当前位置:文档之家› 进气岐管铸造与加工过程

进气岐管铸造与加工过程

进气岐管铸造与加工过程
进气岐管铸造与加工过程

进气岐管铸造与加工过程

目录:

1进气岐管介绍

2进气岐管的铸造

3震动焊接

4组装

5检测

(1)进气岐管

基础知识

在谈到进气歧管之前,我们先来想想空气是怎样进入引擎的。在引擎概论中我们曾提到活塞在气缸内的运作,当引擎处于进气行程时,活塞往下运动使汽缸内产生真空(也就是压力变小),好与外界空气产生压力差,让空气能进入汽缸内。举例来说,大家都应该有被打过针,也看过护士小姐如何将药水吸入针桶内吧!假想针桶就是引擎,那么当针桶内的活塞向外抽出时,药水就会被吸入针桶内,而引擎就是这样把空气吸到汽缸内的。由于进气端的温度较低,复合材料开始成为热门的进气歧管材质,其质轻则内部光滑,能有效减少阻力,增加进气的效率。

进气歧管介绍

得名原因

进气歧管位于节气门与引擎进气门之间,之所以称为「歧管」,是因为空气进入节气门后,经过歧管缓冲统后,空气流道就在此「分歧」了,对应引擎汽缸的数量,如四缸引擎就有四道,五缸引擎则有五道,将空气分别导入各汽缸中。以自然进气引擎来说,由于进气歧管位于节气门之后,所以当引擎油门开度小时,汽缸内无法吸到足量的空气,就会造成歧管真空度高;而当引擎油门开度大时,进气歧管内的真空度就会变小。因此,喷射供油引擎都会在进气歧管上装设一个压力计,供给ECU判定引擎负荷,而给予适量的喷油。

不同用处

歧管真空不只可用来供给判定引擎负荷的压力讯号,还有许多用处呢!如刹车也需要利用引擎的真空来辅助,所以当引擎发动后刹车踏板会轻盈许多,就是因为有真空辅助的缘故。还有某些形式的定速控制机构也会利用到歧管真空。而这些真空管一旦有泄漏或者不当改装,会造成引擎控制失调,也会影响煞车的作动,所以奉劝读者尽量不要于真空管上作不当的改装,以维护行车的安全。

设计巧妙

进气歧管的设计也是大有学问的,为了引擎每一汽缸的燃烧状况相同,每一缸的歧管长度和弯曲度都要尽可能的相同。由于引擎是由四个行程来完成运转程序,所以引擎每一缸会以脉冲方式进气,依据经验,较长的歧管适合低转速运转,而较短的歧管则适合高转速运转。所以有些车型会采用可变长度进气歧管,或连续可变长度进气歧管,使引擎在各转速域都能发挥较佳的性能。

不同定义

对于化油器式或节气门体汽油喷射式发动机,进气歧管指的是化油器或节气门体之后到气缸盖进气道之前的进气管路。它的功用是将空气、燃油混合气由化油器或节气门体分配到各缸进气道。对于气道燃油喷射式发动机或柴油机,进气歧管只是将洁净的空气分配到各缸进气道。进气歧管必须将空气、燃油混合气或洁净空气尽可能均匀地分配到各个气缸,为此进气歧管内气体流道的长度应尽可能相等。为了减小气体流动阻力,提高进气能力,进气歧管的内壁应该光滑。

塑料进气歧管脱盲篇

由于塑料产品特有的优点,塑料进气歧管将成为铝合金进气歧管的替代产品。

一直以来,作为发动机的关键零部件,国内的发动机进气歧管都是采用铝合金产品。而据了解,国外对塑料进气歧管的应用较为广泛,在宝马、现代、日产等高档汽车上,均使用了塑料进气歧管。

据汽车进气系统制造公司一位技术专家介绍,与传统的铝合金进气歧管比较,塑料进气歧管的重量仅为铝质歧管的1/2,其在低速低负荷时,功率、扭矩提高幅度可达10%以上。同时,塑料件的气道光滑,提高了发动机性能,与铝合金歧管相比油耗可降低6%~8%,此外,还能改善发动机的动力性与排放功能,降低发动机噪声,且与铝合金进气歧管互换性强。

“国内对汽车塑料进气歧管的研发工作起步较晚,塑料进气歧管生产及研发技术方面尚属空白,在此领域内的技术水平较低,其市场占有率还不到2%。国内的一些汽车生产厂家不得不从国外高价进口塑料进气歧管。”一位技术专家介绍说。

长安集团技术开发中心的一位人士认为,随着市场竞争加剧,减少汽车制造成本成为整车企业关注的中心,新材料、新工艺的产品就更受重视,质优价廉的塑料进气歧管取代传统笨重的金属进气歧管成为必然趋势。同时,塑料进气歧管的需求量,也将伴随汽车年产量的不断增加而同步增大,其市场前景不可小视。

近年来,功能性塑料在汽车发动机上的应用已取得了突破性的进展,越来越多的发动机部件开始采用塑料材料制作,尤其是用塑料进气歧管取代金属进气歧管已成为汽车发动机的必然趋势。下面是围绕塑料进气歧管的技术话题对天津大学塑料进气歧管研究所刘德新教授进行了专访。

塑料进气歧管的特点

同传统的金属进气歧管相比,塑料进气歧管具有哪些优点?

教授:进气歧管是发动机最关键的部件之一,其核心功能是为发动机各缸提供充足而均匀的混合气,因此它是影响发动机动力性和油耗的关键因素。此外,进气歧管还为发动机电喷系统中的主要传感器和执行器提供结构支撑,喷油器、油轨、进气压力传感器、温度传感器、碳罐、节气门体、可变进气阀、怠速控制、刹车助力等均被安装在进气歧管上,从而使进气歧管的结构非常复杂。

金属进气歧管一般采用的是铸铁或铝合金材料。为了满足发动机进气和电喷系统安装方面的要求,在制造结构复杂的金属进气歧管时常常面临着制造工艺方面的困难,其成品率很难保证。

1990 年,德国宝马公司采用熔芯法成功地生产出塑料进气歧管。

之后,塑料进气歧管以其重量轻、成本低、性能好等特点迅速取代了金属进气歧管,成为新型发动机的首选。在欧美国家,大约有90% 的进排气异侧的自然吸气发动机都使用了塑料进气歧管。具体而言,塑料进气歧管主要

具有4 个方面的优点:

(1) 在重量方面,由于塑料进气歧管一般采用尼龙PA66 材料,其比重约为铝合金材料的50%。

(2)另外,塑料进气歧管的管壁厚度一般为2.5~3mm,而铝合金进气歧管的壁厚一般大于4mm。因此,塑料进气歧管的重量相对要轻很多,通常仅为铝合金进气歧管的40%左右。

(3) 在动力性方面,由于塑料进气歧管的内壁比较光滑,因此有利于提高进气充量。与铝合金进气歧管相比,发动机的动力性可提高3%~5%。

(4)在经济性方面,塑料进气歧管能带来良好的气流,从而有助于汽油在发动机缸内的充分燃烧,使发动机的经济性和排放都能得到明显改善。

(5) 在成本方面,虽然进气歧管所使用的塑料材料与铝合金材料的成本基本相同,但由于塑料进气歧管能够一次成型,成型后的合格率高,而铸造而成的铝合金进气歧管毛坯的成品率要低很多,且其机加工费用也相对较高,因此塑料进气歧管的生产成本通常比铝合金进气歧管低20%~35%。

塑料进气歧管的材料

塑料进气歧管对材料提出了怎样的要求?生产企业应如何选择材料?

