当前位置:文档之家› 第二节 数列的极限

第二节 数列的极限

第二节  数列的极限
第二节  数列的极限

第二节 数列的极限 ㈠本课的基本要求

理解数列极限的定义,了解数列极限的性质,会用ε──N 的语言证明数列的极限 ㈡本课的重点、难点

本课重点是数列极限的定义,难点是对ε──N 的语言的掌握 ㈢教学内容

引入(从“穷竭法”到“极限”):

从Archimedes 的穷竭法到Newton 和Leibniz 的极限思想,是微积分得以诞生的至关重要的一步飞跃。我们用Archimedes 做过的一个例子来看看穷竭法和极限思想的差异。为了叙述方便和计算简洁,例中的图形和解题细节与Archimedes 的略有差别。

例1 计算由抛物线x x x y ),0(2≥=轴及直线1=x 所围图形的面积A ,见图1.

这块区域称为抛物线弓形。可以看到,它包含在边长为1的正方形内而且不难得到2

1

3

1

。要注意。这是在公元前200多年! Archimedes 的做法如下。先将这块区域分成一小条一小条,然后用两个矩形,一个从内部一个从外部逼近每一小条区域,见图2。直观上,抛物线弓形的面积大于内部那组矩形的面积和但同时又小于外部那组矩形的面积和。如果区域分得越细即矩形的底边越来越短,则每组矩形将越来越精确地逼近抛物线弓形区域,矩形区域与抛物线弓形之间的面积差(图2中的阴影部分)将越来越小。Archimedes 试图穷竭阴影部分的面积,“穷竭法”这一名词是17世纪的数学家用以称谓古希腊学者的这种做法的。

具体计算一下,为简便起见,假定将抛物线弓形的底边n 等分,即在区间[0,1]中插入分点

1,,,1,,2,1,00=-=

n

n n i n i n n n 考虑矩形组,则从左边起数的第i 个大、小矩形的面积分别是

2

1??? ??n i n 和n i n i n ,,2,1,112

=??

? ??-

见图3。设n S 和n s 分别是这n 个大、小矩形的面积和,则得

)21(12

223n n S n +++=

及))1(21(12223-+++=n n

s n 利用n 个正整数的平方和公式得

236121316)12)(1(1n n n n n n S n ++=++?=

,23

6121316)12)(1(1n n n n n n s n

+-=--?= 直观告诉我们,对于任意正整数n n S A s n <<,,因此有,

22612131612131n

n A n n ++<<+- 最后,Archimedes 用归谬法证明A 既不可能大于同时也不可能小于

31,只能等于3

1

. 在古希腊学者中,没有谁比Archimedes 更接近微积分了。他的富有创造性的思想和做法是

微积分史上十分重要的贡献。从Newton 和Leibniz 起直至今天的做法,都是将这个抛物线弓形的面积A 定义为,例如包含在它内部的那组小矩形的面积和当n 趋于无穷时的极限。两者做法的形式相同,而且Archimedes 的用归谬法的证明与现在微积分中关于极限存在性的论证的形式也相同,但毕竟思想的出发点是不一样的。我们看到,无论n 多大,都不可能穷竭小矩形组与抛物线弓形之间的面积差,否则意味着区间[0,1]的细分将有一个尽头。只有在无限的意义下,这个差才能被真正地穷竭。可是古希腊数学家是把无限排斥在他们的推理之外的,因为直觉不能为它提供一幅清晰的图画而缺乏逻辑基础。对他们来说,在现实(有限)和理想(无限)之间始终存在着一道鸿沟。极限是连接这鸿沟两岸的一座桥梁,有了极限概念,无限畅通无阻地进入了数学。

极限的概念是由于求某些实际问题的精确解答而产生的。极限概念最初产生于曲边形的面积与求曲线在某一点处的切线斜率这两个基本问题。例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法──割圆术,就是极限思想在几何学上的应用。刘徽说“割之弥细,所失弥少。割之又割,以至于不可割,则与圆周合体而无所失矣”。他的这段话是对极限思想的生动描述。书上也介绍了这种方法,这里就不再叙述。我们熟知的量变到质变也是极限思想在哲学上的应用。极限方法已成了高等数学中的一种基本方法,也是初等数学和高等数学的分水岭。本章我们就介绍极限的基本概念。 为了便于理解,我们先介绍数列极限 一.数列的极限

数列的概念 定义在正整数集上的函数叫数列,记为),2,1(),( ==n n f u n 。数列可按顺序排成一串数:i n n u u u u u 。数列中的每一个数,简记为}{,,,,21 称为数列的项,从第一个数开始,依次称为第一项,第二项,…,第n 项,…,)(n f u n =称为数列的一般项或通项。

例: ,41,31,21,1)1(--?

