矿井设计的主要组成部分,是保证矿井安全生产的重要环节。其基本任务是建立安全、可靠、技术先进和经济合理的矿井通风系统。通风系统是否合理,直接关系到整个矿井的通风状况的好坏和保障矿井安全生产。新建矿井通风设计的基本内容和步骤是:拟定矿井通风系统、矿井总风量的计算与分配、矿井通风阻力计算、选择矿井通风设备。矿井通风系统必须根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性等条件,通过优化或技术经济比较后确定。 矿井通风设计按照设计内容的实施步骤又可分为技术设计和施工设计。矿井通风技术设计是矿井初步设计或技术方案设计时进行的通风设计,其内容包括确定矿井通风系统、矿井总风量的计算和分配、矿井通风阻力计算、选择通风设备和概算通风费用。这也就是一般说的矿井通风设计。矿井通风施工设计是为通风构筑物和通风设备等安装施工进行的设计,其内容包括工程布置、设备布置和施工布置等。 矿井通风设计的主要依据是:矿区气象资料:井田地质地形:煤层瓦斯风化带垂深、各煤层瓦斯含量、瓦斯压力及梯度等;煤层自然发火倾向,发火周期;煤尘爆炸危险性及爆炸指数;矿井设计生产能力及服务年限;矿井开拓方式及采区巷道分布,回采顺序、开采方法;

矿井通风控制系统设计改造

安全管理编号:LX-FS-A83061 矿井通风控制系统设计改造 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

矿井通风控制系统设计改造 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 针对矿井旧通风控制系统中存在的体积庞大、接线复杂、机械触点多、排除故障困难、可靠性差、自动化程度低等缺陷,设计了一种基于先进PLC控制技术的矿井通风安全控制系统。该控制系统投入使用,运行结果表明,系统具有功能完善,运行稳定,节能效果明显等特点,提高了企业的生产效率和经济效益,具有很好的应用前景。 煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分,煤矿矿井通风系统能否正常工作与矿井内工作环境条件、生产效率、安全生产密切相关。随着我国政府对各行各业安全生产监管力度的不断加强,尤

改变矿井通风系统设计与安全技术措施(标准版)

改变矿井通风系统设计与安全技术措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0999

改变矿井通风系统设计与安全技术措施 (标准版) 龙马矿业隶属于吉林省杉松岗矿业集团有限责任公司,座落于白山市靖宇县东兴乡马当村境内,行政划归靖宇县东兴乡管辖。 矿井地理座标为东经:126°59′24″~127°00′42″,北纬:42°26′46″~42°28′14″。 主要河流珠子河全长45km,在矿区下游2km汇入松花江。白山水库蓄水后,最高水位为416.5m。珠子河与松花江合成白山湖,珠子河流域面积95.5km2。靖宇水文站观测记录断面平均流速0.35m/s最大流速2m/s,最大流量244m3/s,最小流量0.1m3/s,珠子河流流经现生产矿区西及西北、北部,两岸形成陡峭的悬崖,每年的11月份开始水位下降至+406m左右。 地质构造简单,为瓦斯矿井,井田内批准开采煤层三层,即一

号层、二号层、三号层,煤层自燃倾向性等级鉴定为Ⅲ级,属不易自燃煤层。发火期大于12个月。煤层没有爆炸性。 我矿准备队305上、下顺同时施工。305上顺掘进距离为365米,305下顺350米、开切眼上山100米。通风设计为采用正压通风,安设局部通风机,风机为系列化,可自动切换。局部通风机型号为FBD2X11,功率为2x11千瓦、风量410-230m?/min。可满足掘进风量需要。矿井主通风机型号为FBCDZ№17.90×2,功率为2×90kw,矿井现在总入风量为2574m?/min,总回风量为2688m?/min。我矿现采掘布置有206综采准备工作面、207综采面、305上顺掘进工作面、305下顺掘进工作面、306上顺掘进工作面、306下顺掘进工作面。按采区设计方案,需要改变通风系统,为了保证矿井通风系统的平稳过渡,经矿班子研究决定成立以矿长为组长的改变矿井通风系统领导小组,并制定相应的安全技术措施,具体实施方案如下: 一、领导小组: 组长:周家会(矿长) 副组长:张立波(总工程师)王志刚(通风副总)

