当前位置:文档之家› 实验二_进程间通信(DOC)

实验二_进程间通信(DOC)

实验二_进程间通信(DOC)
实验二_进程间通信(DOC)

实验二 进程间通信
一、实验目的 在本实验中,通过对文件映射对象的了解,来加深对 Windows 2000 线程同步的理解. 回顾系统进程、线程的有关概念,加深对 Windows 2000 线程间通讯的理解;了解文件映射 对象;通过分析实验程序,了解线程如何通过文件映射对象发送数据;了解在进程中如何使 用文件映射对象. 二、背景知识 1. 共享内存: Windows 2000 提供了一种在文件中处理数据的方法, 名为内存映射文件, 也称为文件映射.文件映射对象是在虚拟内存中分配的永久或临时文件对象区域 (如果可能 的话,可大到整个文件) ,可将其看作是二进制的数据块.使用这类对象,可获得直接在内 存中访问文件内容的能力. 文件映射对象提供了强大的扫描文件中数据的能力,而不必移动文件指针.对于多线程 的读写操作来说, 这一点特别有用, 因为每个线程都可能想要把读取指针移动到不同的位置 去——为了防止这种情况,就需要使用某种线程同步机制保护文件. 在 CreateFileMapping() API 中,一个新的文件映射对象需要有一个永久的文件对象 (由 CreateFile() 所创建) .该函数使用标准的安全性和命名参数,还有用于允许操作 (如只读) 的保护标志以及映射的最大容量.随后可根据来自 OpenFileMapping() API 的其他线程或进程 使用该映射——这与事件和互斥体的打开进程是非常类似的. 内存映射文件对象的另一个强大的应用是可请求系统创建一个运行映射的临时文件.该 临时文件提供一个临时的区域, 用于线程或进程互相发送大量数据, 而不必创建或保护磁盘 上的文件.利用向创建函数中发送 INVALID_HANDLE_VALUE 来代替真正的文件句柄,就 可创建这一临时的内存映射文件; 指令内核使用系统页式文件来建立支持映射的最大容量的 临时数据区. 为了利用文件映射对象,进程必须将对文件的查看映射到它的内存空间中.也就是说, 应该将文件映射对象想象为进程的第一步,在这一步中,当查看实际上允许访问的数据时, 附加有共享数据的安全性和命名方式.为了获得指向内存区域的指针需要调用 MapViewOfFile() API,此调用使用文件映射对象的句柄作为其主要参数.此外还有所需的访 问等级 (如读-写) 和开始查看时文件内的偏移和要查看的容量.该函数返回一个指向进程内 的内存的指针,此指针可有多种编程方面的应用 (但不能超过访问权限) . 当结束文件映射查看时,必须用接受到的指针调用 UnmapViewOfFlie() API,然后再根 据映射对象调用 CloseHandle() API,从而将其清除。
三、实验内容 1. 编译运行项目 Lab5.1\SHAREMEM.DSW,观察运行结果,并阅读和分析实验程序.

2. Lab5.2 目录下的示例程序:ProcessA.exe,ProcessB.exe 用三种方法实现了进程通信. (1)进程 A 中输入一些字符,点“利用 SendMessage 发送消息”按钮可将消息发到进程 B. (2)在进程 A 中输入一些字符,点“写数据到内存映像文件”按钮,然后在进程 B 中点“从 内存映像文件读数据” 按钮可收到消息. (3)先在进程 B 中点“创建管道并接收数据” 按钮,然后在进程 A 中输入一些字符,点“写 数据到管道文件”按钮可将消息发到进程 B(重复第 3 步每次可发一条消息). 消息传递数据通信可参考 SendMessage.txt,共享内存通信可参考 MemFile.txt,管道 通信可参考 Pipe.txt. 3.编写程序利用 WM_COPYDATA 消息机制,实现线程间的通信.
进程间通信之管道
每个进程各自有不同的用户地址空间, 任何一个进程的全局变量在另一个进程中 都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区, 进程 1 把数据从用户空间拷到内核缓冲区,进程 2 再从内核缓冲区把数据读走, 内核提供的这种机制称为进程间通信(IPC,InterProcess Communication)。 如下图所示。
图 3.1 进程间通信