教授:塑料进气歧管要求材料必须具有耐高温、强度高以及尺寸稳定性、化学稳定性和热老化稳定性优良等方面的特点。

(1)耐高温。由于进气歧管与发动机缸盖直接连接,而发动机缸盖常常处于130℃~150℃的工作环境中,因此,要求所使用的塑料材料必须能够承受180℃的高温。

(2)高强度。进气歧管不仅需要承受发动机的振动负荷、节气门和传感器的惯性力负荷以及进气压力脉动负荷,还要保证在发动机发生异常回火现象时至于被高压脉动压力所爆破,因此要求所使用的塑料材料具有很高的强度。

(3)尺寸稳定性。为了保证进气歧管与发动机连接处的尺寸公差达到规定的要求,同时保证进气歧管上各传感器、执行器元件能够准确安装,要求所使用的塑料材料必须具有良好的尺寸稳定性。

(4)化学稳定性。由于进气歧管直接与汽油、防冻液、冷却液等腐蚀性溶剂接触,尤其是冷却液中的乙二醇对塑料的性能影响很大,因此要求塑料材料必须具有良好的化学稳定性,在使用前通常要对材料进行严格的测试。

(5)热老化稳定性。由于发动机的工作温度常常在-30℃~130℃之间反复变化,其工作条件非常恶劣,因此为了保证进气歧管能够长期可靠地工作,所选用的塑料材料必须具有优良的热老化稳定性。

目前,塑料进气歧管的首选材料是尼龙。尼龙的优点是耐高温、化学稳定性好,但其缺点是收缩率较大,耐乙二醇的性能也不太好,并且其吸水性太强,吸水后尼龙的强度会下降近40%。因此,人们普遍使用增加了25%~35% 玻纤的PA6 或PA66 增强尼龙。尼龙在加入玻纤后,其收缩率得到了明显改善。对于内部含冷却水道的进气歧管,建议采用专用的抗乙二醇的尼龙配方。

尽管世界上很多塑料材料供应商在不断地开发新的进气歧管塑料材料,以期提高塑料材料的各种性能,但尼龙材料仍是目前的最佳选择。

塑料进气歧管的设计开发

要保证塑料进气歧管的开发成功,您认为应重点做好哪些方面的技术准备工作?

(1)将提高发动机性能作为塑料进气歧管设计的核心。进气歧管是发动机的主要部件,其结构和质量是影响发动机整体性能的关键因素。因此,在设计塑料进气歧管时,首先必须对发动机有深入的了解,要有专业的从事发动机设计或研究方面的人员参与。在设计中

最好使用发动机专业仿真软件,以使设计出的塑料进气歧管能最大程度地改善发动机的动力性和经济性。

(2)以气体动力学分析为重点分析内容。发动机的进气过程是一种非常复杂的三维非定常气体运动过程,如果用一维分析方法,往往不能正确地反映出进气歧管内部气体的运动情况。因此,建议使用三维流场分析软件来仿真进气过程中进气歧管内部流场的衍变过程,从而为设计出合理的塑料进气歧管结构提供依据。

(3)强度分析先行。通常,塑料进气歧管对所用塑料材料的力学性能的利用已接近极限,即使出现局部的设计缺陷也会带来很大的风险。因此,需要在设计阶段同步进行塑料进气歧管强度的仿真分析。

(4)对塑料注塑过程的仿真分析。由于塑料进气歧管所用的材料为尼龙加玻纤,在注塑过程中,不同的纤维取向将直接影响制品的收缩变形。因此,必须对注塑过程进行仿真分析,以有效控制注塑过程中制品的应力分布、分子和纤维取向分布,以及收缩和翘曲变形,从而确保生产出质量合格的制品。

塑料进气歧管的生产工艺

目前世界上主要有哪几种塑料进气歧管的生产技术?各有什么优缺点?

教授:目前比较成熟的塑料进气歧管的加工技术主要是熔芯注塑技术和振动摩擦焊接技术。这两种技术各有特点。

(1)熔芯注塑技术是应用最早、最成熟的塑料进气歧管生产工艺。其原理是:用低熔点的锡合金制成进气歧管的内腔芯核,然后将其装配进模具中,再向模具内注入尼龙材料。注塑过程完成后,由尼龙注塑而成的进气歧管的外型即将内腔芯核包复在内。此时,将内部带有金属芯核的进气歧管放入熔化池内,以使金属芯核熔化。由于金属芯核的熔点比较低(一般110℃),而尼龙的熔点相对较高,因此在内部芯核熔化的过程中塑料进气歧管的外形保持不变。

熔芯法生产塑料进气歧管的优点是:进气歧管的内壁完整光滑,从而提高了气体的流动性,能够最大限度地发挥发动机的性能;由于是一次注塑成型,进气歧管的气密性好,成品率高;熔芯过程可消除塑料进气歧管在注塑过程中产生的残余应力,使得进气歧管具有更好的机械性能。

熔芯法的缺点是:在金属芯核的铸芯和熔芯过程中,要消耗大量的电能,因而使得熔芯法生产塑料进气歧管的成本相对较高。

(2)振动摩擦焊接技术也称为“多片焊接法”。在设计塑料进气歧管时,可将结构复杂的进气歧管拆分为结构相对简单、能一次注塑成型的两片或多片,然后利用摩擦焊机将各片焊接起来,构成完整的塑料进气歧管。

目前绝大多数塑料进气歧管生产厂家都采用振动摩擦焊接技术。其主要优点是:生产效率高、成本低。其缺点是焊缝处的强度低、外观不好、气体流动性相对较差。

塑料进气歧管的品质控制

开发塑料进气歧管需要配备哪些检测设备、进行哪些方面的性能测试?

教授:进气歧管是发动机上最核心的部件之一,当其发生故障时会导致发动机工作不正常、刹车无力、发动机自燃等严重事故。因此,进气歧管在使用前必须通过一些试验对其进行严格的质量检测。对进气歧管的试验和检测通常包括:

(1)温度交变试验。即在专用的试验装置中将进气歧管置于-40℃~120℃的高低温交变的环境中,以考察其热稳定性。

(2)低温冲击试验。将塑料进气歧管置于-40℃的低温箱中保留5h后,使一个质量为500g的钢球从1.2m的高处落到进气歧管的稳压箱顶部中央,以检查其是否有裂纹和变形。

(3)气密性检测。即在一定的压力下检查水道及气道是否有泄漏。

(4) 爆破压力检测。逐渐打压进气歧管的出口密封,以测试进气歧管炸裂时的压力。

(5) 震动试验。将试件放在震动激励器上,按一定的规律对其进行震动测试,以考察塑料进气歧管此时的疲劳应力状态。

(6) 噪声测试。在噪声实验室进行发动机台架试验,检验塑料进气歧管的噪声是否超标。

(7) 发动机耐久试验。将塑料进气歧管安装在发动机上,在试验台架上以全速进行300h 的全负荷运行,以考核塑料进气歧管的耐久性。

(8) 整车耐久试验。将配有塑料进气歧管的发动机安装在整车上,按试验规程驾驶汽车运行8 万km,以测试其耐久性。

塑料进气歧管的国内生产现状

目前塑料进气歧管的国产化进程如何?主要有哪些原因影响了它的国产化进程?