矿井通风设计

第九章矿井通风设计 矿井通风设计是整个矿井设计的重要组成部分,是保证矿井安全生产的重要一环。矿井通风设计的基本任务是建立一个安全可靠、技术先进、经济合理的矿井通风系统。矿井通风设计分为新建矿井通风设计与生产矿井通风设计两种。对于新建矿井通风设计,既要考虑当前的需要,又要考虑矿井的长远发展。对于生产矿井通风设计,必须在调查研究的基础上,充分考虑矿井生产的特点和发展规划,尽量利用原有井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。设计必须贯彻和遵守党和国家的技术经济政策、规程、规范及相关规定。 新建矿井通风设计一般分为基建和生产两个时期,并分别进行设计。 矿井基建时期的通风多用局部通风机对独头巷道进行通风。当主要进、回风井筒贯通、主要通风机安装完毕后,便可用主要通风机对已开凿的井巷实行全风压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 矿井生产时期通风设计,根据矿井生产年限的长短而采用不同的方法。矿井服务年限不长时(约15至20年),只做一次通风设计。矿井服务年限较长时,考虑到通风机设备选型、矿井所需风量、风压的变化等因素,分为两期进行通风设计,第一期为矿井生产初期(如第一水平),对该时期内通风容易和通风困难两种情况做详细的设计;第二期为矿井生产后期(如第二水平),该时期的通风设计只做一般原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,做出全面考虑,使确定的通风系统既可适应现时生产要求,又能照顾长远的生产发展与变化。 矿井通风设计的内容包括:确定矿井通风系统;矿井总风量的计算和分配;矿井通风阻力计算;选择通风设备;概算矿井通风费用。 矿井通风设计的主要依据是:矿区气象资料;井田地质地形;煤层瓦斯风化带垂深、各煤层瓦斯含量、瓦斯压力及梯度等;煤层自然发火倾向,发火周期;煤尘爆炸危险性及爆炸指数;矿井设计生产能力及服务年限;矿井开拓方式及采区巷道布置,回采顺序、开采方法;矿井巷道断面图册;矿区电费等。 矿井通风设计应满足以下要求: 1、将足够的新鲜空气有效的送到井下工作场所,保证生产和创 造良好的工作条件;

矿井通风设计.

第一章矿井概况 某矿地处平原、地面标高+150m,井田走向长度5km,倾斜方向长度3.3km。井田上界以标高-165m为界,下界以标高-1020m为界,两边以断层为界,井田内煤层赋存稳定,井田可采储量约1.08亿吨。根据开采条件,煤炭供求状况及“规程”规定,确定此矿为年产150万吨的大型矿井,服务年限为72年。 井田内有两个开采煤层,为K1、K2,在井田范围内,煤层赋存稳定,煤层倾角15°,各煤层厚度,间距及顶底板岩性参见综合柱状图。矿井相对瓦斯涌出量为6.6m 3/t,煤层有 自然发火的危险,发火期为16~18个月,煤尘有爆炸性,爆炸指数为36%。 根据开拓开采设计确定。采用立井多水平上下山开拓,第一水平标高—380m,倾斜长 825 m,服务年限为27年,因走向较短,两翼各布置一个采区。每个采区上山部分和为2 下山部分各分为五个区段回采。每采区各布置一个综采工作面和一个高档普采工作面,工作面长度150m,区段平巷及区段煤柱15m,综采工作面产量为在K1煤层时为1620吨/日,在K2煤层时为1935吨/日,日进6刀,截深0.6m,高档普采工作面产量为在K1煤层时为1080吨/日,在K2煤层时为1290吨/日,日进4刀,截深0.6m,东翼还另布置一个备用的高档普采工作面,综采工作面装备的部分机电设备如表1-2所示,采区巷道采用集中联合布置。 表1-1 综合柱状图