3.1 管道
管道是一种最基本的 IPC 机制,由 pipe 函数创建:
#include
int pipe(int filedes[2]);
调用 pipe 函数时在内核中开辟一块缓冲区(称为管道)用于通信,它有一个读 端一个写端, 然后通过 filedes 参数传出给用户程序两个文件描述符, filedes[0] 指向管道的读端,filedes[1]指向管道的写端(很好记,就像 0 是标准输入 1 是标准输出一样)。所以管道在用户程序看起来就像一个打开的文件,通过 read(filedes[0]);或者 write(filedes[1]);向这个文件读写数据其实是在读 写内核缓冲区。pipe 函数调用成功返回 0,调用失败返回-1。 开辟了管道之后如何实现两个进程间的通信呢?比如可以按下面的步骤通信。

图 3.2 管道
1. 父进程调用 pipe 开辟管道, 得到两个文件描述符指向管道的两端。 2. 父进程调用 fork 创建子进程,那么子进程也有两个文件描述符指 向同一管道。 3. 父进程关闭管道读端,子进程关闭管道写端。父进程可以往管道里 写,子进程可以从管道里读,管道是用环形队列实现的,数据从写 端流入从读端流出,这样就实现了进程间通信。

例、管道
#include #include #define MAXLINE 80
int main(void) { int n; int fd[2]; pid_t pid; char line[MAXLINE];
if (pipe(fd) < 0) { perror("pipe"); exit(1); } if ((pid = fork()) < 0) { perror("fork"); exit(1); } if (pid > 0) { /* parent */ close(fd[0]); write(fd[1], "hello world\n", 12); wait(NULL);

} else {
/* child */
close(fd[1]); n = read(fd[0], line, MAXLINE);
write(STDOUT_FILENO, line, n); } return 0; }
使用管道有一些限制: 两个进程通过一个管道只能实现单向通信,比如上面的例子,父进 程写子进程读, 如果有时候也需要子进程写父进程读,就必须另开 一个管道。请读者思考,如果只开一个管道,但是父进程不关闭读 端,子进程也不关闭写端,双方都有读端和写端,为什么不能实现 双向通信? ? 管道的读写端通过打开的文件描述符来传递,因此要通信的两个进 程必须从它们的公共祖先那里继承管道文件描述符。 上面的例子是 父进程把文件描述符传给子进程之后父子进程之间通信, 也可以父 进程 fork 两次,把文件描述符传给两个子进程,然后两个子进程 之间通信,总之需要通过 fork 传递文件描述符使两个进程都能访 问同一管道,它们才能通信。
?
使用管道需要注意以下 4 种特殊情况(假设都是阻塞 I/O 操作,没有设置 O_NONBLOCK 标志): 1. 如果所有指向管道写端的文件描述符都关闭了 (管道写端的引用计 数等于 0),而仍然有进程从管道的读端读数据,那么管道中剩余 的数据都被读取后,再次 read 会返回 0,就像读到文件末尾一样。 2. 如果有指向管道写端的文件描述符没关闭 (管道写端的引用计数大 于 0),而持有管道写端的进程也没有向管道中写数据,这时有进 程从管道读端读数据,那么管道中剩余的数据都被读取后,再次 read 会阻塞,直到管道中有数据可读了才读取数据并返回。