?

????-:n n ,411,311,211,211+++?

??

???+:

n {} ,16,9,4,12

:n

{} ,0,2,0,2)1(11

:+-+n

在几何上,数列}{n u 可看作数轴上的一个动点,它依次取数轴上的点 ,,,,21n u u u 。 如图:

数列可以看成一类特殊的函数──整标函数,使用函数记号可将数列记为

),(,),2(),1(n f f f

此时,数列通项表达式)(n f u n =就盛了函数关系式。其中的数n 成为自变量。

讨论{}n n u n u 过程中,在它的变化

)(∞→能否将不断地接近一个数,如果能,这个数是多少?

不难发现,当02)1(1,11

1,0)1(12,则总是在越变越大,而时,+-+→+→-∞→n n n n

n n 之间摆动。一般地,我们有

定义1 若{}n n x n x 无限增大时,,当无限接近于一常数a ,则称当n 趋向于无穷大时,n x 的极限为a ,或称n x 趋向于a 。

例?

?????+??????-n n n 11,)1(。 如果数列}{n x 没有极限(或∞→n x ),就称}{n x 是发散的。如例中的{}{}

12)1(1,+-+n n 。

再来观察数列 ,41

,31,21,1)1(--?

?????-:

n n 。人们不禁会问:按照定义1该数列的极限为什么不能是0.0000001呢?可以看到,随着n 的增大,通项n

u n

n )1(-=就越来越接近0,而并非

无限接近0.0000001;进一步,随着n 的增大,通项与0的差的绝对值越来越小;再进一步,只要n 足够大,通项与0的差的绝对值就会足够小;即,要想通项与0的差的绝对值足够小,只要n 足够大即可。例如,要想10000<-n u ,只要1000>n 即可。一般地,不论给定的正数ε多么小,总存在一个正数N ,使得N n >时,不等式ε<-0n u 都成立。而不能做

到ε<-0000001.0n u 。我们称0为数列?

?????-n n )1(当∞→n 时的极限。

定义2 设}{n x 为一数列,如果存在常数a ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当N n >时,不等式ε<-a x n 都成立,那么就称常数a 是数列}{n x 的极限,或者称数列}{n x 收敛于a ,记为

a x

n

n =∞

→lim 或)(∞→→n a x n 。

如果不存在这样的常数a ,就说数列}{n x 没有极限,或者说数列}{n x 是发散的,习惯上也说

n

n x

lim ∞

→不存在。

说明:⑴如前所述,数列可以视为定义在正整数集上的函数。这样,极限定义中包含两个密切相关的无限过程:①自变量∞→n 的过程;②函数a x n →的过程。其中①为因,②为果。定义1在直观上虽容易理解,但其意义含混。定义2不去直观地描述这两个过程,而是提出了度量①与②这两个过程及其关系的精确方法,是定义1的明确表达,但较难理解。 ⑵定义2中ε的任意性是很重要的,只有这样,ε<-a x n 才能表示n x 与a 的无限接近。 ⑶从我们举的例子可以看出,定义2中的正整数N 是与正数ε有关的,它随ε的不同而不同,所以我们也可以把它记为)(εN 。

⑷定义2给出了验证极限的方法,也就是说,根据定义2,我们可以明确地判断a 是不是数列n x 的极限。

例1 先观察

1

21

-+n n 的极限并验证。 例2 证明数列

,111.0,,111.0,11.0,1.0n 个

的极限是1. 证 ??

? ??-=-??????????

?

??-=+++=

=n n

n n x 10119110

1

1101110110

1

101101111.02

所以n

n n x 10

1

109191

(注意这里我们采用了适当放大的技巧) 这样,对任意的0>ε,要使ε<<-

n n x 10

1

91,只要ε110>n ,即ε1lg >n 就可以了。所

以取??

