当前位置:文档之家› SDZ5000数控测井地面系统安装详解

SDZ5000数控测井地面系统安装详解

SDZ5000数控测井地面系统安装详解
SDZ5000数控测井地面系统安装详解

PL2000地面测井系统

PL2000地面测井系统 目录 前言 (1) 一概述 (1) 二重要安全指导 (3) 三系统功能及技术指标 (3) 四系统工作原理 (9) 五系统的操作 (21) 六常用板卡、连线维护与使用 (46) 七仪器的日常维护及注意事项 (54)

前言 为了使现有的生产测井装备和井下仪器的使用、维修及操作规范化,提高仪器、设备的使用效率,增强生产操作和维修的水平,我们组织有关人员,根据多年的现场实践经验编写了该系列教材。其内容有: ●PL2000地面系统 ●产出剖面五参数组合测井仪 ●注入剖面五参数组合测井仪 ●多臂井径测井仪 ●脉冲中子氧活化测井仪 该系列教材系统的叙述了仪器的基本数据、主要技术指标、结构与工作原理、信号流程及关键点的电压、波形、地面配接和现场操作、常见问题及解决办法以及检修后的质量评价和日常维护保。每篇培训教材都是根据仪器生产制造、现场使用及维修中的实践经验进行升华,具有可读性、实用性,是关于生产测井现场操作、维修的较好的培训教材和参考书。 由于编写时间和人员的水平有限,本系列培训教材一定还存在许多不妥之处,欢迎读者提出宝贵意见,使本系列教材在使用中逐步完善。 测试技术服务分公司按“仅此状态”提供本出版物,而不做任何明示或默示保证,包括但不仅限于出于特定目的的适销性或适用性有限保证。 本出版物可能包含技术上不准确的地方或印刷错误。本书中的信息将根据技术改进而定期更新;您可向测试技术服务分公司仪器制造厂销售部索取有关本厂产品的技术信息。 一概述 PL2000测井系统硬件部分以工业控制计算机为核心,能对井下仪器传输到 地面的模拟、脉冲、以及遥测信号进行接收、处理,根据要采集的信号进行分类, 1

随钻测井系统机械结构论文【论文】

随钻测井系统机械结构论文 1电磁波电阻率随钻测量系统 1.1系统工作原理及组成 电磁波电阻率随钻测量系统主要由发射天线、接收天线、电路仓体和对接结构等几大部分组成。天线系统采用“四发双收”的方式和结构,工具上端和下端各有2个发射天线,工具中部设有2个接收天线。工具侧壁设有测量控制电路仓体,工具中心设有泥浆通道,两端的公扣和母扣端有数据对接系统,用来实现与上下相邻工具之间数据交换与供电的功能。电磁波电阻率随钻测量是一种重要的电阻率测井方法,在各种不同类型的钻井液中都能够进行测量。它的工作原理基于电磁波在穿越地层时产生的衰减和相位移。由于穿越不同的地层会导致产生不同的衰减和相位移,通过测量电磁波的衰减和相位移就可以确定地层的介电常数和电阻率。电磁波电阻率随钻测量系统就是利用这一原理,由发射线圈向地层发射电磁波,再由不同的接收线圈接收电磁波,根据接收到的电磁波的相位差和幅度比来确定地层的电阻率。 1.2技术难点

电磁波电阻率随钻测量系统受结构尺寸的影响,设计空间小,机械结构较为复杂,强度和可靠性要求高,具有以下几个主要的设计难点: 1)设计空间小,受工具直径尺寸的限制,中心预留泥浆通道后,可供使用的空间极为有限,对机械设计工作带来了很多的限制。 2)机械结构较为复杂,工具设有4个发射天线,2个接收天线,天线内设有线圈,需要与控制电路进行连接通讯,整体结构较为复杂。 3)系统处于高温高压的工作环境下,并且要传递钻压和转矩,对工具的强度和可靠性提出了很高的要求。 4)系统工作在流动的高压泥浆中,系统内部的电路控制系统和天线线圈需要进行隔离绝缘处理,对整个系统的密封性能提出了很高的要求。 1.3解决方案

石油测井专业词汇

石油测井专业词汇 1 范围 本标准规定了石油测井专业基本术语的含义。 本标准适用于石油测井专业的生产、科研、教学以及对外交往活动等领域。 2 通用术语 2.1 地球物理测井(学) borehole geophysics 作为地球物理一个分支的学科名词。 2.2 测井 well logging 在勘探和开采石油的过程中,利用各种仪器测量井下地层、井中流体的物理参数及井的技术状况,分析所记录的资料,进行地质和工程研究的技术。log一词表示测井的结果,logging则主要指测井的过程、测井方法或测井技术。按照中文的习惯,通称为测井。 2.3 测井曲线 logs;well logs; logging curves 把所测量的一种或多种物理量按一定比例记录为随井深或时间变化的连续记录。包括电缆测井和随钻测井(LWD)。 2.4 测井曲线图头 log head 测井曲线图首部记录的井号、曲线名称、测量条件,比例尺、施工单位名称、日期等栏目的总称。 2.5 重复曲线 repeated curve 在相同的测量条件下,为了检验和证实下井仪器的稳定性对同一层段进行再次测量的曲线。 2.6 深度比例尺 depth scale 在测井曲线图上,沿深度方向两水平线间的距离与它所代表实际井段距离之比。 2.7 横向比例 grid scale 在测井曲线图上,曲线幅度变化单位长度所代表的实测物理参数值。 2.8 线性比列尺 linear scale 在横向比例中,测井曲线幅度按单位长度变化时,它所代表的物理参数按相等值改变。 2.9 对数比例尺 logarithmic scale 在横向比例中,测井曲线幅度按单位长度变化时,它所代表的物理参数按对数值改变。 2.10 勘探测井 exploration well logging 在油气田勘探过程中使用的方法、仪器、处理及解释技术。 2.11 开发测井 development well logging 在油气田开发过程中使用的方法、仪器、处理及解释技术。 2.12 随钻测井 logging while drilling 一种非电缆测井。它是将传感器置于特殊的钻铤内,在钻井过程中测量各种物理参数并发送到地面进行记录的测井方法。 2.13 组合测井 combination logging 将几种下井仪器组合在一起,一次下井可以测量多种物理参数的一种测井工艺。 2.14 测井系列 well logging series 针对不同的地层剖面和不同的测井目的而确定的一套测井方法。 2.15 标准测井 standard logging 以地层对比为主要目的,在自然伽马、自然电位、井径、声波时差和电阻率等项目中选定不少于三项的测井方法,全井段进行测量。 2.16 电法测井 electriacl logging 以测量地层电阻率和介电常数等物理参数为主的测井方法。