3. 如果所有指向管道读端的文件描述符都关闭了 (管道读端的引用计 数等于 0),这时有进程向管道的写端 write,那么该进程会收到 信号 SIGPIPE,通常会导致进程异常终止。 4. 如果有指向管道读端的文件描述符没关闭 (管道读端的引用计数大 于 0),而持有管道读端的进程也没有从管道中读数据,这时有进 程向管道写端写数据,那么在管道被写满时再次 write 会阻塞,直 到管道中有空位置了才写入数据并返回。 管道的这四种特殊情况具有普遍意义。
3.2 其它 IPC 机制
进程间通信必须通过内核提供的通道, 而且必须有一种办法在进程中标识内核提 供的某个通道, 上一节讲的管道是用打开的文件描述符来标识的。如果要互相通 信的几个进程没有从公共祖先那里继承文件描述符, 它们怎么通信呢?内核提供 一条通道不成问题, 问题是如何标识这条通道才能使各进程都可以访问它?文件 系统中的路径名是全局的, 各进程都可以访问,因此可以用文件系统中的路径名 来标识一个 IPC 通道。 FIFO 和 UNIX Domain Socket 这两种 IPC 机制都是利用文件系统中的特殊文件 来标识的。可以用 mkfifo 命令创建一个 FIFO 文件:
$ mkfifo hello $ ls -l hello prw-r--r-- 1 akaedu akaedu 0 2008-10-30 10:44 hello
FIFO 文件在磁盘上没有数据块,仅用来标识内核中的一条通道,各进程可以打 开这个文件进行 read/write, 实际上是在读写内核通道 (根本原因在于这个 file 结构体所指向的 read、write 函数和常规文件不一样),这样就实现了进程间通 信。UNIX Domain Socket 和 FIFO 的原理类似,也需要一个特殊的 socket 文件 来标识内核中的通道,例如/var/run 目录下有很多系统服务的 socket 文件:
$ ls -l /var/run/ total 52 srw-rw-rw- 1 root root 2008-10-30 00:24 acpid.socket ... 0

srw-rw-rw- 1 root root 2008-10-30 00:25 gdm_socket ... srw-rw-rw- 1 root 2008-10-30 00:24 sdp ... srwxr-xr-x 1 root root 2008-10-30 00:42 synaptic.socket root
0
0
0
文件类型 s 表示 socket, 这些文件在磁盘上也没有数据块。 UNIX Domain Socket 是目前最广泛使用的 IPC 机制,到后面讲 socket 编程时再详细介绍。 现在把进程之间传递信息的各种途径(包括各种 IPC 机制)总结如下:
? ? ? ? ? ? ? ? ?
父进程通过 fork 可以将打开文件的描述符传递给子进程 子进程结束时,父进程调用 wait 可以得到子进程的终止信息 几个进程可以在文件系统中读写某个共享文件,也可以通过给文件 加锁来实现进程间同步 进程之间互发信号,一般使用 SIGUSR1 和 SIGUSR2 实现用户自定义 功能 管道 FIFO mmap 函数,几个进程可以映射同一内存区 SYS V IPC,以前的 SYS V UNIX 系统实现的 IPC 机制,包括消息 队列、信号量和共享内存,现在已经基本废弃 UNIX Domain Socket,目前最广泛使用的 IPC 机制

Linux进程间通信(2)实验报告

实验六:Linux进程间通信(2)(4课时) 实验目的: 理解进程通信原理;掌握进程中信号量、共享内存、消息队列相关的函数的使用。实验原理: Linux下进程通信相关函数除上次实验所用的几个还有: 信号量 信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。要调用的第一个函数是semget,用以获得一个信号量ID。 int semget(key_t key, int nsems, int flag); key是IPC结构的关键字,flag将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。 semctl函数用来对信号量进行操作。 int semctl(int semid, int semnum, int cmd, union semun arg); 不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。 semop函数自动执行信号量集合上的操作数组。 int semop(int semid, struct sembuf semoparray[], size_t nops); semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。 ftok原型如下: key_t ftok( char * fname, int id ) fname就是指定的文件名(该文件必须是存在而且可以访问的),id是子序号,虽然为int,但是只有8个比特被使用(0-255)。 当成功执行的时候,一个key_t值将会被返回,否则-1 被返回。 共享内存 共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。首先要用的函数是shmget,它获得一个共享存储标识符。 #include #include #include int shmget(key_t key, int size, int flag); 当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。 void *shmat(int shmid, void *addr, int flag); shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地