教授:发动机进气歧管的塑料化是全球性的趋势,中国也不例外。随着欧4 排放标准的推出,要求新型的发动机进气歧管必须配备电控可变进气阀等复杂的内部控制机构,而金属进气歧管却难以满足这一要求。因此,开发性能优异的塑料进气歧管是适应未来发动机技术进步的必然要求。

塑料进气歧管的国产化进程大致可分为以下三个阶段:

第一阶段为全部引进阶段。20世纪90 年代初,随着一些合资汽车企业的成立,国外较先进的发动机产品生产线随着一些引进车型被引入国内。在这一阶段,塑料进气歧管作为发动机的重要部件,其核心技术由外资方控制,进口成本很高。

第二阶段主要表现为一些外资企业直接在国内生产。在此阶段,外资企业将其在国外的塑料进气歧管生产线及全套模具转入到国内,利用国内廉价的劳动力,为其在国内的合资厂提供配套的塑料进气歧管,而塑料进气歧管的设计研发工作仍在国外。

第三阶段,随着国内汽车制造技术的不断进步,一些国内企业开始了塑料进气歧管的研制和开发工作。

塑料进气歧管是一种高技术含量的产品,其中包含了很多发动机方面的关键技术。但目前国内大多数的塑料进气歧管生产企业过去只是普通塑料制品的生产厂,他们大都不具备设计和生产发动机的技术能力,因此只能仿制一些已经过时的塑料进气歧管,他们的技术水平良莠不齐。

总体而言,目前国内生产的塑料进气歧管普遍存在技术水平低下、难以满足发动机的工作要求的问题。

巴斯夫与丰田汽车迎来了塑料进气歧管(PAIM)在丰田投产10周年纪念日。1998年巴斯夫首次开发成功用聚酰胺6制造的进气歧管。与常规铝金属制造的进气歧管相比,塑料进气歧管减轻了该部件约40%的重量,加强了发动机空气补给,从而提高发动机的性能。比起铝制产品,聚酰胺进气歧管的光滑内壁阻力更低,同时,由于塑料的成型更为容易,这种材料更有利于最佳空气流动设计的实现

(2)铸造过程

在压铸工艺中,热固性树脂料加入一单独的料腔,常叫料槽,然后强制送入一个或多个闭模中进行聚合(固化)。

料道,也叫注道和流道,使物料从料槽流向模腔,进入模腔之前经过限流器或浇口。很多模腔具有单一料槽。料腔中的空气被进来的物料所臵换,并通过一特别放臵的排气口排出。

当物料臵入料槽中时,在一紧凑的测量装臵中测料量,然后预热到接近聚合温度。一次只加入足够一次的注塑量。

将预热的原料送出料槽的力再将其送往一注料器,该注料器紧接装在料槽上,以防止从活塞和料槽边之间的缝隙中漏料。通常将密封套卡进注料器以进一步防漏。

料槽、注料器、浇口、流道和模腔的表面维持可使原料迅速固化的一定温度,根据物料性质、模具的设计和制件的几何形状该温度为280~380°F。

在压铸物达到固化期的终点时,将该次完整的压铸物进行脱模,包括脱除浇口、流道、注道和料槽中形成固化料垫(叫做残料)。

在压铸中,物料的预热很重要。冷料流动缓慢,先进入模腔的料尚未到其终点,即可能聚合。若发生上述情况,产品质量低劣,不仅是外观,也体现于机械性能。有些例外,如一次注射量很少,或一些低粘度的物料。可用加热灯或炉子加热,但有效而常用的方法是用专为塑料模塑制做的介电加热器。

现在也常用热固性材料的螺杆式塑化加热。

这种设备可以与模塑设备结合在一起,也可以是独立的,具有减少体积和对进料量测定准确的优点,在其它系统中必须与预成型相结合。

压铸模的种类

“整体料槽压铸”一词最先被使用,是因为料槽和注料杆是作为模具的整体做在一起的。最常用的是圆形料槽,也可能用其它形状的以适应特殊浇口的要求,以少产生废料。

一种简单的压塑型压机可和压铸机一起使用。整体料槽模框是料槽在中间的三板型的。送料注杆安装在模框的顶部,模腔在底部。

料槽占的面积至少比模腔段中总合模面积(与塑料材料接触的水平面)大10%。这样可防止多余的合模力引起模子溢料。

材料固化以后,通过移动脱模杆的压力将制件脱模,但废料和注道残料仍被一个或多个模塑的“鸽尾”保持在注料杆的底部。

用木杆或软锤除去废料和的进行清模。

在用单料槽产生大的废料时,有时可用双料槽向多模腔供料。这时,尽管两份料槽的重量尽稍微不等,仍需用一横板去平衡每一料槽中的压力。

压料杆式压铸模具也叫注料杆式模具,它用一辅助压力柱塞强迫注料杆进入料槽(或料筒),从料槽中将料取出移到模腔中。压铸压力和压铸速度容易控制,与合模压力无关。

压料塞式压铸模具中料槽的大小(决定废料的大小)只需要大到和深到足以满足正好加料量即可。

最大料槽面积由压铸机的辅助柱塞给予的力(以吨计)和被3.5整除来确定。这可保证3.5吨/英寸2的压力用作模塑压力,对于大多数压铸级料的配方,该压力是足够的。

辅助柱塞通常装在较上部的固定压板的上面,向下作用。冲压柱塞使下模板向上移动闭模。当模夹紧以后,原料装入料槽,辅助柱塞施加力。合模柱塞和辅助柱塞施加的力比,一般为3:1或4:1。

料固化后,辅助柱塞退回,压铸机打开。模塑制件、废料、流道冷料同时被脱模

杆送出。

这种铸塑模的一种变形是三板注料杆式压铸模具,其中有一浮动的流道板将物料分配到直接向模腔供料的料道中。

该法适用于合模线不能开流道的地方,或在合模线平面上移动型芯、制件非常不规则而十扰侃迈布臵的地万。

特殊设计的压铸机有以下几种类型:

1)底挤料杆压铸模具装在压铸机中,其中辅助柱塞安装在主合模柱塞中,若一个或多个压铸单元之间有足够的空间,则该辅助柱塞安装在下压板上。

这种方法的优点在于,模具打开时可向料槽中装料。

这种设计比在向料槽装料之前等待闭模的设计稍快。并且辅助柱塞的冲程可缩短,每一循环可节约数秒钟的时间。

用上述压铸机可用顶柱塞注料杆式压铸模具,但预压料锭要对准,以保证材料很好地进人料槽,否则闭模困难。

2)带有向多个料槽供料的多辅助柱塞的压铸机,具有可充多个模腔、不产生废料和不需要效率低的长而弯曲的流道。

3)小型的用粉料的压铸机可自动压铸,可以水平操作也可垂直操作,有与合模柱塞垂直的辅助柱塞,用于原料的合模线注料。

4)对预制整体模塑料(BMC),通常为玻璃纤维填充的聚酯,有水平式压铸机,带有供料附件可将料压实,再送往压铸料筒。

5)压铸机是热固性树脂注塑模塑机的原型。这种机器将螺杆塑化和预热模具结合在一起。

预热后的料送往模塑合模线处或紧格有模县下面的庆铸料筒中。

2震动焊接

焊接成型的进气歧管实际上就是利用振动焊接技术将二片或更多片外壳焊接在一起。这些外壳通常拥有一致的平面,采用通常的注塑工艺即可成型。在振动焊接的过程中,两个部件的接触面互相摩擦,从而使接触面材料熔化,最终熔合在一起。在两个部件熔合的过程中,随着摩擦停止并冷却后,两个部件即焊接为一体。