仪器原理

1.侧向测井(电流聚焦测井)采用电屏蔽方法,使主电流聚焦后水平流入地层,减小井眼和围岩影响。主电流线沿井轴径向成饼状流入地层。 2.理想的侧向测井组合是双侧向加微球形聚焦,可较准确地确定地层电阻率、冲洗带电阻率和侵入带直径,是计算地层含油饱和度、判断地层含油性的重要参数。 3.侧向测井电极系的主电极A0位于电极系中心,两端有屏蔽电极A1、A2,呈对称排列。 七侧向电极系主电极A0,屏蔽电极A1、A2,两对监督电极M1N1和M2N2;Um1=Un1或Um2=Un2,使主电流沿水平方向流入地层。 七侧向四个参数:①电极系长度: 210A A L =影响侧向测井的径向探测深度。电极系长度越大,探测越深;②电极距:21O O L =影响纵向分辨率。L 越小纵向分层能力越强。③分布比:L L s /0=影响电流层的形状,一般取s 为3左右较适宜。④聚焦系数:L L L q /)0(-= 1-=s q 影响电流层的形状。 双侧向电极系由9个电极组成,第二屏蔽电极A1’、A2’有着双重的作用。 4. 如何保证屏流和主电流同极性? 用同一电流源供给屏流和主电流。屏流大于主电流,在测井过程中屏流是浮动的。所以,屏流要由平衡放大电路输出的信号加以调制后通过功率放大后加到屏蔽电极上;二是用跟踪主电流来产生屏流,或用跟踪屏流来产生主电流,这种方式用在双侧向仪器中。 5.双侧向测井仪器中,增加屏蔽电极的长度可以加大聚焦能力,而增加仪器探测深度。相反,在屏蔽电极两端设置回流电极,可使主电极和屏流流入地层的深度变浅,降低探测深度。 6.侧向测井仪器工作方式:恒流式(高阻地层),恒压式(低阻地层),自由式(1229、JSC801)和恒功率式(DLT-E )。 恒流式:保持主电流恒定,测量主电极(通常用监督电极M1或M2代替)至远处电极N 之间的电位差U 。地层的电阻率越高测量电压信号越大,测量误差越小。 恒压式:保持主电极电位恒定,测量主电流。地层的电阻率越低测量电流信号越大,测量误差越小。 自由式:电流和电压按一定规律浮动,同时测量电流、电压两个量,可以得到较宽的测量动态范围。 恒功率式或可控功率式:测量过程中使最高和最低电阻率的两个极点保持功率(IU 乘积)不变,让测量电压和电流保持在仪器可测量的范围之内(不被限幅)。比自由式仪器有更宽的测量动态范围。 7.1229双侧向测井仪采用屏流主动式供电,即先有屏流后又主电流,用屏流来激励产生主电流。工作方式为自由式,为提高仪器测量动态范围用U2D 来控制深、浅屏流、屏压的变化幅度在于此。 频分双侧向供电式,fS = 4fD ,深、浅侧向供电频率分别为32Hz 和128Hz 。使深、浅侧向两个系统相对独立地控制和测量。

FEWD无线随钻测井系统介绍及应用

FEWD无线随钻测井系统介绍及应用 摘要:FEWD是一种无线随钻地质评价测量系统,其主要功能是随钻测井。本文针对利用该FEWD形成的随钻测井技术,介绍了该技术涉及到的常用井下仪器组合、常用钻具组合,并以哈利伯顿公司的FEWD的地质参数无线随钻测量系统应用为例,介绍了该技术在国内油田上的应用情况,具有一定的推广价值。 一、引言 FEWD(Formation Evaluation While Drilling)是随钻地质评价测量系统的简称,主要功能是随钻测井,由测井传感器、定向工程参数传感器、钻具振动传感器等部分组成,可以实时获得地层自然伽玛、电阻率、补偿中子孔隙度、岩石密度四道地质参数和井斜角、方位角、磁/高边工具面角等工程参数,同时仪器自动记录井下钻具的震动情况,当井下钻具的振动超过允许的范围时,井下仪器优先将该钻具剧烈振动的信息传递至地面,以警示施工人员采取措施减振、预防井下复杂情况或井下事故的发生。FEWD的一项重要功能即随钻测井,哈利伯顿生产的FEWD无线随钻测井系统将地质参数测量传感器与定向工程参数传感器组合在一起,组成随钻测量/测井系统,除实时测量定向施工所需要的工程参数外,还可以实时提供井下地质参数。目前已应用于油田测井工作中,效果显著。 二、主要应用技术 1.钻井工具介绍 和常规钻井技术和导向钻井技术相比,地质导向钻井技术除了使用的仪器有较大的区别外,在使用钻井工具方面也有很大的差别。由于地质导向钻井技术是在导向钻井技术的基础上发展起来的,因此地质导向钻井技术所用的一些工具自然也包含了导向钻井所用的工具,同时也包含其它的通用钻井工具。 FEWD施工过程中主要以动力钻具为钻进工具的导向钻具组合为主,根据施工的需要,需要在小范围内对轨迹进行微调有时也采用可变径稳定器为主的旋转导向钻具组合。FEWD随钻测井施工,配合导向马达工艺技术和高效钻头,构成全新钻井工艺模式,能实现各井眼轨迹工艺段的连续作业施工。 2.自动化钻井技术 自动化钻井技术主要有六个环节:地面数据实时测量(主要用地面仪器仪表)、井下数据随钻测量、数据实时采集(由相关计算机(井下或地面)完成)、数据综合解释及决策指令(应用人工智能优化钻井措施)、地面操作自动化(铁钻工/自动排管机等)、井下操作自动控制(钻头自动导向)在以上留个环节中,井下随钻测量是关键环节,同时也是关键技术,目前主要应用MWD/LWD/FEWD/DWD