线程实现邮箱通信-实验报告

进程通信实验报告 一、实验名称:进程通信 二、实验目的:掌握用邮箱方式进行进程通信的方法,并通过设计实现简单邮箱理解进程通信中的同步问题以及解决该问题的方法。 三、实验原理:邮箱机制类似于日常使用的信箱。对于用户而言使用起来比较方便,用户只需使用send ()向对方邮箱发邮件 receive ()从自己邮箱取邮件, send ()和 receive ()的内部操作用户无需关心。因为邮箱在内存中实现,其空间有大小限制。其实send ()和 receive ()的内部实现主要还是要解决生产者与消费者问题。 四、实验内容:进程通信的邮箱方式由操作系统提供形如send ()和receive ()的系统调用来支持,本实验要求学生首先查找资料了解所选用操作系统平台上用于进程通信的系统调用具体形式,然后使用该系统调用编写程序进行进程间的通信,要求程序运行结果可以直观地体现在界面上。在此基础上查找所选用操作系统平台上支持信号量机制的系统调用具体形式,运用生产者与消费者模型设计实现一个简单的信箱,该信箱需要有创建、发信、收信、撤销等函数,至少能够支持两个进程互相交换信息,比较自己实现的信箱与操作系统本身提供的信箱,分析两者之间存在的异同。 五、背景知识介绍: 1、sembuf 数据结构 struct sembuf { unsigned short int sem_num; //semaphore number short int sem_op; //semaphore operation short int sem_flg; //operation flag }; sem_num :操作信号在信号集中的编号,第一个信号的编号是0。 进程A 进程B 信箱A 信箱B Send() Send() receive() receive()

Linux系统编程实验六进程间通信

实验六:进程间通信 实验目的: 学会进程间通信方式:无名管道,有名管道,信号,消息队列, 实验要求: (一)在父进程中创建一无名管道,并创建子进程来读该管道,父进程来写该管道(二)在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号(三)创建一消息队列,实现向队列中存放数据和读取数据 实验器材: 软件:安装了Linux的vmware虚拟机 硬件:PC机一台 实验步骤: (一)无名管道的使用 1、编写实验代码pipe_rw.c #include #include #include #include #include #include int main() { int pipe_fd[2];//管道返回读写文件描述符 pid_t pid; char buf_r[100]; char* p_wbuf; int r_num; memset(buf_r,0,sizeof(buf_r));//将buf_r初始化 char str1[]=”parent write1 “holle””; char str2[]=”parent write2 “pipe”\n”; r_num=30; /*创建管道*/ if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } /*创建子进程*/ if((pid=fork())==0) //子进程执行代码 {

//1、子进程先关闭了管道的写端 close(pipe_fd[1]); //2、让父进程先运行,这样父进程先写子进程才有内容读sleep(2); //3、读取管道的读端,并输出数据 if(read(pipe_fd[0],buf_r, r_num)<0) { printf(“read error!”); exit(-1); } printf(“%s\n”,buf_r); //4、关闭管道的读端,并退出 close(pipe_fd[1]); } else if(pid>0) //父进程执行代码 { //1、父进程先关闭了管道的读端 close(pipe_fd[0]); //2、向管道写入字符串数据 p_wbuf=&str1; write(pipe_fd[1],p_wbuf,sizof(p_wbuf)); p_wbuf=&str2; write(pipe_fd[1],p_wbuf,sizof(p_wbuf)); //3、关闭写端,并等待子进程结束后退出 close(pipe_fd[1]); } return 0; } /*********************** #include #include #include #include #include #include int main() { int pipe_fd[2];//管道返回读写文件描述符 pid_t pid; char buf_r[100]; char* p_wbuf; int r_num;

进程管理实验报告文档

实验一进程管理 1.实验目的: (1)加深对进程概念的理解,明确进程和程序的区别; (2)进一步认识并发执行的实质; (3)分析进程争用资源的现象,学习解决进程互斥的方法; (4)了解Linux系统中进程通信的基本原理。 2.实验预备内容 (1)阅读Linux的源码文件,加深对进程管理概念的理解; (2)阅读Linux的fork()源码文件,分析进程的创建过程。 3.实验内容 (1)进程的创建: 编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 源代码: #include <> #include <> #include #include <> main() {

int p1,p2; p1=fork(); ockf()函数是将文件区域用作信号量(监视锁),或控制对锁定进程的访问(强制模式记录锁定)。试图访问已锁定资源的其他进程将返回错误或进入休态,直到资源解除锁定为止。而上面三个进程,不存在要同时进入同一组共享变量的临界区域的现象,因此输出和原来相同。 (3) a) 编写一段程序,使其实现进程的软中断通信。 要求:使用系统调用fork() 创建两个子进程,再用系统调用signal() 让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill() 向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child Process 1 is killed by Parent! Child Process 2 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent Process is killed!