????=ε1lg N ,则N n >时,就有ε<-91

n x 成立,从而

9

1

lim

=

→n n x ,证毕。 利用此例的方法,可以化循环小数为分数。而且极限思想可以帮助我们理解循环小数与分数

的关系。譬如,19

.0= 。这个等式,在初等数学中常使我们感到不踏实。用例2的方法考察数列

,999.0,,99.0,9.0n 个

。容易证明其极限是1,所以19.0= 。 数列极限的几何解释 设)(∞→→n a x n ,将a 及 ,,21x x 要数轴上的对应点标出来,并记),(),(εεε+-=a a a U ,即点a 的ε邻域,如图所示(数列中有无穷多个点,图中只能示意性地标出几个点),若ε<-a x n 在N n >时成立,则因为N 是有限数(不管多么大),所以所有满足N n >的n x (无穷多个)都落在),(εa U 中了。也就是说,不论ε多么小,

),(εa U 中总有数列n x 的无穷多个点,而),(εa U 之外只有n x 的有限个点,这也就是n x 收

敛于a 的含义。故也可以称一个数列的极限点是它的聚点。

图 二.收敛数列的性质

定理1(极限的唯一性) 如果数列}{n x 收敛,那么它的极限唯一。 证 用反证法。假设同时有a x n →及b x n →,且b a <。取2a

b -=ε。因为a x n n =∞

→lim ,故存在正整数1N ,当1N n >时,不等式2

a

b a x n -<

- ⑴都成立。同理,因为b x n n =∞

→lim

,故存在正整数2N ,当2N n >时,不等式2

a

b b x n -<

- ⑵都成立。取},max{21N N N =,则当N n >时,⑴式及⑵式同时成立。但由⑴式有2

b

a x n +<

,由⑵式有2

b

a x n +>

,这是不可能的。这矛盾证明了本定理的断言。 例3 证明数列),2,1(,)1(1 =-+=n x n n 是发散的。(取1=ε)

定理2(收敛数列的有界性) 如果数列}{n x 收敛,那么数列}{n x 一定有界。(证略) 定理3(收敛数列的保号性) 如果

a x

n

n =∞

→lim ,且0>a (或0

0>N ,当N n >时,都有0>n x (或0

推论 如果数列}{n x 从某项起有0≥n x (或0≤n x ),且

a x

n

n =∞

→lim ,那么0≥a (或

0≤a )。(证略)

最后,介绍子数列的概念以及关于收敛的数列与其子数列间关系的一个定理。

在数列}{n x 中任意抽取无限多项并保持这些项在原数列}{n x 中的先后次序,这样得到的一个数列称为原数列}{n x 的子数列(或子列)。

设在数列}{n x 中,第一次抽取1n x ,第二次在1n x 后抽取2n x ,第三次在2n x 后抽取3n x ……,这样无休止地抽取下去,得到一个数列 ,,,,21k n n n x x x ,这个数列}{k n x 就是数列}{n x 的一个子数列。

注意 在子数列}{k n x 中,一般项k n x 是第k 项,而k n x 在原数列}{n x 中却是第k n 项,显然,

k n k ≥。

定理4(收敛数列与其子数列间的关系) 如果数列}{k n x 收敛于a ,那么它的任一子数列也收敛,且极限也是a 。

证 设数列}{k n x 是数列}{n x 的任一子数列。 由于

a x

n

n =∞

→lim ,故?>?,0ε正整数N ,当N n >时,ε<-a x n 成立。

取N K =,则当K k >时,N n n n N K k ≥=>。于是ε<-a x k n 。这就证明了

a x

k

n n =∞

→lim 。

由定理4可知,如果数列}{n x 有两个子数列收敛于不同的极限,那么数列}{n x 是发散的。例如,例3中数列的发散性可由此证明。 小结

作业:P.30.3(1)(4),4

求数列极限的方法总结

求数列极限的方法总结 万学教育 海文考研 教学与研究中心 贺财宝 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大.极限的计算是核心考点,考题所占比重最大.熟练掌握求解极限的方法是得高分的关键. 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数. 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算.以下我们就极限的内容简单总结下. 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法. 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限. 与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验0()f x '存在的定义是极限000(+)-()lim x f x x f x x ???→ 存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限.