《测井仪器原理》习题答案

《测井仪器》习题答案 二、试画出2435补偿中子仪器原理框图,并说明各部分的作用。(10分) 高压电源:输出+1150V直流高压供探测器。 低压电源:输出+24V直流低压供给个单元电路。 前置放大器:将探测器输出的微伏级脉冲信号放大到可处理的电平。 鉴别器:从背景噪声中取出信号脉冲。 分频器:使长短计数道分别将计数减少到原来的1/4和1/6,避免了高计数率情况下,因电缆充电和衰减影响会造成信号首尾重叠而产生漏记。 缆芯驱动器:将脉冲信号功率放大后送上测井电缆。 三、试画出CNT-G补偿中子仪器原理框图,并说明各部分的功能。(10分)

低压电源:输出±5V 、±15V 和+24V。 高压电源:输出四路直流高压(可调)供探测器使用。 测量电路:由探测器、前置放大器、鉴别器、分频器构成,其作用是:将探测到的中子射线转换为脉冲信号。 计数器:脉冲计数。 移位寄存器:实现计数结果的并—串转换。 仪器总线接口:实现与遥测短节的命令/数据通讯。 诊断电路:用于仪器测试。 四、试画出CNT-G补偿中子仪器中的高压电源电路框图。(10分)

五、试述CNT-G补偿中子仪器中的低压电源的稳压原理。(10分) CNT-G补偿中子仪器中低压电源是一个开关型稳压电源,它通过利用误差电压的大小改变控制串联开关通断的矩形波的占空比,从而改变串联开关的接通时间而调节电源的输出电压,使其保持稳定输出+24V。 六、LDT岩性密度测井仪器为什么要进行稳谱?怎样进行稳谱?(10分) 由于LDT岩性密度测井仪器不但要探测反应来自地层伽马射线强度的计数率,同时还要根据伽马射线的能量进行分开计数,因此对伽马射线产生的脉冲幅度进行放大必须是固定的放大倍数,因而在仪器测量过程中需要确保放大倍数的稳定,这就是稳谱。仪器采用一个固定的伽马源产生一个能谱峰,然后通过在该峰中心位置两侧分别开窗计数,然后根据这两个计数率的差异来调整伽马探测器的高压以稳定探测器的放大倍数。 七、试画出LDT岩性密度测井仪器原理框图,并说明各部分的功能。(10分) 仪器总体由地面仪器、井下仪器和连接它们的CCC短节组成。 地面仪器:控制整个系统的正常运行。 CCC短节在CSU和NSC-E/PGD-G之间。它向上传输下井仪器获得的数据,向下传输来自地面的指令 井下仪器则完成信号的测量及向地面传送的任务。 八、试画出LDT岩性密度测井仪器接口电路组成框图,并说明各混合电路功能。(10 分)

石油测井仪器刻度方法与刻度质量体系的浅析

石油测井仪器刻度方法与刻度质量体系的浅析 【摘要】在测井行业中专用的计量器具就是石油测井仪器,而在测井的行业中我们所说的“刻度”就像是计量学中的名词“校准”。但是在测井仪器的刻度里存在一些问题,其中的主要问题就是:不统一的单位、不标准量值,以及在测量仪器中纵向/横向上没有形成刻度体系等,以至于在测井资料以及其解释的结果中会带来一定的影响。所以,我们当前要解决的问题就是要建立起石油测井仪器的完整刻度体系,通过建立石油测井仪器的刻度体系,提高作业设计水平,以要提高资料解释精度。 【关键词】石油测井;刻度方法;刻度质量;测井仪器 1 测井仪器的刻度 测井仪器刻度的原理就是运用刻度的装置来建立测井仪器测量值并且与相应的装置中已知量值所对应关系的整体工作过程。而文中所涉及到的“刻度”,只是一种专业的习惯用法;从大的范围上来说应该把它叫做“计量”,因此要明确这点意义,就是要认清测井仪器刻度的工作范畴。它是属于计量工作范畴内的,因此应该被纳入法制管理的正确轨道。要想解决在测井仪器刻度中遇到的问题,第一点要做到的就是建立统一的标准刻度装置来体现刻度中的单位量值,也就是部门检测中最高的标准装置,并且与此相符合的,在中转性的区域中需要有工作标准刻度装置,这种装置必须在各油田中建立。这种所说的刻度装置应当通过比对来确定其量值,具体原理是由通用所运用的计量标准传递然后再经与最高标准装置或者由最高标准装置传递来完成的,并且要经专业相关的部门进行鉴定、批准到最后才能投入到生产部门进行应用。此外,生产实际情况是必须的一句,应该建立区别于不同等级并且经由上级传递并比对的现场测量刻度器。这种就是我们通常提到的一、二、三或四级的刻度器。 2 完善测井仪器刻度的质量体系 要想保证准确性,就要子逐级提升每种测井仪器的具体刻度(包括一、二、三或四级),这些都要进行刻度装置以及相对的精度测试仪表来完成,建立从上到下各自完整的刻度系统。但是现实的情况却是忽略了刻度体系整体的概念,目前只有单一的刻度器,并且测试仪表也没有相应的设备进行配套作业标准,因此所生产出来的刻度器就会五花八门,刻度器的繁杂性,导致了精度控制问题,以及在在量值传递或比对方面出现严重欠缺。到现在为止,确立了最高标准装置的部门只有在西安石油测井仪器计量站建立的放射性测井仪器,并且华北、胜利、大港、中原等部分油田也才刚刚建立起来工作标准装置,在经过最高标准装置量值的传递比对过程中,而其它还未建立起来测井仪刻度的体系,因此当务之急是应改变这种现状。 2.1 测井仪器刻度体系应该建立起来