实验三 进程通信(一)

操作系统实验报告 实验三、进程通信(一) ——管道及共享内存 一、实验目的 熟悉和掌握LINUX系统的管道通信和共享内存通信。 二、实验内容 (一)、管道通信 1、实验原理: 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统。 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。 利用系统调用pipe()可创建一个简单的管道。 int fd[2]; pipe(fd); 调用成功,fd[0]存放供读进程使用的文件描述符(管道出口),fd[1]存放供写程使用的文件描述符(管道入口)。 一个进程在由pipe()创建管道后,一般再fork()一个子进程,然后通过管道实现父子进程间的通信,子进程将从父进程那里继承所有打开的文件描述符。则父子两个进程都能访问组成管道的两个文件描述符,这样子进程可以向父进程发送消息(或者相反)。 发送进程利用文件系统的系统调用write(fd[1],buf,size),把buf中size个字符送入fd[1],接收进程利用read(fd[0],buf,size),把从fd[0]读出的size个字符置入buf中。这样管道按FIFO(先进先出)方式传送信息。 2、实验内容: #include main() { int x,fd[2]; char buf[30],s[30]; pipe(fd); while ((x=fork())==-1);

if (x==0) { close(fd[0]); printf("Child Process!\n"); strcpy(buf,"This is an example\n"); write(fd[1],buf,30); exit(0); } else{ close(fd[1]); printf("Parent Process!\n"); read(fd[0],s,30); printf("%s\n",s); printf("x value in Parent Process:%d!\n",x); } } (1)阅读上述父子进程利用管道进行通信的例子,写出程序的运行结果并分析。 程序运行x=fork()后,创建里一个子进程,在子进程里x的返回值为0,在父进程里x的返回值为7684,则子进程会执行if语句里的代码段,先关闭了管道的读入端,再在屏幕上输出“Child Process!”,然后将“This is an example\n”存入buf数组中,通过调用write()函数将buf数组的内容从管道的写入端写入,而父进程会执行else语句里的代码段,先关闭了管道的写入端,再在屏幕上输出“Parent Process!”,然后通过调用read ()函数将buf数组的内容从管道的读入端读入冰存储在s数组里,接着通过printf()函数将s数组里的内容输出到屏幕上,最后在屏幕上输出父进程中x的值。 (2)编写程序:父进程利用管道将一字符串交给子进程处理。子进程读字符串,将里面的字符反向后再交给父进程,父进程最后读取并打印反向的字符串。 #include main() { int i,x,fd[2]; char buf[20],s[20],cpy[20],m[20]; strcpy(buf,"This is an example\n"); pipe(fd); write(fd[1],buf,20);

实验八 进程通信应用

实验八进程通信应用 实验目的 1. 掌握命名管道的原理和应用 2. 掌握文件映射共享内存的原理 3、掌握基于进程通信的程序设计方法 实验内容 1.(1)命令行下创建有名管道myfifo,ls –l查看,分别在两个终端运行cat < myfifo 和echo hello >myfifo分析执行情况,将cat在后台运行,echo在前台运行,执行情况如何?分析FIFO的打开规则。 (2)设计两个程序,要求用命名管道FIFO,实现文本文件复制功能,即实现copy file1 file2的功能,file1是已经存在的文件,file2可以不存在,如果存在就清空原来的内容,通过建立的有名管道实现file1的内容复制到file2。