与热熔芯技术相比,焊接技术最大的优势是成本相对较低,其总的成本只有热熔芯技术的一半,其中注塑和模具费用与热熔芯技术相同,而振动焊接装臵和焊接用模具的费用只是注塑费用的一半。另外,对于单个焊接成型的进气歧管而言,由于每一片外壳的成型周期较短,而且在下一个成型周期的注塑过程中就可完成前一成型外壳的焊接工艺,再加上没有类似于热熔芯技术那样的材料损失(制造芯用的合金及油浴),因此单个焊接成型的进气歧管的成本要低很多。

振动焊接技术的缺点是,为了保证两个部件的接触面充分摩擦,每一个接触面都必须是平面,这就大大降低了进气歧管设计的自由度。另外,在振动焊接时,为了保证两个部件的接触面能准确地定位在一起,以实现良好的结合,要求每一个部件的接触面都必须留有5~10mm的焊接边缘(Weld flange)。在狭窄的发动机周围,这种多余的焊接边缘常常给进气歧管的装配带来困难。

目前,人们正在考虑将激光焊接(Laser welding)技术应用于进气歧管的制造,该技术的开发工作还处于初期阶段。用激光来加热并熔化材料时,由于两个接触面不会出现因振动而发生移动的现象,因此可以把焊接边缘设计得小一些。采用激光焊接技术的最大问题是,必须保证两个焊接面紧密地接触在一起,注塑部件任何微小的翘曲都可能引起焊接缺陷。

发动机进气歧管真空度及其故障诊断技术

发动机进气歧管真空度及其故障诊断技术 1进气歧管真空度△P定义 现代汽车四冲程发动机的进气行程在极其有限的时间内吸入混合汽,同时因结构及工作原理的需要,空气又必须通过空气滤清器、节气门、进气门等层层“路障”而进入汽缸,时间有限和道路阻塞二者作用使得进气管内的压力低于外界大气压力。进气管内的进气压力与外界大气压力之差,称为发动机进气歧管真空度△P。 △P是各汽缸交替进气时共同作用所形成的。事实上,发动机运行中,空气滤清器之后直至汽缸,进气管内的真空度以空气滤清器、节气门、进气门为分界点,分三段逐次增大。通常若无特殊说明,发动机进气歧管真空度△p约定为“掐头去尾讲中段”,即自节气门至各缸进气门之前该段进气管内的真空度,并且设定该段内的真空度各处相等(微小差异可忽略)。 2△P故障诊断原理 首先,△P取决于发动机的工作状态。汽油机负荷采用“量”调节,即依靠节气门开度α的变化控制进入汽缸混合气的量,改变发动机输出功率。以满足汽车行驶时的负荷要求。△P随α增大(减小)而减小(增大),随发动机转速n 升高(降低)而增大(减小)。技术状态良好的发动机,△P与α和n具有确定的函数关系:△P=f(α,n)。 其次,△P还与发动机技术状况有关。与之有关的技术状况一般可归纳为4类。其一,进气管道(包括在其上取用真空的真空管路)和汽缸的气密性;其二。空气滤清器和排气系统的“通顺性”;其三,点火正时和配气正时控制的准确性;其四。混合气的燃烧性(即完全燃烧、不完全燃烧、未燃烧)。 至此,不难推知,以上所述的气密性、通顺性、准确性和燃烧性等4性,无论何者变差。都会破坏发动机△P固有的函数关系△P=f(α,n),即4性变差△P必失常。发动机△P故障诊断技术就是利用此原理,反其道而行之。通过实测发动机△P,以及与发动机固有的变化规律△P=f(α,n)进行对比分析,可以对进气管道和汽缸的气密性、空气滤清器和排气系统的堵塞程度、点火正时和配气正时的控制精度以及混合汽的燃烧质量等做出技术状况判断,进而根据△P 的实测值与标准(经验)参考值之差大小,对发动机相应部位或系统进行较为准

全球汽车进气歧管市场研究报告2017目录—英文版

全球汽车进气歧管市场研究报告2017目录—英文版 Published by QYResearch Mar. 2018

Global Automotive Air Intake Manifold Market Research Report 2017 Hard Copy: 2900 USD PDF Copy (single user): 2900 USD Enterprise wide License: 5800 USD Pages: 126 Tables and Figures: 124 Published Date: Dec 2017 Publisher: QYR Automotive Research Center Summary This report studies the Automotive Air Intake Manifold market status and outlook of global and major regions, from angles of manufacturers, regions, product types and end industries; this report analyzes the top manufacturers in global and major regions, and splits the Automotive Air Intake Manifold market by product type and applications/end industries. The major players in global Automotive Air Intake Manifold market include Mahle MANN+HUMMEL Sogefi Aisin Seiki Magneti Marelli Keihin Toyota Boshoku Novares SMG Roechling Aisan Industry Atlas Mikuni Inzi BOYI Geographically, this report is segmented into several key Regions, with production, consumption, revenue, market share and growth rate of Automotive Air Intake Manifold in these regions, from 2012 to 2022 (forecast), covering North America Europe China Japan & Korea & Korea Southeast Asia India RoW

汽车发动机进气系统的故障与维修毕业论文

汽车发动机进气系统的故障与维修毕业论文 第一章发动机电喷系统概述 1.1电喷系统综述 1.1.1电喷系统的新概念 电喷系统的实质就是一种新型的汽油供给系统。化油器利用空气流动时在节气门上方的喉管处产生负压,将浮子室的汽油连续吸出,经过雾化后输送给发动机,汽油喷施系统则是通过采用大量的传感器受各种工况,根据直接或间接检测的进气信号,经过计算机判断和处理,计算出燃烧时所需的汽油量,然后将加一定压力的汽油经喷油器喷出,供发动机使用。 1.1.2 电喷系统的优缺点 电控发动机系统取消了化油器供油系统中的喉管,喷油位置在节气门的下方或缸,有计算机控制喷油器的精准喷射量。与化油器式发动机比,电喷系统有以下优点: 1)提高了发动机的充气系数,从而提高了发动机的输出功率和扭矩。这是因为电喷系统当中没有了喉管,减少了进气压力损失;汽油喷射是在进气歧管附近,只有通过进气歧管,这样可以增加进气歧管的直径,增加进气歧管的惯性作用,提高进气效率。 2)根据发动机负荷的变化,精准控制混合气的空燃比,适应各种工况,使燃烧更充分,降低油耗,减少排气污染,而且响应速度快。 3)可均匀分配到各缸燃油,减少了爆震现象,提高了发动机工作的稳定性,同时也降低了废气排放和噪声污染。