随钻测井技术

第8卷第4期断 块 油 气 田 FAUL T-BLOCK OIL&G AS FIFLD2001年7月随钻测井技术 布志虹1 任干能2 陈 乐2 (11中原油田分公司勘探事业部 21中原石油勘探局地质录井处) 摘 要 随钻测井是一种新型的测井技术,它能够在钻开地层的同时实时测量地层信息。 本文介绍了斯伦贝谢公司最新的随钻测井技术,并通过对其新技术的分析,提出了在重点探井文古2井进行随钻测井的建议及方法。 关键词 随钻测量 随钻测井 随钻测量工具 引言 在钻井过程中同时进行的测井称之为随钻测井。 随钻测井系统中随钻测井的井下仪器的安装与常规测井的仪器基本相同,所不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。 用随钻测井系统进行随钻测井作业比电缆测井作业简单。首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,至此,就可以进行钻井和随钻测井作业了。 1 数据记录方式Ξ 随钻测井有2种记录方式,一是地面记录,即将井下实时测得的数据信号通过钻井液脉冲传送到地面进行处理记录;二是井下存储,待起钻时将数据体起出。这里仅介绍地面记录的方法。 在随钻测量仪中设计有一个十分重要的系统即钻井液脉冲遥测系统,该系统的作用是把各传感器采集的信号实时传送到地面。目前在随钻测量系统中主要使用连续钻井液脉冲进行遥测传输,它在井下用一个旋转阀在钻井液柱中产生连续压力波,这个旋转阀称为解制器。在井下改变波的相位(即调频),并在地面检测这些相位变化,就可以把信号连续地传输到地面。 来自各传感器的模拟信号首先被转换成二进制数。每一个二进制数则由一个具有适当的二进制位数的字来表示,每个字所含有的二进制位数的多少(即字长的大小)视测量结果所需的精度而定,如果所传输的信号对精度的要求不高,可用一个字长较小的字表示这个二进制数;反之,则需用一个字长较大的字表示。目前随钻测量系统中采用的字长一般为8位,即每个字含有8个二进制位,这是一个最优化方案,既满足了各测量信号对精度的要求,又能在单位时间里传送较多的二进制数到地面。 这些字由一系列的“0”和“1”组成,由调制器把它调制成代表这些字的钻井液脉冲发送到地面。调制器调制信号是一帧一帧地调制的,每一帧由16个字组成,其中15个字长为8位的字用于传输测量信号,一个字长为10位的字是用来标识一帧的起始位置的帧同步字。 最后,压力信号由安装在立管中的压力传感器检测出,由调制器调制并传送到地面。这些压力信号被送到地面计算机系统,由计算机系统调解后被还原成各传感器的测量信号值,并与其所对应的时间和深度一起存入数据库。这些测量信号和及其处理结果就可以实时地显示在荧光屏上或打印在绘图纸上。 在钻井液遥测系统的数据传输率和字长一定的情况下,系统在单位时间内向地面传送的二进 22Ξ收稿日期 2001-02-15 第一作者简介 布志虹,女,1962年生,高级工程师, 1982年毕业于江汉石油学院测井专业,现在中原油田分公司勘探事业部从事勘探管理工作,地址(457001):河南省濮阳市,电话:(0393)4822513。

测井仪器认识实验报告

《测井方法原理》实验报告 一、实验目的 认识一种型号测井系统组成;结合组合测井仪器的操作规范,理解仪器操作要领。分小组进行仪器操作实验,确保学生学习效果。通过本实验教学使学生更具体、生动地理解测井基本方法原理及仪器实现,使学生初步掌握组合测井仪器的一般操作方法和注意事项。 二、实验内容 (一)典型测井仪器简介 现代常规测井方法按照测井系列可分为岩性测井系列、孔隙度测井系列、电阻率测井系列等三大类。 岩性测井系列包括自然电位、自然伽马、井径测井。 孔隙度测井系列包括声波时差测井、密度测井、中子测井。 电阻率测井系列包括深、中、浅探测的普通视电阻率测井、侧向测井以及感应测井等。 常用测井仪器原理介绍: 常用测井仪器探管照片 1.岩性测井系列 自然电位测井:因为井内存在扩散电动势和吸附电动势,在进行自然电位测井时,将测量点击N放在地面,用电缆将M电极送至井下,提升M电极沿井轴测量自然电位