(完整版)《数列的极限》教学设计

《高等数学》——数列极限 教学设计

教学过程设计 A 、【课前准备】1、安排学生提前预习本节内容。 2、分组:4~6人为一个学习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。 B 、【组织教学】 检查学生出勤情况,填写教学日志,教材、用具准备等(2分钟) C 、【复习回顾】 数列的定义(2分钟) D 、【教学内容、方法和过程】接下表 教师活动 学 生 活 动 设计意图 (一) 结合实际,情景导入(时间4分钟) 导入1、战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一 尺之棰,日取其半,万世不竭” 也就是说一根长为一尺的木棒,每天 截去一半,这样的过程可以无限制地进行下去 导入2、三国时的刘徽提出的“割圆求周”的方法.他把圆周分成三等分、 六等分、十二等分、二十四等分、··· 这样继续分割下去,所得多边形的 周长就无限接近于圆的周长. 教师引入:不论是庄周还是刘徽,在他们的思想中都体现了一种数列极 限思想,今天我们来学习数列极限。 【学情预设】:有的学生可能没体会到情景导入的目的,教师最后要总结导入中蕴含的数学思想。 (二)归纳总结,形成概念: (时间9分钟) 1.提出问题:分析当无限增大时,下列数列的项的变化趋势及共同特征. (1)1,21,31,41…n 1 …递减 (2)递增 (3)摆动 学生参 与,思 考,感 受 学生参 与,思 考 问题,在 老师的引 导下对数 列极限知 识有一个 形象化的 了解。 通过讨 论,学生 了解以研 究函数值 的变化趋势的观点研究无穷数列,从而体会发现数列极限的过程 通过介绍我国古代哲学家庄周和刘徽,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。同时为学习新知识做准备,使学生更好的承上启下。 (一)概念探索阶段” 在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以

章第二节数列的极限2

数学教学多媒体课件

◆一类数列的变化特征◆数列极限的定义 ◆几个基本数列的极限◆问题讨论 ◆数列极限概念的小结

通过图像观察数列的特性 数列的图像(点击按钮调用图像)

通过图表定量观察(1)数列: 0.9,0.99,0.999,0.9999,0.99999,0.999999,...........项号项|a n-1| 10.9|0.9-1|=0.1 20.99|0.99-1|=0.01 30.999|0.999-1|=0.001 40.9999|0.9999-1|=0.0001 50.99999|0.99999-1|=0.00001 60.999999|0.999999-1|=0.000001 70.9999999|0.9999999-1|=0.0000001 .................... 对ε=0.001与ε =0.000001,则n>3与n>6后满足|a -A|< ε n

项号项|a n -1|11/2|(1/2)-1|=0.521/4|(1/4)-1|=0.2531/8|(1/8)-1|=0.12541/16|(1/16)-1|=0.062551/32|(1/32)-1|=0.0312561/64|(1/64)-1|=0.01562571/128|(1/128)-1|=0.0078125...... ...... ........ 通过图表定量观察(2) 数列: 1/2,1/4,1/8,1/16,1/32,1/64,1/128,........... 对ε=0.1与ε =0.01,则n>3与n>6后满足|a n -A|< ε