4)提高了汽车的使用性能。在寒冷的冬季,化油器主喷油管易结冰上冻,而电喷系统没有结冰上冻现象,所以提高了冷启动性能。另外电喷系统提供的是高压供油,喷出的气雾滴较小,能与空气同时进入燃烧室混合,因而响应速度快,加速性能好。 电喷系统与传统系统相比可以使油耗降低5%-15%,废气排放量减少20%左右发动机功率提高5%-10%。电控系统无论从燃油经济性发动机动力性,还是排气和噪声等方面都具有传统系统无法比拟的优越性。电喷发动机系统的缺点就是在于价格偏高,维修要求高。 1.1.3 电喷系统的组成和工作原理 按其部件功用来看,电喷系统的组成主要有:空气供给系统(气路)、燃油供给系统(油路)和电子控制系统(电路)三大部分。 1.2空气供给系统 作用:为发动机提供清洁的空气并控制发动机的正常工作时的进气量。 组成:由空气滤清器、空气流量计、进气压力传感器、节气门体、怠速空气调整体、谐振腔、动力腔、进气歧管等。 工作原理:发动机工作时,空气经空气滤清器后,通过空气流量计(L 型)节气门体进入近期总管,在通过进气歧管分配给各缸。节气门体中设置有节气门,从而控制进入发动机的空气量,进而控制发动机的输出功率。在节气门的外部或部设有与主进气道并联的旁通带速进气通道,并由怠速控制阀控制怠速时进气量。 L型——流经怠速控制阀的空气首先经过空气流量计测量。 D型——进气歧管压力传感器测量的是进气歧管的绝对压力,流经怠速控制阀的空气也在此检测围之。怠速控制阀由ECU直接控制。 1.3 燃油供给系统 作用:向汽缸提供燃烧所需的燃油。 组成:汽油泵、汽油滤清器、压力调节器、喷油器等。

进气歧管 的分类.

汽车发动机进气歧管的结构研究

目录 一、对进气歧管的认识 (2) 二、进气歧管的设计原则 (4) 三、对化油器、喷油嘴、单点喷射、多点喷射的认识 (5) 3.1 化油器 (5) 3.2 喷油嘴 (6) 3.3 单点电喷 (6) 3.4 多点喷射 (7) 四、可变排气歧管原理 (8) 4.1 变长度 (10) 4.2 变截面 (10) 五、可变进气歧管的分类 (11) 5.1 可变长度进气歧管 (11) 5.1.1 可变长度进气歧管原结构方案 (11) 5.1.2 可变长度进气歧管新方案结构 (12) 5.2 双通道可变进气歧管 (12) 5.3 主副通道式可变进气歧管 (13) 5.4.1 旋转式无级可变进气歧管 (15) 5.4.2 伸缩式无级可变进气歧管 (16) 5.4.3 活动插接可变进气歧管 (16) 5.5 共鸣进气系统的结构 (16) 一、对进气歧管的认识

海狮发动机进气歧管上下体汽车发动机配件-4G22D4进气歧管 在谈到进气歧管之前,先来想想空气是怎样进入引擎的。通过学习活塞在汽缸内的运作,当引擎处于进气行程时,活塞往下运动使汽缸内产生真空,与外界空气产生压力差,让空气能进入汽缸内。举例来说,就像护士小姐将药水吸入针桶内的过程一样,假想针桶就是引擎,那么当针桶内的活塞向外抽出时,药水就会被吸入针桶内,而引擎就是这样把空气吸到汽缸内的。 进气歧管位于节气门与引擎进气门之间,之所以称为歧管,是因为空气进入节气门后,经过歧管缓冲后,空气流道就在此分歧了,对应引擎汽缸的数量,如四缸引擎就有四道,五缸引擎则有五道,将空气分别导入各汽缸中。以自然进气引擎来说,由于进气歧管位于节气门之后,所以当引擎油门开度小时,汽缸内无法吸到足量的空气,就会造成歧管真空度高;而当引擎油门开度大时,进气歧管内的真空度就会变小。因此,喷射供油引擎都会在进气歧管上装设一个压力计,供给ECU(ECU(Electronic Control Unit)电子控制单元,又称“行车电脑”、“车载电脑”等。从用途上讲则是汽车专用微机控制器,也叫汽车专用单片机。电控单元的功用是根据其内存的程序和数据对空气流量计及各种传感器输入的信息进行运算、处理、判断,然后输出指令,向喷油器提供一定宽度的电脉冲信号以控制喷油量。电控单元由微型计算机、输入、输出及控制电路等组成)判定引擎负荷,而给予适量的喷油。 再次通过区分进气管、进气歧管和进气道三者来认识进气歧管。进气管是指空气从进气口进入,通过空气滤清器,直到要进入各个气缸前的这一段管道,是发动机的主要进气管路,也是总的进气管路。进气歧管是指空气从进气管进入各个气缸,空气往各个气缸分配的这一段管子,每个气缸有一个进气歧管。进气歧管的设计保证了各个气缸进气分配合理均匀。进气道则是

发动机进气系统的改装详细解说

发动机进气系统的改装详细解说 发动机进气系统包括空气滤清器、进气歧管、进气门机构等。空气经空气滤清器过滤掉杂质后,流过空气流量计,经过进气道进入进气歧管,与喷油器喷出的汽油混合后形成比例适当的可燃混合气。通过进气门进入气缸点火燃烧,产生动力。 一、容积效率与充气效率 发动机运转时,每一循环所能获得空气量的多少,是决定发动机动力大小的基本因素。发动机的进气能力是用发动机的容积效率及充气效率来衡量的。 1、容积效率 容积效率是指每一个进气行程中,气缸所吸入的空气在标准大气压力下所占的体积与气缸活塞行程容积的比值。 由于空气进入气缸时,气缸内的压力比外面的大气压力低,而且压力值会有所变化,所以采用标准大气压的状态下的体积作为共通的标准。由于进气阻力及气缸内的高温作用,将吸入气缸的空气体积换算成标准大气压下的状态时,一定小于气缸的体积,因此自然吸气发动机的容积效率一定小于1。降低进气阻力、提高进气压力、降低进气温度、降低排气回压、加大进气门面积都可提高容积效率,而发动机在高转速运转时则会降低容积效率。 进气歧臂的长度对容积效率也有影响,因为进气歧管长度的变化引发了与容积效率有关的脉动及惯性效应。较长的进气歧管有利于提高发动机低转速时的容积效率,最大扭矩也会提高,但随着转速的提高,容积效率及扭矩都会急剧降低,不利于高速运转。较短的进气歧管则可提高发动机高转速时的容积效率,但会降低发动机的最大扭矩及其出现时机。因此,若要兼顾发动机高低转速的动力输出,维持在各转速下均有较高的容积效率,就要采用可变长度的进气歧管。 2、充气效率 充气效率是指每一个进气行程所吸入的空气质量与标准状态下(1个大气压、20℃、密度为