采区轨道上山均布置在K2煤层的底板稳定细砂石中,区段回风平巷与运输上山,区段运输平巷与轨道上山采用石门连接,为了保证生产正常接替,前期东西两翼各安排两个独立通风的煤层平巷掘进头,后期东西两翼各安排两个独立通风的煤层平巷掘进头和一个岩石下山掘进头。东西两翼各有一个绞车房、变电所、火药库,亦需独立通风。井为箕斗井提煤用,井为罐笼井升降人员、材料、矸石,也作为进风井用,并设有梯子间。 部分巷道名称、长度、支护形式,断面几何特征参数列入表1-1 大巷掘进3000元/米,立井掘进8000米/元,中央式风井附属设施40万元/井,中央式主要通风机20万元/套,对角式风井附属设施20万元/井,对角式主要通风机15万元/套。 表1-2 井内的气象参数按表1-4所列的平均值选取,除综采工作面采用4-6制工作制外,其他均采用3-8制工作。 井下同时作业的最多人数为700人,综采工作面同时作业最多人数40人,高档普采工作面同时作业最多人数60人。

矿井通风系统设计

矿井通风系统设计 第一章:概述 1、矿井概况 新城煤矿于2002年5月9日接手于司法局煤矿,成立筹备处,10月17日正式成立新城煤矿。该矿隶属于鸡西矿业集团,地理位置在城子河西采区二太堡车站以北一公里处,矿区范围:东部以F48断层与城子河矿机邻,西部以F31米标高。东西走向约4.5公里,南北宽约4公里,面积约为18平方公里,其拐点座标如下:点号X Y 1 5023680 44415650 2 5023826 44418123 3 5025500 44420410 4 5019920 44418485 5 5019840 44418454 6 5019730 44417700 开采深度:由-250米~-900米标高。 本矿区内有城子河、正阳等矿的运煤专用铁路通过,并与国铁林密线西鸡西车站相接,距离约为6公里,此外,沿有公路西至滴道、麻山、林口。东达鸡西、城子河、密山等地,交通极为方便。 新城煤矿现开采3#、4#、24#、25#、27#、29#、六个煤层。现有工作面为138采煤工作面(24#)、139采煤工作面(4#)、102

掘进工作面(3#下巷)、105掘进工作面(3#上巷)、106掘进工作面(29#上巷)、101掘进工作面(29#下巷)、103掘进工作面(穿层岩石) 2、矿井通风系统概况 主扇型号:70-B2-21-24#功率475kw 备扇型号:70-B2-21-24# 功率570kw 通风方式:抽出式 通风方法:中央并列抽出式 总入风量:2310m3/min 总排风量:2610m3/min 新城煤矿与城子河煤矿九采区一井相联。矿井负压240mmH2O。 A= h Q ? 38 .0 = 97 . 254 60 / 2610 38 .0? =1.03米2 由于1﹤1.03﹤2故通风难易程度为中等。 新城煤矿与城子河煤矿九采区一井采用隔绝密闭已将两井隔离。 3、该矿井为煤与瓦斯突出矿井,矿井的绝对瓦斯涌出量为14m3/min,相对瓦斯涌出量为65.9m3/min。 第二章:矿井通风系统技术可靠性分析 1、新城矿共5个掘进队,两个采煤队,其中:105掘进队、102掘进队、103掘进队、106掘进队、139采煤队均为独立的通风系统。101掘进队回风串138采煤队,按保安规程规定已在138

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

煤矿矿井通风技术及通风系统优化设计

龙源期刊网 https://www.doczj.com/doc/d45782616.html, 煤矿矿井通风技术及通风系统优化设计 作者:杨加兴 来源:《科学与财富》2020年第12期 摘要:煤矿井下作业环境复杂,很多煤矿开采难度很大,也难以全面确保作业安全。在安全管理中,矿井通风是影响安全的重要因素,也是管理中的重点,很多安全问题都是由于通风不良引起。要提高通风质量,就要加强通风设计工作。基于工作实践,本文探讨煤矿矿井通风设计,旨在提高通风设计科学性、通风有效性、作业安全性。 关键词:矿井通风;通风系统;设计 引言 煤矿井下作业具有一定的危险性,容易出现各类安全问题。而通风是影响安全水平的重要因素,良好的通风可以有效减少各类有害气体、危险气体积聚。现如今,煤矿安全生产已经引起广泛关注,虽然机械化水平提升,人力不再是煤矿生产主力,但依然会面临很多安全问题,需要引起重视,注意通风安全。 1矿井通风技术概况 根据煤矿发展情况,当前主要应用的井下通风技术有: 1.1矿井通风系统 主要涉及通风方式、方法以及通风网络建设,这些部分构成了通风系统。实际应用中,可利用现代计算机技术实现对通风系统的整体网络化控制;可以根据实际空气情况适时调整通风量,进而保证空气质量水平。当出现井下火灾等安全问题时,系统会发出相应的报警,之后计算机会计算事故现场的CO浓度等获得必要信息,再根据这些信息调整井下通风口、送风量,有效减少损失,保障作业人员安全。 1.2多风机多级机站 现如今矿井通风技术正在不断走向成熟,很多节能技术也在尝试应用其中,一些技术展示出良好的应用效果,获得大力推广。调控系统对确保作业环境安全有重要意义。其中,多风机多级机站不止总功耗低,并且在有效风量上也有很大优势,具备良好的节能效果。 2通风系统分类