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

数学分析(1)第二章 数列极限复习自测题

数学分析(1)第二章 数列极限复习自测题 一、仔细体会并熟练掌握lim n n a A →∞ =的N ε-定义(注意体会并正确理解ε和N 在定义中 的作用和含义,掌握用定义验证数列极限的基本思想【对任意给定的正数ε,寻找在n →∞的过程中,使得n a a ε-<实现的标准N 】和实现基本思想的具体实施方法【对任意给定的正数ε,求解关于n 的不等式“n a a ε-<”,得出“n >某常数”的这种形式的解】),并用此定义证明下列极限: (1)21(1)lim 0n n n n →∞+-=,0n →∞=; (2)2233lim 212 n n n n →∞+=-; (3)1n =; (4)1n =; (5)若0n a ≥,lim n n a a →∞ =,则对于任意给定的正整数k ,lim n = 称为极限 的开方法则)。 二、正确理解并掌握lim n n a A →∞ =和lim n n a A →∞ ≠的几何意义,并用此几何意义解决下面的问题: (1)若221lim lim n n n n a a A +→∞ →∞ ==,则lim n n a A →∞ =; (2)若lim n n a A →∞ =,则lim n k n a A +→∞ =,k 为固定的正整数; (3)数列{}n a 收敛(也称lim n n a →∞ 存在)是指:存在数A ,使得lim n n a A →∞ =;数列{} n a 发散(也称lim n n a →∞ 不存在)是指:对任意的数A ,lim n n a A →∞ ≠。 证明:对任意的数A ,lim(1)n n A →∞ -≠,即{} (1)n -发散。 (4)试写出lim n n a A →∞ =的对偶命题(称为lim n n a A →∞ =的否定形式),即lim n n a A →∞ ≠的精 确的不等式表示。 三、仔细体会并熟练掌握数列极限的常用性质【极限的惟一性,有界性,保号性,保不等式性,运算性(包括四则运算性,迫敛性或夹逼性),子列性】以及常用性质的证明方法(注意体会定义在讨论数列极限问题中的作用),并用这些性质解决下面的问题: 1、用四则运算性计算下列极限(注意体会四则运算法则使用的前提条件):

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

数列极限的证明

数列极限的证明 数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|以此类推,改变数列下标可得 |Xn-A||Xn-1-A|…… |X2-A|向上迭代,可以得到|Xn+1-A|2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1设x(k)x(k+1)=√[2+3x(k)]3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1)

则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。n/(n^2+1)=0 √(n^2+4)/n=1 sin(1/n)=0

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N ,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

数学分析9数列极限存在的条件

§3 数列极限存在的条件 教学目的:使学生掌握判断数列极限存在的常用工具。 教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy 准则在极限理论中的主要意义,并逐步会应用Cauchy 准则判断某些数列的敛散性。 教学重点:单调有界定理、Cauchy 收敛准则及其应用。 教学难点:相关定理的应用。 教学方法:讲练结合。 教学程序: 引言 在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。在实际应用中,解决了数列{}n a 极限的存在性问题之后,即使极限值的计算较为困难,但由于当n 充分大时,n a 能充分接近其极限a ,故可用n a 作为a 的近似值。 本节将重点讨论极限的存在性问题。 为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。 从收敛数列的有界性可知:若{}n a 收敛,则{}n a 为有界数列;但反之不一定对,即{}n a 有界不足以保证{}n a 收敛。例如{} (1)n -。但直观看来,若{}n a 有界,又{}n a 随n 的增大(减少)而增大(减少),它就有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。 为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。 一、 单调数列 定义 若数列{}n a 的各项满足不等式11()n n n a a a a ++≤≥,则称{}n a 为递增(递减)数列。递增和递减数列统称为单调数列. 例如:1n ??????为递减数列;{} 2n 为递增数列;(1)n n ??-????不是单调数列。 二、 单调有界定理 〔问题〕 (1)单调数列一定收敛吗?;(2)收敛数列一定单调吗? 一个数列{}n a ,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。此即下面的极限存在的判断方法。 定理(单调有界定理) 在实数系中,有界且单调数列必有极限。 三、 应用

《数学分析》第二章 数列极限word资料14页

第二章 数列极限 (计划课时:1 2 时)P23—41 §1 数列极限的定义 ( 4时 ) 一、数列: 1.数列定义 —— 整标函数.数列给出方法: 通项, 递推公式.数 列的几何意义. 2.特殊数列: 常驻列,有界列,单调列和往后单调列. 二、数列极限: 以 n a n n ) 1 (1-+=为例. 定义 (a a n n =∞ →lim 的 “N -ε”定义) 三、用定义验证数列极限: 思路与方法. 例1 .01 lim =∞→n n 证明格式:0>?ε(不妨设 <<ε0□)(不妨设>n □) 要使-a a n ε, 只须>n □. 于是0>?ε,=?N □,当N n >时,有 ε< □ - □. 根据数列极限的“N -ε”定义知∞ →n lim □ = □. 例2 .1 ,0lim <=∞ →q q n n