随井深的变化曲线,用以区别岩性。 自然伽马测井:井下仪器在井内由下向上提升时,来自岩层的自然伽马射线穿过井内泥浆和仪器外壳进入探测器。探测器将接收到的一连串伽马射线转换成一个个的电脉冲,然后经井下放大器加以放大,由电缆送到地面仪器,地面仪器把每分钟接收到的电脉冲数(计数率)转变为与其成比例的电位差进行记录。 井径测井:将一起下到预计的深度上,然后通过一定的方式打开井径腿,于是,互成90°的四个井径腿便在弹簧的作用下向外伸张,其末端紧贴井壁。随着一起的向外提升,井径腿就会由于井径的变化而发生张缩,并带动连杆做上下运动,将连杆同一个电位器的滑动端相连,则井径的变化便可转换成电阻的变化。给该滑动端通以一定强度的电流,滑动电阻的某一固定端与滑动端之间的电位差便可间接反映井径的大小。 2.孔隙度测井系列 声波时差测井:电子线路每隔一定的时间给发射换能器一次强的脉冲电流,使换能器晶体受到激发而产生振动,从而引起周围介质质点发生振动,产生向井内泥浆及岩层中传播声波。由于泥浆声速v1与地层声速v2不同,所以在泥浆和井壁上将发生声波反射和折射,故必有以临界角i方向入射到井壁面上的声波,折射产生沿井壁在地层中传播的滑行波。该滑行波必然引起泥浆中质点振动(形成首波),并先后传到两个接收器Rl、R2上,从而可测量出地层的声波速度。 密度测井:由于地层密度不同,对伽马射线的散射和吸收能力不同,探测器接收到的散射伽马射线计数率也就不同。在离伽马源距离为L处,探测器所接收到的散射伽马射线强度N 就是介质体积密度的函数。在源距选定后,对仪器进行刻度,找到散射伽马射线强度N和介质体积密度ρb的定量关系,则记录散射伽马射线强度(记数率)就可以测得地层的密度。 中子测井:探测探测器周围快中子变为热中子之前的超热中子密度或直接探测热中子密度,以反映地层的中子减速特性,进而计算储层孔隙度和对储集层进行评价。 3.电阻率测井系列 普通视电阻率测井:通过供电线路上的电极A、B供给电流,在井内建立电场,然后测量在测量回路上电极M、N的电位差ΔUMN,所测ΔUMN大小取决于周围介质电阻率。ΔUMN的变化则反映了沿井孔(筒)剖面上岩石电阻率的变化。 侧向测井:主电极发车主电流,屏蔽电极发出与主电流相同极性的屏蔽电流,并使他们处于等电位状态。由于主电流被屏蔽电流屏蔽,沿水平方向呈圆盘发散状流入地层。 感应测井:把装有发射线圈T和接收线圈R的感应测井探管放入井中,给发射线圈通交流电,在发射线圈周围地层中产生交变磁场Φ1,这个交变磁场通过地层,在地层中感应出电流I1,此电流环绕井轴流动,称为涡流。涡流在地层中流动又产生

国内随钻测井解释

1国内随钻测井解释现状及发展 在国内现有的技术条件下,开展大斜度井和水平井测井资料的可视化解释能在很大程度上提高测井解释识别地质目标的精度,通过实时解释、实时地质导向有助于提高钻井精度、降低钻井成本、及时发现油气层。 未来的勘探地质目标将更加复杂,以地质导向为核心的定向钻井技术的应用会越来越多。伴随新的随钻测井仪器的出现,应该有新的集成度高的配套解释评价软件,以充分挖掘新的随钻测井资料中包含的信息,使测井资料的应用从目前的单井和多井评价发展为油气藏综合解释评价。因此,定向钻井技术的发展及钻井自动化程度的提高必将使随钻测井技术的应用领域更加关泛。 2 提高薄油层钻遇率 提高薄油层水平井油层钻遇率必须加强方案研究及现场调整、实施两方面研究。方案设计包括对油层的构造、沉积相、储层物性、电性特征、油气显示特征综合研究。现场调整、实施包括对定向工具的认识及现场地质资料综合分析、重新调整轨迹后而实施的设计。 一口水平井的实施是一个系统工程,包括地质、钻井工程两方面的因素。地质设计及现场提出的方案要充分考虑工程的可行性。只有加强综合研究,根据油藏的变化情况及时调整轨迹,才能提高油层钻遇率。 目前,在石油、天然气等钻井勘探开发技术领域,水平井作业中,使用随钻测井工具、随钻测量工具和现场综合录井工具。随钻测量工具、随钻测井工具位于离钻头不远的地方,在钻机钻进的同时获取地层的各种资料和井眼轨迹资料,包括井斜、方位、自然伽马、深浅侧向电阻率等。现场综合录井工具获取钻时、岩屑、荧光、气测录井等,这样利用随钻测量工具、随钻测井工具测得的钻井参数、地层参数和现场综合录井资料推导出目的层实际海拔深度和钻头在目的层中实际位置,并及时调整钻头轨迹,使之顺着目的层沿层钻进,尽量提高砂岩钻遇率。

石油测井技术服务方案

石油测井技术服务方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案: (1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其他保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用

第一部分测井、射孔工程技术服务方案及技术措施; 一、培训 对参与中国华油集团公司银川分公司的全体人员进行培训,包括认识该区块的重要性和特殊性、学习取全取准测井资料的保证措施、讨论各岗位的技术难点和应对措施并进行相应的技术演练等等。通过培训增强参与人员的责任感、主动性和积极性。培训内容包括:施工方案、质量保障措施,HSE管理措施等。 二、全员生产准备 全员生产准备内容包括设备检修、人员配备、仪器刻度、备件准备、区域资料收集等,其各项质量均应满足规定的要求。公司测井工程部具体组织实施。具体工作如下: 1、测井工程部根据生产计划及测井施工要求,将生产准备任务下达至相关施工中心和支持

保障单位,并对其准备过程实施有效控制。 2、数控测井中心职责: (1)组织施工作业小队进行设备、工装的保养和维护; (2)对所属施工作业小队的人员、仪器设备进行调配; (3)按公司相关文件规定及时督促小队进行电缆深度记号标定及电缆张力检定、泥浆电阻率测量杯校验; (4)按各类下井仪器刻度规程的规定督促小队进行仪器刻度; (5)组织施工作业小队通过资质认证; (6)对施工作业小队生产准备情况实施检查并作记录。 3、仪修车间按照《测井下井仪器一、二、三级例行保养》制度和仪器维修标准系列对仪器进行维修保养并实施检验,填写保养记录并签名。 (1)外观检查应无机械损伤、机械结构紧密、