马自达6发动机进气系统可变进气歧管工作原理

马自达6轿车在进气系统上为了保证最大的进气量,共有五大先进装备,称之为“VAD+VIS +VTCS+ETC+S-VT”,这是马自达6轿车独有的先进技术。 (一)VAD-Variable Air Duct可变进气道 功能:可在PCM的控制下,在发动机大功率输出时适时打开VAD气道(多打开一个气道,相当于气道口径变大),可以最大程度地保证发动机空气量的需求充分发挥发动机的动力性能。 (二)VIS- Variable Intake-air System可变进气歧管 功能:在PCM的控制下,在小负荷低转速到大负荷高转速范围内都保持高的扭矩。 工作原理:改变有效进气歧管的长度,有效控制进气气流在进气道中的流动惯性,使气流的流动压力波的频率和进气门的频率在不同工况下适时吻合,进而最大程度保证发动机在任何工况的进气量。实质是利用的中惯性谐波增压的原理来实现发动机的最大进气量。当发动机转速低于4400转时,VIS不起作用,VIS阀门是关闭的,气流的路径较长;当发动机转速大于4400转时,VIS起作用,VIS阀门是打开的,气流的路径是较短;这样满足不同工况的空气量的需求。 (三)VTCS- Variable Tumble Control System可变涡流控制 功能:在不同的水温和转速下将进气歧管的开度打开不同的开度,以满足发动机各个工况空气的需求。 原理:在同一工况下,不同的VTCS阀门开度,使得进入发动机的气流流速发生改变,形成涡旋,涡流即是我们常说的旋涡,使得发动机的油气混合达更加充分。特别是发动机在低温冷起动 和发动机处于低负荷时,混合气的雾化不好,燃烧不充分,排放不良,为了改善低温时汽油的雾化水平,提高发动机的排放水平,使马自达6的排放水平达到和超过欧Ⅲ标准。工作过程:当水温低于62度左右,并且发动机的转速低于3750转时,使进气管的通道面积减小;随着水温的进一步提高,转速进一步上升,VTCS阀的开度完全打开,进气管的面积达到最大。 (四)ETC-Electronic Controi Throttle Valve电子节气门 顾名思义它不是由油门拉线控制进气总管的开度而是利用直流电机通过减速机构来自动实现的。 功能和工作过程:它具有普通节气门的基本功能,其作用是打开进气歧管在总管上的通道,不同工况打开不同的开度,一般轿车的节气门都是由脚踏板带动的油门拉线控制。但这种拉线控制的节气门在急加速等特殊工况时有进气迟滞现象,也就是说在急加速等特殊工况时,节气门的开度信号通过节所气门位置传感器已送出,但实际进入气缸的空气并没有及时跟进,而且节气门处在气流扰动下并不是很平稳,因此空气量并不稳定,加速不理想和不稳定。而电子节气门可根据节气门位置信号,PCM直接驱动直流电动机快速作响应,及时地将节气门打开所需的开度,而且电子节气门在自身减速机构的自锁作用下,不会因为气流的

进气岐管真空度的检测与诊断

进气岐管真空度的检测与诊断 用真空、压力表检修汽车发动机及相关故障 一、真空表的使用及检查的内容 发动机在运转过程中,进气歧管内将会产生一定的真空度,这个真空度是直接来源于发动机的真空。该数值同汽车的排气量和压缩比有着密切关系,但是这一真空度的大小、稳定与否将直接反映出发动机的总体性能与故障部位。测试发动机进气歧管的真空度可分为三种基本类型:怠速测试、急加速测试和排气系统阻塞测试。 在测量一台发动机时,只要发动机能转动(运转起动机),或在不同转速范围内均可对发动机的真空度进行测量,在测量时把真空表接于节气门后方的进气歧管上,并通过不同的转速与读数来分析和判断故障的部位。真空是低于大气压的压力,测量单位一般是“-KPa"。一台性能良好的发动机运转时的真空度比较高。当节气门在任何角度保持不变时,只要发动机转速加快,或是进气歧管无泄漏且气缸密封性良好,真空度就会增加。当发动机运转比较慢或气缸进气效率变低,那么歧管内的真空度就会变低。 下面介绍各种工况下的真空度测试方法。 一.怠速真空度测试 接上真空表,发动车子怠速Idle speed运行至水温稳定,一台性能良好的发动机,根据其排气量和压缩比的不同,怠速运转时,真空表读数应在-50~-80kPa之间,而且稳定。 若测量值不在此范围,要根据不同情况,加以分析,以判断故障所在。 1、如果怠速测试时的真空表读数不正常 则应进行以下检查:①检查初始点火正时;②检查配气正时;③检查气缸压力;④检查曲轴箱强制通风控制阀。例如,如果怠速测试时真空读数低于正常数值但是稳定,除了节气门的密封和怠速阀的旁通有问题外,可能原因如下:点火正时推迟,配气正时延迟(过松的正时齿带或正时链条),凸轮轴升程不足。 2、如果怠速测试时的真空表指针有规律的下跌6~9kpa 则应进行以下检查:①查出工作不良的火花塞,包括高压线等;②查出烧坏的气门(压力测试);③查出烧坏的活塞(压力测试)。 3、如果发现真空表读数值不规则地下降到-10~-27kpa时 则应进行以下检查:①检查火花塞;②查找卡滞的气门;③查找卡滞的气门挺杆或液压挺杆;④查找严重磨损凸轮轴。 4、如果真空表指针缓慢摆动于-27~-34KPa之间 则应进行以下工作:①(如果是化油器车)调整化油器,混合气可能太浓;②检查火花塞(火花塞间隙可能太小); 5、如果怠速时真空表指针很快的在-47~-61KPa之间摆 则说明:进气门挺杆与导管磨损、配合松旷。如果真空表指针在-34~-76KPa之间缓慢摆,并且随着发动机转速的升高摆动加剧则说明气门弹簧弹力不足。 6、如果怠速时真空表指针在-38~-61KPa之间来回摆动 原因通常为:气门漏气,气缸垫损坏,活塞损坏,缸筒拉伤。 7、如果怠速时真空表指针在-18~-65KPa之间大幅度摆动多半是由气缸衬垫漏气所引起的。 8、如果发动机怠速过高,测试歧管真空度(绝对值)小于40KPa。 说明是发动机的节气门之后的歧管或总管漏气,漏气部位多数是歧管垫以及与歧管相连接的许多导管。如真空助力器气管等。 9、如果发动机启动困难,保证不了稳定怠速运转、只要测试发动机的真空度(绝对值)在50kpa以上

可变进气歧管在发动机中的应用

可变进气歧管 技术在汽车发动机中的应用 V ariable intake manifold technology applications in the automotive engine

摘要 进气系统最重要的部分就是进气歧管,它就是一支引导气流的管子,空气经过滤清器之后,在此进行油气混合,并输送到汽缸进行燃烧。由于混合气是具有质量的流体,在进气管中的流动千变万化,工程上往往要运用流体力学来优化进气管的内部设计,例如将进气歧管内壁打磨光滑减少阻力,或者刻意制造粗糙面营造汽缸内的涡流运动。但是,正如前面所说,汽车发动机的工作转速高达每分钟数千转,各工作状态下的进气需求不尽相同。于是,天才的工程师们对进气歧管进行了深层次的开发——让它也能“变”起来。 关键词:进气系统进气歧管汽车发动机