一、 FIFO 1.有名管道的创建 #include #include int mkfifo(const char * pathname, mode_t mode) 该函数的第一个参数是一个普通的路径名,也就是创建后FIFO的名字。第二个参数与打开普通文件的open()函数中的mode 参数相同。 2. 有名管道的打开 有名管道创建成功后并没有打开,需要使用系统调用open( )将对应的文件打开。 open(const char*pathname,oflg) 其中,参数pathname是要打开的有名管道的路径名,oflg是文件打开时的存取方式。必须指定的互斥模式: O_RDONLY, O_WRONLY, O_NONBLOCK O_RDONLY:若无进程写方式打开FIFO,open阻塞 O_RDONLY |O_NONBLOCK:若无进程写方式打开FIFO,open立即返回 O_WRONLY:若无进程读方式打开FIFO,open阻塞 O_WRONLY| O_NONBLOCK:若无进程读方式打开FIFO,open返回ENXIO错误,-1 FIFO的打开规则: (1)如果当前打开操作是为读而打开FIFO时,若已经有相应进程为写而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为写而打开该FIFO(当前打开操作设置了阻塞标志);或者,成功返回(当前打开操作没有设置阻塞标志)。 (2)如果当前打开操作是为写而打开FIFO时,如果已经有相应进程为读而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为读而打开该FIFO(当前打开操作设置了阻塞标志);或者,返回ENXIO错误(当前打开操作没有设置阻塞标志)。 3.有名管道的读写 #include ssize_t read(int fd, void *buf, size_t count); 返回值: 读到的字节数,若已到文件尾为0,若出错为-1 ssize_t write(int fd, const void *buf, size_t count); 返回值: 若成功为已写的字节数,若出错为-1 从FIFO中读取数据read 以阻塞方式打开的FIFO,read调用: ①当前FIFO内没有数据,read调用将一直阻塞。 ②当前FIFO内有数据,但有其它进程在读这些数据 解除阻塞的原因则是FIFO中有新的数据写入,不论信写入数据量的大小,也不论读操作请求多少数据量。

实验三 进程通信doc(DOC)

实验三进程通信(二) 实验目的: 1、理解进程通信原理和基本技术 2、了解linux系统进程间通信机构(IPC); 3、理解linux关于共享内存的概念; 4、掌握linux支持进程间共享内存的系统调用; 5、巩固进程同步概念。 实验内容: (一)闹钟。用c语言编程,实现进程间通过信号进行通信。 用fork()创建两个进程,子进程在等待5秒后用系统调用kill()向父进程发送SIGALRM 信号,父进程用系统调用signal()捕捉SIGALRM信号。参考程序如下: #include #include #include static int alarm_fired = 0; //闹钟未设置 //模拟闹钟 void ding(int sig) { alarm_fired = 1; //设置闹钟 } int main() { int pid; printf("alarm application starting\n"); if((pid = fork( )) == 0) { //子进程5秒后发送信号SIGALRM给父进程 sleep(5); kill(getppid(), SIGALRM); //exit(0); return 0; } //父进程安排好捕捉到SIGALRM信号后执行ding函数 printf("waiting for alarm to go off\n"); (void) signal(SIGALRM, ding); pause(); //挂起父进程,直到有一个信号出现 if (alarm_fired) printf("Ding!\n"); printf("done\n");

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

Linux进程通信实验报告

Linux进程通信实验报告 一、实验目的和要求 1.进一步了解对进程控制的系统调用方法。 2.通过进程通信设计达到了解UNIX或Linux系统中进程通信的基本原理。 二、实验内容和原理 1.实验编程,编写程序实现进程的管道通信(设定程序名为pipe.c)。使 用系统调用pipe()建立一条管道线。而父进程从则从管道中读出来自 于两个子进程的信息,显示在屏幕上。要求父进程先接受子进程P1 发来的消息,然后再接受子进程P2发来的消息。 2.可选实验,编制一段程序,使其实现进程的软中断通信(设定程序名为 softint.c)。使用系统调用fork()创建两个子进程,再用系统调用 signal()让父进程捕捉键盘上来的中断信号(即按Del键),当父进程 接受这两个软中断的其中一个后,父进程用系统调用kill()向两个子 进程分别发送整数值为16和17的软中断信号,子进程获得对应软中 断信号后分别输出相应信息后终止。 三、实验环境 一台安装了Red Hat Linux 9操作系统的计算机。 四、实验操作方法和步骤 进入Linux操作系统,利用vi编辑器将程序源代码输入并保存好,然后 打开终端对程序进行编译运行。 五、实验中遇到的问题及解决 六、实验结果及分析 基本实验 可选实验