例3 .32 142332lim 2 2=+-+-∞→n n n n n 例4 .04 lim 2 =∞→n n n 证 >++?--+?-+ ?+=+=n n n n n n n n n 33! 3)2)(1(3!2)1(31)31(43 2Λ .3 ,3! 3)2)(1(3 ≥?-->n n n n 注意到对任何正整数k n k 2 ,>时有 ,2 n k n >- 就有 )2)(1(276)2)(1(27640422><--=--<?ε 取 }. 1 , 4 max {?? ? ???=εN .ΛΛ 例5 .1 ,1lim >=∞ →a a n n 证法一 令 ,1n n a α=- 有 .0>n α 用Bernoulli 不等式,有 ),1(11)1(1 -+=+≥+=n n n n a n n a αα 或 Λ .1101n a n a a n <-≤-< 证法二 (用均值不等式) { n n n a a 个 11110-?=-<ΛΛ .1111n a n a n n a <-=--+≤- 例6 .1lim =∞ →n n n 证 2≥n 时,.2 2212211 102n n n n n n n n n n n n <-=--+≤-=-<- Ex [1]P34 1; 2.

求极限的方法总结

求数列极限的方法总结 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 22 11lim ,其中1,1<N 时,有Xn ≤Yn ≤Zn,且a Zn Xn n n ==∞ →∞ →lim lim ,则有

求数列极限方法总结归纳

求数列极限方法总结归纳 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,

则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括: 连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 渐近线,(垂直、水平或斜渐近线); 多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。 下面我们重点讲一下数列极限的典型方法。 求数列极限可以归纳为以下三种形式。 1.抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。 2.求具体数列的极限,可以参考以下几种方法: 利用单调有界必收敛准则求数列极限。首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。 利用函数极限求数列极限。如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

求数列极限方法总结

求数列极限方法总结 求数列极限方法总结 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常

熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的.分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括: 连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 渐近线,(垂直、水平或斜渐近线); 多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。 下面我们重点讲一下数列极限的典型方法。 求数列极限可以归纳为以下三种形式。 1.抽象数列求极限

数列极限的几种求法

数列极限的几种求法 摘要本文通过实例,归纳总结了数列极限的若干种求法.学习并掌握这些方法,对于学好数学分析颇有益处. 关键词数列极限;级数;定积分;重要极限;单调有界数列 中图分类号O171 Several Methods of Sequence limit Abstract:Through examples,summarized several series method for finding the limit.Learn and master these methods,mathematical analysis is quite good for studying. Keywords:Sequence limit;Series;Definite integral;Important limit;Monotone bounded sequence 1引言 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态. 极限的概念,可追溯到古希腊时代,德谟克里特(Democritus)是古希腊的哲学家,他博学多才,著作多到五六十种,涉及哲学、数学、天文、生物、医学、逻辑、教育与文学艺术等方面.年轻时他花尽了父亲给他的全部财产到埃及、巴比伦、印度等国家游历,获得了大量的科学知识.马克思、恩格斯称他为“经验的自然科学家和希腊人第一百个百科全书式的学者”.谟克里特以探求真理为最大快乐,他有句名言:“宁可找到一个因果的解释,不愿获得一个波斯王位.”在他的著作中有一种原子法,把物体看作是由大量微小部分叠和而成,利用这一理论,求得锥体体积是等于等高柱体体积的三分之一,这是极限思想的萌芽.公元前五世纪,希腊数学家安提丰(Antiphon)在研究化圆为方问题时创立了割圆术,即从一个简单的圆内接正多边形出发,把每边所对的圆弧二等分,连结分点,得到一个边数加倍的圆内接正多边形,当重复这一步骤多次时,所得圆内接正多边形面积之差将小于任何给定的限度.实际上,安提丰认为圆内接正多边形与圆最终将会重合.稍后,另一位希腊数学家布里松(Bryson)考虑了用圆的外切正多边形逼近圆的类似步骤.这种以直线形逼近曲边形的过程表明,当时的希腊数学家已经产生了初步的极限思想.公元前4世纪,欧多克索斯(Eudoxus)将上述过程发展为处理面积、体积等问题的一般方法,称为穷竭法,并发展为较为严格的理论,提出现在分析中通称的“阿基米德公理”.穷竭法成功地运用于面积的计算.这些都可以看作是近代极限理论的雏形. 朴素的、直观的极限思想在我国古代的文献中也有记载.如,中国古代的《墨