测井基础知识

测井基础知识 1. 名词解释: 孔隙度:岩石孔隙体积与岩石总体积之比。反映地层储集流体的能力。 有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积百分比。 原生孔隙度:原生孔隙体积与地层体积之比。 次生孔隙度:次生孔隙体积与地层体积之比。 热中子寿命:指热中子从产生的瞬时起到被俘获的时刻止所经过的平均时间。 放射性核素:会自发的改变结构,衰变成其他核素并放射出射线的不稳定核素。 地层密度:即岩石的体积密度,是每立方厘米体积岩石的质量。 地层压力:地层孔隙流体(油、气、水)的压力。也称为地层孔隙压力。地层压力高于正常值的地层称为异常高压地层。地层压力低于正常值的地层称为异常低压地层。 水泥胶结指数:目的井段声幅衰减率与完全胶结井段声幅衰减率之比。 周波跳跃:在声波时差曲线上出现“忽大忽小”的幅度急剧变化的现象。 一界面:套管与水泥之间的胶结面。 二界面:地层与水泥之间的胶结面。 声波时差:声速的倒数。 电阻率:描述介质导电能力强弱的物理量。 含油气饱和度(含烃饱和度Sh):孔隙中油气所占孔隙的相对体积。 含水饱和度Sw:孔隙中水所占孔隙的相对体积。含油气饱和度与含水饱和度之和为1. 测井中饱和度的概念:1.原状地层的含烃饱和度Sh=1-Sw。2.冲洗带残余烃饱和度:Shr =1-Sxo (Sxo表示冲洗带含水饱和度)。3.可动油(烃)饱和度Smo=Sxo-Sw或Smo =Sh-Shr。4.束缚水饱和度Swi与残余水饱和度Swr成正比。 泥质含量:泥质体积与地层体积的百分比。 矿化度:溶液含盐的浓度。溶质重量与溶液重量之比。 2. 各测井曲线的介绍: SP 曲线特征: 1.泥岩基线:均质、巨厚的泥岩地层对应的自然电位曲线。 2.最大静自然电位SSP:均质巨厚的完全含水的纯砂层的自然电位读数与泥岩基线读数差。 3.比例尺:SP曲线的图头上标有的线性比例,用于计算非泥岩层与泥岩基线间的自然电位差。 4.异常:指相对泥岩基线而言,渗透性地层的SP曲线位置。(1)负异常:在砂泥岩剖面井中,当井内为淡水泥浆时(Cw>Cmf),渗透性地层的SP曲线位于泥岩基线的左侧(Rmf>Rw); (2)正异常:在砂泥岩剖面井中,当井内为盐水泥浆时(Cmf>Cw),渗透性地层的SP曲线位于泥岩基线的右侧(Rmf4d)的自然电位曲线幅度值近似等于静自然电位,且曲线的半幅点深度正对地层的界面。(3)随地层变薄曲线读数受围岩影响,幅度变低,半幅点向围岩方向移动。 SP 曲线的应用: 1.划分渗透性岩层:在淡水泥浆中负异常围渗透性岩层,在盐水泥浆中正异常围渗透性岩层。

石油测井技术服务方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案: (1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其他保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用“暗标”方式评审,则在任何情况下,“施工组织机构”不得涉及人员姓名、简历、公司名称等暴露投标人身份的内容); (11)投标人技术服务范围内拟分包的工作(按第二章“投标人须知”第1.11款的规定)、材料计划和劳动力计划; (12)任何可能的紧急情况的处理措施、预案以及抵抗风险(包括测井、射孔工程技术服务过程中可能遇到的各种风险)的措施; (13)对专业分包工程的配合、协调、管理、服务方案; (14)招标文件规定的其他内容。 2.若投标人须知规定技术服务方案采用技术“暗标”方式评审,则技术服务方案的编制和装订应按附表七“技术服务方案(技术暗标部分)编制及装订要求”编制和装订技术服务方案。 3.技术服务方案除采用文字表述外可附下列图表,图表及格式要求附后。若采用技术暗标评审,则下述表格应按照章节内容,严格按给定的格式附在相应的章节中。

石油测井设备行业市场现状分析

石油测井设备行业市场现状分析 中石协[2011-01-27] 第一节市场概述 石油测井是利用物理学方法解决油田地质问题和油藏工程问题的应用技术学科,是石油科学的十大学科之一。测井贯穿于油田勘探开发全过程,是一种井下油气勘探方法,是准确发现油气藏和精确描述油气藏的重要手段,其测试数据是油气储量及产量评估不可缺少的科学依据。 石油测井是一种被用于地下油气勘探的重要测量手段。一般说,它包含勘探测井、开发测井、射孔、井壁取心等几方面。 测井技术的发展在国外始于1927年,在油井中第一次测量地层电阻率获得成功。在我国则始于1939年。随着科学技术的发展和进步,我国测井仪器经历了五次更新换代,即:半自动模拟测井仪、全自动模拟测井仪、数字测井仪、数控测井仪和成像测井仪。 现代测井是石油工业中高科技含量的最多的技术之一,也是包含普通学科专业最多的技术之一,在石油工业上游行业中占有重要的地位,没有测井技术,就无法准确判断油气藏含量和位置,就无法进行工程定位和实施后续作业。可以说测井本身就是一种对未知地质条件的探索和描述,是对钻探井工程质量的判断和评价,是提高采油效率的不可或缺的方法。 第二节我国市场发展现状 目前国内,测井市场主导产品是斯伦贝谢公司的MAXIS-500系统、贝克-休斯公司的ECLIPS-5700系统及哈里伯顿公司的EXCELL-2000系统等成象测井系统。同时为了满足一些特殊的测井需求,各测井公司对作业需求量大的常规测井系列进行了系统集成,改进仪器传感器设计,优化电子线路和机械设计,大大缩短了组合仪器串长度,增强了仪器稳定性,提高了测量准确度,开发出集成快速测井平台系统。如斯伦贝谢公司的INSITE仪器系列,贝克-休斯公司的FOCUS组合测井系统。这些测井系统可为客户提供高性能、高可靠、低成本的测井服务,这类服务正逐步取代原有常规测井。 在国内,较有特点的成像测井地面设备包括有胜利油田测井公司研制的SL-6000型高分辨率多任务成像测井地面系统,中国石油集团测井有限公司研制的EILog-05快速与成像测井系统,北京吉艾博然科技有限公司研制的GILEE成像测井系统等。 近几年我国石油测井设备需求广泛,占领高端市场的进口仪器设备普遍价格较高。我国的生产企业也纷纷研制出多款测井仪器设备,未来市场前景看好。据统计2007年规模以上企业测井设备市场销售收入达到15.3亿元人民币(这一数字不包括测井设备技术及服务