Abstract The most important part of the intake system is the intake manifold, it is a guide tube flow of air through the filter, the oil and gas in this mixture, and transported to the cylinder for combustion. As the mixture is a mass of fluid flow in the intake manifold of the ever-changing, often on a project to optimize the use of fluid into the pipe interior design, such as intake manifold wall polished smooth to reduce resistance, or deliberately created to create a rough surface vortex motion within the cylinder. But, as I said before, the car engine working speed of up to several thousand per minute switch, the working conditions of the intake needs vary. Thus, the genius of the engineers on the intake manifold for the development of deep level - it can "change" them. Keywords: Intake Air intake manifold Automotive engine

进气歧管设计

本文件所有内容及图片,其所有权归奇瑞汽车有限公司拥有,未经奇瑞汽车有限公 司许可,不得以任何形式复制此文件(包括其中部分或整体),以及提供给第三 方,否则奇瑞汽车有限公司有权追究其法律责任 进气歧管总成设计指南 Part Design Guideline of Intake Manifold 编 制: 郭 栋 审 核: 江 雪 峰 批 准: 杨 俊 伟 日 期: 2007.9

本文件所有内容及图片,其所有权归奇瑞汽车有限公司拥有,未经奇瑞汽车有限公 司许可,不得以任何形式复制此文件(包括其中部分或整体),以及提供给第三 方,否则奇瑞汽车有限公司有权追究其法律责任 目录 一 进气歧管概述 (3) 1.1 进气歧管的功用................................................................................................................3 1.2适用范围.............................................................................................................................3 1.3 进气歧管的总成结构以及组成. (3) 二、进气歧管开发流程 (6) 2.1开发流程.............................................................................................................................6 2.2概念设计.............................................................................................................................7 2.3布置设计.............................................................................................................................7 2.4详细设计.. (8) 三、进气歧管设计 (9) 3.1 设计原则............................................................................................................................9 3.2 分析计算..........................................................................................................................10 3.3 参数选定..........................................................................................................................11 3.4 设计方案的选定..............................................................................................................16 3.5 材料的选择......................................................................................................................16 3.6 技术要求..........................................................................................................................17 3.7 试验验证.. (17) 四、进气歧管建模.....................................................................................................17 五、进气歧管的一些先进技术 (19) 5.1 我公司应用的一些先进技术..........................................................................................19 5.2 目前在世界上应用的一些先进技术 (22) 六、进气歧管开发过程中的问题和解决措施 (26) 6.1 进气歧管支架断裂..........................................................................................................26 6.2 摆臂脱落..........................................................................................................................27 6.3 金属进气管和支架断裂..................................................................................................27 6.4 进气歧管总成装配干涉.. (28)

汽车进气歧管真空度

进气歧管真空 真空度是由发动机在活塞工作过程中产生的,他可以反应一台发动机各工况的工作状况是否正常,当喷油量大时,其真空度(负压)变,使发动机运转平稳有力·加速良好(混合气稀真空度小)对于汽车来说,在运转过程中由于排气行程的作用,在进气歧管就产生真空度,这个真空度是由各缸交替进气过程时造成的,进气歧管真空度的大小以及稳定性,就和发动机的转速··~缸数,点火时间的可能性,可燃混合气的品质,(真空的大小)有密切的关系。另外还受节气门开度的影响成正比,节气门开度的大小等于发动机的负荷。用真空表检测发动机进气歧管真空度的大小。把真空表接节气门后边,启动发动机,在正常情况下,进行怠速运转,即可获取真空度数值的变化,就可判断发动机存在的故障。 真空度可检测发动机故障的范围 1.汽油机的正常运转,必须具备三个条件,以及一定比例的混合气。 2.是要一个能使混合气体进气。压缩和燃烧的场所 3.是要一套标准的点火装置 这三个条件缺一不可,而且第二个条件与发动机进气歧管真空度变化有着密切的联系,第一个和第三个和真空度的变化存在间接的联系,因此利用真空度检测进气歧管真空度,可以影响上面三个故障的原因分析和判断,特别是进气系统密封性的检测最有效 实践证明,利用真空度检测进气歧管真空度的方法,同时对发动机因机械部分造成的故障,如:气缸盖,气缸垫,活塞,活塞环,气门,气门座,气门导管,气门弹簧,液压气门挺杆,节气门衬垫,进气歧管热和喷油器的密封。同时还可以对发动机的正点火正时,配气相位和可燃气体混合度的不正确所产生的故障进行有效检测,另外,还能检测废弃再循环(EGR)和曲轴箱强制通风(PCV)装置的密封性不良造成的故障 进气管真空度的检测

发动机进气设计

发动机进气设计 进气部分认识: Plenum:稳压箱Cylinder Runner:进气歧管 我们主要研究方向是稳压箱体积和进气歧管长度,进气总管的长度与布置有关。总的来说稳压箱体积影响着扭矩和功率还有发动机响应,进气歧管长度影响着平均有效压力,当然对扭矩和功率是有直接影响的。 1稳压箱体积选择: 由于缺乏实验装置,只好借鉴国外的实验。这个实验是在进气总管和进气歧管一定的情况下(进气总管长度符合动态效应),改变稳压箱 体积,通过一系列测试来探 究不同稳压箱体积下发动机 的表现。(F4I发动机) 扭矩与功率 这附图是稳压箱体积1.2L时

与6.0L时发动机的扭矩曲线,可以看到在7000之前,较小的稳压箱有比较小的一个扭矩优势,但是超过7000转之后,较大的稳压箱可以保证扭矩持续输出。图中可以明显看到较大的稳压箱的引擎扭矩远 大于小稳压箱。由于赛车的 加速与扭矩有着直接关系并 且FSAE比赛对车速要求不 高对加速要求很高,所以要 在扭矩提升上下很大功夫才 行。作图时最大功率的对比。 稳压箱压力 左边这幅图则是稳压箱压 力与凸轮轴角度变化的关 系图,其中TC是上止点, BC是下止点。IVO/IVC分 别指气门开启与关闭。可以 看出较大的稳压箱在进气 时可以提供很好的稳定压 力,而小的稳压箱在上止点与下止点时压力波动很大。有可能是因为稳压箱体积太小会影响到每个进气歧管的动态效应,歧管里不同时段的compression wave 受到了削弱,这可以从下图的2.4L的稳压箱的充气效率急剧下降看出。原因可能是因为小稳压箱里的膨胀波比大稳压箱要大,所以互相影响

很大,导致充气效率下降。 Transient Response瞬时响 应 这里用到了一个方法就是 60ms throttle transient 大 概就是油门瞬间开启吧。 这幅图是平均有效压力 (平均有效压力越大引擎 做工能力越强)与cycle就 是冲程的关系。可以看到 6.0L的平均有效压力在6 个冲程之后才达到平均水 平。最小的稳压箱有最好的 响应,其他体积则差不多。这里值得注意的一点是,6个cycle的延时,就算最有经验的车手能感觉的出来么?所以不要用太大的稳压箱都是可以的。