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2=-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 . 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→ 解:原式11)32 (1)31 (lim 3 =++-= ∞→n n n n 上下同除以 。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m

数学分析数列极限分析解析

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,32 1,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得: 对数列{}n a ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛;

{}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对??? ? ??-+n n )1(()3以3为极限,对ε =10 1 3)1(3--+ =-n a a n n =10 11 n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式a a n -<ε,可用a n -替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一.... 的,只要存在一个N ,就会存在无穷多

求数列极限的几种典型方法

求数列极限的几种典型方法 首先我们要知道数列极限的概念:设{}a n 为数列,为定数,若对任给的正数,总存在正 整数N ,使得当nN 时有ε<-a a n ,则称数列 {}a n 收敛于,定数则称为数列{}a n 的极限, 并记作 a a a a n n n →=∞ →或lim (∞→n ) 。 若数列没有极限,则称 {}a n 不收敛,或称{}a n 为发散数列。 下面我们来研究求数列极限的几种方法: 方法一:应用数列极限的定义 例一:证明 01 lim =∞ →n n α ,这里为正数。 证明:由于 n n α α 1 01 = - 故对任给的0>ε,只要取11 1+???? ??????=εαN ,则当N n >时就有 εα α << N n 1 1 这就证明了 01 lim =∞ →n n α 。 用定义求数列极限有几种模式: (1)0>?ε,作差a a n -,解方程ε<-a a n ,解出()εf n >,则取() εf N =或() ,1+=εf N (2)将 a a n -适当放大,解出()εf n >; (3)作适当变形,找出所需N 的要求。 方法二:(迫敛性)设收敛数列{}{}b a n n ,都以为极限,数列{}c n 满足:存在正整数N , 当N n 0 > 时有: b c a n n n ≤≤ 则数列 {}c n 收敛,且a c n n =∞ →lim 。

例二:求数列{}n n 的极限。 解:记h a n n n n +==1,这里0>h n ()1>n ,则有 h h n n n n n n 2 2 )1() 1(-?> = + 由上式的12 0-< < n h n )1(>n ,从而有 1 2 111-+ ≤+=≤ n h a n n 数列???? ??-+121n 是收敛于1的, 因为任给的0>ε,取ε 22 1+=N ,则当N n >时有ε<--+ 112 1n ,于是上述不等式两边的极限全为1,故由迫敛性证得1lim =∞ →n n n 。 方法三:(单调有界定理)在实系数中,有界的单调数列必有极限。 例三:设 ,2,1,1 1 1 13 2=+ ++ + =n n a n α α α 其中实数2≥α,证明数列{}a n 收敛。 证明:显然数列 {}a n 是递增的,下证有上界,事实上, n a n 2 2 2 1 1 1 13 2++++ ≤ 2 1 2) 1 11()3121()211(1)1(1 3212111<-=--++-+-+=?-++?+?+ ≤n n n n n 于是由单调有界定理知 {}a n 收敛。 方法四:对于待定型 1 ∞ 利用 =+∞ →) 11(lim n n n e

第二节 数列的极限

第二节 数列的极限 ㈠本课的基本要求 理解数列极限的定义,了解数列极限的性质,会用ε──N 的语言证明数列的极限 ㈡本课的重点、难点 本课重点是数列极限的定义,难点是对ε──N 的语言的掌握 ㈢教学内容 引入(从“穷竭法”到“极限”): 从Archimedes 的穷竭法到Newton 和Leibniz 的极限思想,是微积分得以诞生的至关重要的一步飞跃。我们用Archimedes 做过的一个例子来看看穷竭法和极限思想的差异。为了叙述方便和计算简洁,例中的图形和解题细节与Archimedes 的略有差别。 例1 计算由抛物线x x x y ),0(2≥=轴及直线1=x 所围图形的面积A ,见图1. 这块区域称为抛物线弓形。可以看到,它包含在边长为1的正方形内而且不难得到2 1

相关主题
文本预览