矿井通风设计毕业论文

矿井通风课程设计 ?姓名: 专业:通风与安全 日期:

目录前言 (一)矿井概况 (二)拟定矿井通风系统 (三)矿井总风量计算与分配 1、矿井需风量计算原则 2、矿井需风量计算方法 3、矿井总风量的分配 (四)矿井通风总阻力计算 1、矿井通风总阻力计算的原则 2、矿井通风总阻力的计算方法 3、绘制矿井通风网络图 (五)选择矿井通风设备 1、选择矿井通风设备的要求 2、主要通风机的选择 (六)通风耗电费用概算 1、主要通风机的耗电量 2、局部通风机的耗电量 3、通风总耗电量 4、吨煤通风耗电量 5、吨煤通风耗电成本 (七)矿井通风系统评述

1、系统的合理性 2、阻力分布的合理性 3、主要通风机工作的安全性、经济性 前言 《矿井通风》设计是学完《矿井通风》课程后学生理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几个方面能力,为毕业设计打下基础。 1、进一步巩固和加深我们所学矿井通风理论知识,培养我们设计计算、工程绘图、计算机应用、文献查阅、运用标准与规范、报告撰写等基本技能。 2、培养学生实践动手能力及独立分析和解决工程实际的能力。 3、培养学生创新意识、严肃认真的治学态度和理论联系实际的工作作风。 依照老师精心设计的题目,按照大纲的要求进行,要求我们在规定的时间内独立完成计算,绘图及编写说明书等全部工作。 设计中要求严格遵守和认真贯彻《煤炭工业设计政策》、《煤矿安全规程》、《煤矿工业矿井设计规范》以及国家制定的其它有关煤炭工业的方针政策,设计力争做到分析论证清楚,论据确凿,并积极采用切实可行的先进技术,力争使自己的设计达到较高水平,但由于本人水平有限,难免有疏漏和错误之处,敬请老师指正。

矿井通风设计说明书参考

矿井通风设计说明书 1、设计依据概述 1.1、矿段地质、开拓生产情况 矿区本次深部开采设计对象主要为-530m标高以下的Ⅰ号矿体和V号矿体群。 本次深部开拓设计开采的-530m标高以下的矿体赋存地质条件与上部矿体单一、品位高、厚度大、且相对稳定、完整的赋存条件,有明显的差异。这将会增加深部开采的难度,需要采取必要的应对措施。 1.11、-530m以下深部开采范围内的地质储量及岩石性质: ①Ⅰ号矿体,表内矿体重2.85t/m3 ,表外矿体重 2.79 t/m3。矿石量12万吨,平均品位4.13g/t,金金属量495.53Kg。矿体硬度系数f=7~8,顶底板f=11~ 12.; ② V号矿体群体重2.74 t/m3,矿石量261万吨,平均品位6.38g/t,金金属量16708.82Kg。V号矿体及顶底板硬度系数与Ⅰ号矿体大体相似。顶板平均抗压强度110.99Mpa,矿体107.42Mpa,底板101.05Mpa。 -530m标高以下至-730m深部开采范围内全部设计地质储量,矿石量273万吨,平均品位6.29g/t,金金属量17204.35Kg。 ③围岩体重:2.70 t/m3。 ④矿岩松散系数:1.6。 ⑤自燃性:无 本次设计生产规模为80万t/a。根据计算并结合矿山实际情况,确定Ⅴ号矿体开采范围内的服务年限为6年。 1.12、矿区地形及矿区气候概况 矿区地处望儿山北麓,西临莱州湾,处于低山丘陵向海湾平原过度地带,地势平坦开阔。地面标高23.42-26.65m。 地表水体主要为万深河,其发源于金华山-望儿山之间,流经矿区东侧,向北注入渤海,全长8km。该河上游汇水面积3.90km2,源近流短,属季节性河流。 矿区属北温带东亚季风区大陆性气候,四季分明,光照充足,依山傍海,气候宜人,冬无严寒,夏无酷暑,属于暖温带季风气候,全年平均气温12摄氏度左右,是我国北方著名的旅游避暑和休闲度假胜地。 年降水量约610mm,属于半湿润地区。年平均降水量为651.9毫米,年平均气温11.8℃,年平均相对湿度68%,年平均日照时数2698.4小时,太阳辐射总量年平均值5224.4兆焦耳/平方米,年平均风速内陆地区3-4米/秒,沿海地区4-6米/秒,全市平均无霜期210天。