钻井班测井知识培训教材(重点)

第一部分初级测井工基础知识 第一章矿场地球物理测井基础知识 一、概述 地球物理测井也叫油矿地球物理或矿场物理测井,简称测井。在石油天然气勘探开发的钻井中途所进行的测井作业依据所获资料的目的不同而分为工程测井、中途对比测井和中途完井,在钻至设计井深后都必须进行的测井作业,称为完井测井。以此获取多种石油地质及工程技术资料,作为完井和开发油田的依据。 在油气井未下套管之前所进行的裸眼测井作业,习惯上称为裸眼测井或裸眼测井。而在油气井下套管后所进行的一系列测井作业,习惯上称为生产测井或开发测井。 在油气田的勘探与开发过程中,测井是确定和评价油气层的重要方法之一,同时也是解决一系列地质和工作问题的重要手段,被誉为油气勘探与开发生产的“眼睛”。它在勘探与开发生产中的作用和地位正在日益提高,成为现代勘探与开发技术的一个重要组成部分。 石油测井技术的发展起源于1921年,当时巴黎矿业学院的康拉德.斯仑贝谢在法国诺曼底半岛上的瓦尔里切庄园进行了首次人工电场测量,并且获得了实验的成功。直到1927年乔治.多尔等人在法国阿尔萨斯州成功地测出了第一条电阻率曲线,从而诞生了在井眼内进行“电测井”的地球测井技术。 二、钻井基本知识 石油及天然气,一般都在地下几百米至几千米深处,石油工作者的任务就是将其开发出地面。 钻井是勘探开发石油气田最基本的手段。它是利用钻机从地面向地下钻一个圆柱形孔眼,构成油气流向地面的通道。这个圆柱形孔眼,称为井眼。井眼的最上部称为井口;井眼的最下部称为井底;井眼的圆筒形侧壁,称为井壁;井眼的直径,称为井径;从井口到井底的整个部分,称为井身;从井口到井底之间的距离,称为井深。 一般的油井都是由石油地质部门确定好井位,由钻井队完成钻井任务。钻井时,由柴油机或电动机带动钻具及下部的钻头旋转钻削岩层;与此同时,泥浆泵将配好的钻井液从泥浆池以高压打进钻具内孔,以很大的喷射力从钻头水眼喷出,在冲刷钻头的同时,携带着钻削下的岩屑由钻具外部和井壁之间的环形空间返回地面,经地面泥浆专用设备将泥浆和岩屑分离,分离出的泥浆再流回泥浆池。在钻井过程中,井深不断加深的过程,就是钻头不断钻削地层和泥浆不断循环带出岩屑的过程。 在钻井的同时,由地质人员对钻削出的岩屑进行分析和研究,这个过程就是

随钻测井技术

随钻测井技术发展水平 引言 据统计,近十年来,世界上有关随钻测井(LWD)技术和应用的文献呈现出迅速增多的趋势。这反映了西方国家开始越来越多地重视LWD/MWD。这是两个方面的原因产生的结果。一方面石油工业界强烈需要勘探和开发业降低成本,减少风险,增加投资回报率。另一方面,MWD/LWD有许多迎合石油工业需要的优势,如随钻测井时,钻机不必停钻就能获得大量地层评价信息,节省了宝贵的钻井时间,从而降低了钻井成本。MWD提供的实时信息可即时使用,如可用于预测钻头前方地层的超常压力、预测复杂危险的构造,给钻井工程师警报提示,迅速采取措施,减少事故发生率。近几年里,大斜度井和水平井迅速发展,海上石油的开发受到重视。在这样的井中测井,常规电缆测井难以进行,挠性管输送测井和钻杆传送测井成本十分高,现场操作困难。LWD是在这类井中获取地层评价测井资料的最佳方法,此外,LWD信息还能指导钻头钻进的方向,引导钻井井迹进入最佳的目标地层。 随钻测井(LWD)技术是在钻井的同时用安装在钻铤上的测井仪器测量地层电、声、核等物理性质,并将测量结果实时地传送到地面或部分存储在井下存储器中的一种技术。该技术要求测井仪器应能够安装在钻铤内较小的空间里,并能够承受高温高压和钻井震动;安装仪器的专用钻铤应具有同实际钻井所用的钻铤同样的强度;还应具有用于深井的足够功率和使用时间的电源。 LWD是随钻测量技术的重要组成部分。MWD除了提供LWD信息外,还提供井下方位信息(井斜、方位、仪器面方向)和钻井动态和钻头机械的监测信息。MWD探头组合了LWD探头、方位探头、电子/遥测探头,一般放在钻头后50-100英尺的范围内,一般来说,MWD探头越靠近钻头越好。LWD探头提供地层评价信息,用于识别层面、地层对比、评价地层岩石和流体性质,确实取心和下的点。方位数据用于精确引导井迹向最理想的储层目标。钻井效率和安全性通过连续监测钻井而达到最佳。 目前的随钻测井技术已达到比较成熟的阶段,能进行电、声、核随钻测量的探头系列十分丰富,各种型号的、适用于各种环境的随钻电阻率、密度、中子测井仪器进入MWD 市场。哈里伯顿的PathFinder随钻测井系统包括自然伽马、电磁波电阻率、密度、中子孔隙度、井径和声波等。斯仑贝谢公司的VISION475测井系统包括声波(SI)、电阻率(RAB)、阵列电磁波电阻率(ARC5)及密度中子(ADN)等。Sperry Sun公司的三组合测井系统包括SLIM PHASE4电阻率仪、SLIM稳定岩性密度仪及补偿热中子仪,还测量伽马射线。在地层评价的许多方面LWD已经可以取代常规电缆测井。世界各地的MWD作业实践已经表明,随钻测井对于经济有效的测井评价,相对于常规电缆地层评价有明显优势。 发展MWD/LWD技术,应用MWD/LWD成果已是西方钻井/测井相关公司的热点研究领域。必须承认我国自行研究和开发随钻测井技术是一片空白。本报告将深入地调查国外随钻测井技术的发展历程,技术水平现状,应用情况,预测发展趋势,分析LWD市场,分析LWD风险,供管理决策和研究人员参考。