可变进气歧管设计探讨

可变进气歧管设计探讨 作者:孙宗强来源:AI汽车制造业 为了充分利用轿车汽油机进气歧管的谐波效应和尽量缩小轿车汽油机在高、低速运转及大、中、小各种负荷运转时进气速度的差别,现代轿车汽油机采用了可变进气系统。它由可变进气歧管(VIM)和可变气门正时(VVT)等结构组成。采用可变进气歧管技术后,现代轿车汽油机可以实现:每一气缸使用第一和第二两个进气歧管,即两个进气气流通道。通过改变第二进气歧管上控制阀开度,可使轿车汽油机总的进气歧管长度和截面面积发生变化,从而改善轿车汽油机在中、低速和中、小负荷的动力性、燃油经济性及排放净化性。 正常行驶的轿车要求搭载的汽油机在高转速、大负荷时,进气已具有较高的流速,相应的进气阻力有增大的倾向。为了减少进气流动阻力,需要用短而粗的进气歧管;在中、低转速和中小负荷时进气气流速度较小,进气压力较小,配用进气截面较小(细)、歧管长度较长的进气歧管。 设计原则及设计要点 设计原则要求各缸进气量要多而且要均匀。为了实现轿车多缸汽油机进气均匀分配,总的设计要点是: 1.力求对所有气缸具有相同气流通道(包括管长、截面尺寸、对称性都要求一致); 2.力求具有很高的紊流强度; 3.力求具有合适的(进气予热)加热区域; 4.力求具有光滑的内表面(这对减小油膜厚度有利);例如复合塑料进气歧管的内表面。 5.力求选用合适的气流速度; 6.可变进气歧管安装位置、外形尺寸要符合要求。 典型结构及简要分析 1.可变长度进气歧管结构 图1 可变长度进气歧管 图1为一种能根据轿车汽油机转速和负荷的变化而自动改变有效长度的进气歧管。

当汽油机低速运转时,汽油机电子控制模块指令转换阀控制机构关闭转换阀。这时,空气须经空气滤清器和节气门沿着弯曲而又细长的进气歧管流进气缸。细长的进气歧管提高了进气速度,增强了气流的惯性,使进气充量增多;当汽油机高速运转时,汽油机电子控制模块指令转换阀控制机构,打开转换阀,空气经空气滤清器和节气门及转换阀直接进入粗短的进气歧管。粗短的进气歧管,进气阻力减小,也使进气充量增多。 可变长度进气歧管不仅可以提高汽油机在中、低速和中、小负荷时的动力性,即提高有效输出扭矩Mem;还由于它提高了汽油机在中、低速运转时的进气速度W,而增强了气缸内的气流强度,从而改善了燃烧过程,使汽油机中、低速的最低燃油消耗率ge下降,燃油经济性有所提高。 此外,可变长度进气歧管还有减少汽油机废气排放量的作用。因为汽油机燃烧过程改善后,不仅油耗降低,经济性改善,汽油机的有害排气污染物的排放量也能适当减少,即轿车汽油机的排放净化性能也可适当改善。 2.双通道可变进气歧管 图2 双通道可变进气歧管 双通道可变进气歧管的结构见图2。 每个进气歧管都有两个进气通道,一长一短。根据汽油机的工作转速高低、负荷大小,由旋转阀2控制空气经过哪一个通道流进气缸。在长进气道中安装有喷油器。当汽油机在中、低速运转时,旋转阀2受到由汽油机电子控制模块发出的指令,在旋转阀控制机构(执行器)作用下,将短进气通道1封闭,新鲜空气充量经空气滤清器、节气门沿长进气通道3经过缸盖上的进气道5和进气门6进入气缸;当汽油机在高速运转时,汽油机电子控制模块发出指令,旋转阀控制机构(执行器)作用将短进气道1打开,使长进气道通道短路,将长进气通道改变为辅

进气歧管真空度

进气歧管真空度的利用与空气供给系统的维护 空气供给系统是电控汽车发动机的一个重要组成部分,它的功用不仅仅为发动机提供所需的清洁空气,而且通过传感器对进气的数量、压力和温度等进行准确测量,作为电控单元(ECU)对发动机的喷油时刻、喷油量以及点火提前角等进行闭环控制的重要依据,从而达到提高汽车动力性、经济性和降低排放的目的。因此,在排除发动机故障时,不但要检查电路和油路,而且还要检查气路。! 从整体上来说,电控汽车发动机空气供给系统由两大部分组成,一是纯气道部件,包括空气滤清器、进气连接管、节气门体、进气总管和进气歧管等;二是电子测量装置或者执行机构,包括空气流量计(或者进气压力传感器)、进气温度传感器、怠速控制阀等。 进气歧管真空度的利用 当发动机运转以后,在进气歧管内便形成了一定的真空度。进气歧管真空度的大小随着发动机负荷和转速的变化而变化(在不同工况下进气歧管真空度的变化量一般为50KPa)。也就是说,进气歧管真空度的变化意味着发动机负荷和转速的变化。正是巧妙地利用这一特性,现代汽车最大限度地实现了功能的扩展。 ⑴利用进气歧管真空度的变化作为传感器或者执行器的“动力源”,对汽车进行自动控制。例如:燃油压力调节器、真空膜盒式进气压力传感器、曲轴箱强制通风装置(PCV)、汽油蒸发回收装置(EVAP)等。除此以外,底盘部分的自动变速器真空式节气门阀、真空制动助力器、汽车巡航控制中的真空式节气门开度控制装置等,都是利用进气歧管真空度的变化实现控制的。 ⑵可以方便地模拟进气歧管真空度的变化,有利于汽车故障的判断。例如,通过堵住空气滤清器的进气口,人为地制造富燃状态;拔下一根发动机的真空软管,人为地制造稀薄燃烧状态,同时利用示波器或者数字式万用表检测氧传感器的不同反应。如果在富燃状态时氧传感器输出电压为800mv以上,而在稀薄燃烧状态下输出电压为200mv以下,则表示氧传感器正常,能够正确反应尾气中的残留氧;如果氧传感器信号电压不发生这种变化,说明氧传感器有故障。 ⑶用真空表测量进气歧管真空度的变化,也可以方便地分析不少故障,而且它对故障的诊断范围比采用测量气缸压缩压力的方法更加广泛。通过进气歧管真空度的变化情况,可以判断有一个或者几个气缸密封不良,因而造成气缸压力下降等故障。 因此,凡是发动机出现怠速不良,发动机震抖,排气管产生冲动;怠速过高,无法调低;混合气过稀等故障时,都要检查空气流量计、节气门体、辅助空气阀、怠速稳定阀、废气再循环阀等进气系统的软管及其接头是否松动、破损或者漏气。 空气供给系统的维护 对于电控燃油喷射发动机来说,进气系统的漏气对发动机工作性能的影响远比化油器式发动机的影响大。因为在电喷发动机上,这部分漏气是不经过空气流量计计量的,它对空燃比的影响非常明显。 由于电喷发动机对进气歧管的真空度极其敏感,因此现代汽车发动机对于进气管路极其重视,从空气滤清器的空气进口,一直到消声器的排气出口,都控制得十分严密,容不得有丝毫的泄漏现象。如果进气系统密封不严或者出现漏气时,电控系统将获得错误的信号,并由此带来一系列的负面影响。例如一辆帕

相关主题
文本预览
相关文档 最新文档