煤矿矿井通风设计_百度文库.

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1 每一矿井必须有完整的独立通风系统。 2进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。

3箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。 5每一个生产水平和每一采区,必须布置回风巷,实行分区通风。 6井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产 需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1按井下同时工作最多人数计算,每人每分钟供给风量不得少于 4m 3; (2按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二矿井需风量的计算 1、采煤工作面需风量的计算

矿井年度通风设计及标准

宣威市志祥矿业有限公司炉房沟煤矿2018年度 矿 井 供 风 标 准 编制单位:宣威市志祥矿业有限公司炉房沟煤矿编制日期:2018年3月14日 修改日期:2018年4月16日

宣威市志祥矿业有限公司 炉房沟煤矿2018年度供风标准 一、矿井基本情况 (一)、开拓开采情况 宣威市志祥矿业有限公司炉房沟煤矿属于证照齐全,合法有效的生产矿井,核定生产能力21万吨/年,矿区面积为1.8153km2 ,煤矿采用斜井开拓,共有三个井筒,一个主斜井、一个副斜井、一个回风斜井,主斜井担负运煤、进风,副斜井担负材料下放、人员运送、进风,回风斜井担负回风。井下采用单水平开采布置,水平标高为+1745m水平,倾斜长壁布置工作面,年度采掘计划我矿井按照“一采两掘”进行组织生产,煤层倾角4—8度,煤层平均厚度为1.5米,我矿井现有1个回采工作面1503,有两个掘进工作面分别是1504准备工作面回风巷巷掘进工作面、1504准备工作面开切眼掘进工作面。 (二)、矿井瓦斯涌出情况及煤尘爆炸性、煤层自燃倾向性情况 宣威市志祥矿业有限公司炉房沟煤矿于2017年9月进行了矿井瓦斯等级鉴定,经云南省煤炭工业局审批认定:矿井最大相对瓦斯涌出量为4.25m3/t,最大绝对瓦斯涌出量为

1.52m3/min;最大相对二氧化碳涌出量为 2.87m3/t,最大绝对二氧化碳涌出量为1.02 m3/min,属于低瓦斯矿井。 煤矿对目前开采的k5煤层于2015年经云南煤矿安全技术中心煤尘爆炸性和自燃发火倾向性鉴定结果为:煤层有煤尘爆炸性属、Ⅲ类不易自燃煤层。 (三)、矿井通风概况 宣威市志祥矿业有限公司炉房沟煤矿采用中央并列式通风方式,机械抽出式通风方法。回风斜井安装了两台型号为 FBCDZ№16 对旋式轴流通风机,电机功率为2×75kw,额定风量为1698—3768m3/min,风压为702-2650pa。 二、拟定矿井总进风风量 矿井的总进风有两种确定方式,一种按照井下同时工作的最多人数计算,另一种是按照采煤、掘工作面、硐室及其他用风地点实际需要风量累加法计算而来的。 (一)、按照井下同时工作的最多人数需要风量计算: Q矿=4 N K =4×90×1.25 =450 m3/min 式中:Q矿——指矿井的总进风量,单位:m3/min N——指井下同时工作最多人数,劳动定员标准

相关主题
文本预览
相关文档 最新文档