石油测井技术服务方案范文

石油测井技术服务 方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案:(1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其它保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用“暗标”方式评审,则在任何情况下,“施工组织机构”不得涉及人员姓名、简历、公司名称等暴露投标人身份的内容); (11)投标人技术服务范围内拟分包的工作(按第二章“投标人须知”第1.11款的规定)、材料计划和劳动力计划;

(12)任何可能的紧急情况的处理措施、预案以及抵抗风险(包括测井、射孔工程技术服务过程中可能遇到的各种风险)的措施; (13)对专业分包工程的配合、协调、管理、服务方案; (14)招标文件规定的其它内容。 2.若投标人须知规定技术服务方案采用技术“暗标”方式评审,则技术服务方案的编制和装订应按附表七“技术服务方案(技术暗标部分)编制及装订要求”编制和装订技术服务方案。 3.技术服务方案除采用文字表述外可附下列图表,图表及格式要求附后。若采用技术暗标评审,则下述表格应按照章节内容,严格按给定的格式附在相应的章节中。 第一部分测井、射孔工程技术服务方案及技术措施; 一、培训 对参与中国华油集团公司银川分公司的全体人员进行培训,包括认识该区块的重要性和特殊性、学习取全取准测井资料的保证措施、讨论各岗位的技术难点和应对措施并进行相应的技术演练等等。经过培训增强参与人员的责任感、主动性和积极性。培训内容包括:施工方案、质量保障措施,HSE管理措施等。 二、全员生产准备 全员生产准备内容包括设备检修、人员配备、仪器刻度、备

【CN209855772U】一种434英寸集成随钻测井系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920273123.0 (22)申请日 2019.03.04 (73)专利权人 北京捷威思特科技有限公司 地址 102200 北京市昌平区科技园区华昌 路1号1号楼1、2、3层 (72)发明人 刘瑞 冯东堂 刘志仁 张延雷  赵彦峰 柳春茹 白晓 高立军  (51)Int.Cl. E21B 47/00(2012.01) E21B 47/12(2012.01) E21B 49/00(2006.01) (54)实用新型名称一种4-3/4英寸集成随钻测井系统(57)摘要本实用新型涉及的4-3/4英寸集成随钻测井系统,是一种自动控制的随钻测井系统。本系统包括随钻井下仪器、地面采集系统和软件系统,随钻井下仪器包括截止短节、集成随钻通讯电源短节、上扶正器、集成随钻测量仪器、下扶正器、旋转导向单元。地面采集系统包括工控机、远程安全采集面板、接线盒一、接线盒二、司显显示器、立管压力传感器、钩载传感器、深度编码器、随钻旁通控制器、负脉冲发生器。集成随钻测井系统,可以在钻具旋转钻进状态下,实现导向的功能。并且此钻井系统具有双向通讯功能,地面通过旁通控制器和负脉冲发生器向井下旋转导向单元发送指令,调整导向方向及力量,实现自动导向、 控制钻进轨迹的目的。权利要求书1页 说明书3页 附图1页CN 209855772 U 2019.12.27 C N 209855772 U

权 利 要 求 书1/1页CN 209855772 U 1.一种4-3/4英寸集成随钻测井系统,包括井下随钻仪器、地面采集系统和软件系统,其特征在于,所述地面采集系统包括工控机、远程安全采集面板、随钻旁通控制器、负脉冲发生器、接线盒一、接线盒二、立管压力传感器、深度编码器、钩载传感器、司显显示器,立管压力传感器、深度编码器、钩载传感器通过接线盒一与远程安全采集面板连接,司显显示器通过接线盒二与远程安全采集面板连接,远程安全采集面板与工控机连接,随钻旁通控制器的输出端与负脉冲发生器的输入端连接,工控机与随钻旁通控制器的输入端连接; 所述井下随钻仪器为由多个测量仪器及辅助仪器上下串联连接组成的井下仪器串,随钻井下仪器串中各仪器输出的信号经泥浆脉冲传输到地面采集系统; 所述井下随钻仪器自上而下依次包括截止短节、集成随钻通讯电源短节、上扶正器、集成随钻测量仪器、下扶正器、旋转导向单元,其中集成随钻测量仪器包括方位探管、主控及存储模块、电阻率主体、随钻压力模块、随钻伽马模块,各仪器之间通过带有导电环的连接扣进行连接。 2

相关主题
文本预览
相关文档 最新文档