七、源代码 Pipe.c #include"stdio.h" #include"unistd.h" main(){ int i,j,fd[2]; char S[100]; pipe(fd); if(i=fork==0){ sprintf(S,"child process 1 is sending a message \n"); write(fd[1],S,50); sleep(3); return; } if(j=fork()==0){ sprintf(S,"child process 2 is sending a message \n"); write(fd[1],S,50); sleep(3); return;

实验三 进程间通信

实验三进程间通信(2学时) 一、实验目的 (1)了解什么是信号。 (2)熟悉LINUX系统中进程之间软中断通信的基本原理。 (3)熟悉LINUX支持的管道通信方式。 二、实验内容 (1)编写一段程序,使其现实进程的软中断通信。 即:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按 ctrl+c 键);当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止: Child Process11 is killed by Parent! Child Process12 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is killed! 要求:运行以下参考程序并分析结果。 <参考程序> #include #include #include #include void waiting(),stop(),alarming(); int wait_mark; main() { int p1,p2; if(p1=fork()) /*创建子进程p1*/ { if(p2=fork()) /*创建子进程p2*/ { //父进程 wait_mark=1; signal(SIGINT,stop); /*接收到^c信号,转stop*/

signal(SIGALRM,alarming);/*接受SIGALRM*/ waiting(); kill(p1,16); /*向p1发软中断信号16*/ kill(p2,17); /*向p2发软中断信号17*/ wait(0); /*同步*/ wait(0); printf("parent process is killed!\n"); exit(0); //会暂时停止目前进程的执行,直到有信号来到或子进程结束。 } else { wait_mark=1; signal(17,stop); signal(SIGINT,SIG_IGN); /*忽略 ^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process2 is killed by parent!\n"); lockf(1,0,0); exit(0); } } else { wait_mark=1; signal(16,stop); signal(SIGINT,SIG_IGN); /*忽略^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process1 is killed by parent!\n"); lockf(1,0,0); exit(0); } } void waiting() { sleep(5); if (wait_mark!=0) kill(getpid(),SIGALRM); } void alarming()

进程同步实验报告

实验三进程的同步 一、实验目的 1、了解进程同步和互斥的概念及实现方法; 2、更深一步的了解fork()的系统调用方式。 二、实验内容 1、预习操作系统进程同步的概念及实现方法。 2、编写一段源程序,用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。程序的输出是什么?分析原因。 3、阅读模拟火车站售票系统和实现进程的管道通信源代码,查阅有关进程创建、进程互斥、进程同步的系统功能调用或API,简要解释例程中用到的系统功能或API的用法,并编辑、编译、运行程序,记录程序的运行结果,尝试给出合理的解释。 4、(选做)修改问题2的代码,使得父子按顺序显示字符“a”;“b”、“c”编辑、编译、运行。记录程序运行结果。 三、设计思想 1、程序框架 (1)创建两个子进程:(2)售票系统:

(3)管道通信: 先创建子进程,然后对内容加锁,将输出语句存入缓存,并让子进程自己进入睡眠,等待别的进程将其唤醒,最后解锁;第二个子进程也执行这样的过程。父进程等待子进程后读内容并输出。 (4)修改程序(1):在子进程的输出语句前加上sleep()语句,即等待父进程执行完以后再输出。 2、用到的文件系统调用函数 (1)创建两个子进程:fork() (2)售票系统:DWORD WINAPI Fun1Proc(LPVOID lpPartameter); CreateThread(NULL,0,Fun1Proc,NULL,0,NULL); CloseHandle(hThread1); (HANDLE)CreateMutex(NULL,FALSE,NULL); Sleep(4000)(sleep调用进程进入睡眠状态(封锁), 直到被唤醒); WaitForSingleObject(hMutex,INFINITE); ReleaseMutex(hMutex); (3)管道通信:pipe(fd),fd: int fd[2],其中: fd[0] 、fd[1]文件描述符(读、写); lockf( fd,function,byte)(fd: 文件描述符;function: 1: 锁定 0:解锁;byte: 锁定的字节数,0: 从当前位置到文件尾); write(fd,buf,byte)、read(fd,buf,byte) (fd: 文件描述符;buf : 信息传送的源(目标)地址;byte: 传送的字节数); sleep(5); exit(0); read(fd[0],s,50) (4)修改程序(1):fork(); sleep(); 四、调试过程 1、测试数据设计 (1)创建两个子进程:

操作系统进程创建及通信实验报告

武汉工程大学计算机科学与工程学院 《操作系统》实验报告[Ⅰ]

一、实验目的 创建进程,实现进程消息通信和共享内存通信,了解进程的创建、退出和获取进程信。了解什么是映像文件、管道通信及其作用,掌握通过内存映像文件和管道技术实现进程通信。 二、实验内容 本例用三种方法实现进程通信,仅用于示例目的,没有进行功能优化。 1、创建进程A和B后,在进程A中输入一些字符,点“利用 SendMessage发送消息”按钮可将消息发到进程B。 2、在进程A中输入一些字符,点“写数据到内存映像文件”按钮, 然后在进程B中点“从内存映像文件读数据”按钮可收到消息。其中在点“写数据到内存映像文件”时,要求创建映像文件,B进程在印象文件中读取数据。 3、先在进程B中点“创建管道并接收数据”按钮,然后在进程A 中输入一些字符,点“写数据到管道文件”按钮可将消息发到进程B。管道是连接读/写进程使他们进行通信的一个共享文件,目的是更好地实现进程间的通信。 三、实验思想 这次试验最主要的内容和核心思想就是学会创建进程并实现进程间的简单通信、创建映像文件和创建管道文件来通信,后两者是实现进程通信的高级通信机制中的两种。. 创建一个程序A和程序B,其中程序A和B各有一个主窗体,A主窗体上要求可以实现创建进程B(即调用函数B)、结束进程B、关闭进程A、向进程B发送数据、创建映像文件、创建管道文件等功能,进程B要求有从映像文件读取数据、创建管道并接收数据、结束进程B功能。最终让A、B进程相互通信。

四、设计分析: 首先设得设计A、B两个程序的操作界面,然后编写各个功能模块。对于A 程序窗体,在“利用SendMessage发送消息”按钮的消息响应函数中,主要是利用Windows API函数CWnd::FindWindow来找到接收消息的窗体,即进程B,找到进程B后,利用这个函数返回的窗体指针的SendMessage函数来发送消息。在“写数据到内存印象文件”按钮的消息响应函数中,主要是利用函数CreateFileMapping来创建一个印象文件,这个函数返回的是这个印象文件的句柄,然后将这个句柄和要发送的消息字符串传递到函数sprintf中,就可以所要发送的消息写入印象文件,在B程序窗体中有个“从内存印象文件读数据”按钮,在这个按钮的消息响应函数中读取父进程所创建的印象文件中的数据就可以实现通信了。在B程序窗体按钮“写数据到管道文件”的消息响应函数中,不能直接将要发送的消息发送到管道文件,因为管道必须先由子进程通过函数CreateNamedPipe创建,只有待子进程创建好管道后父进程才能根据管道创建管道文件,将消息写入管道文件并及时发送给子进程。而且这个管道只能使用一次,即每次发送完消息后那个管道不能在使用了,必须再由子进程创建一个管道,A 进程才能再次创建管道文件并向其中写入消息。这个程序也不一定要MFC实现,还可以用其他的技术和语言实现,比如说Java、VB等,外表构架可以不一样,但核心技术都是一样的,只是不同的调用形式和调用方法,比如说在VB中,实现进程间的一般通信就是使用动态数据交换DDE,实现起来就比较简单,但是要创建映像文件和管道文件就比较繁琐,可以根据不同的需求采用不同的语言。 五、程序部分源代码: 1.“利用SendMessage发送消息”按钮中的主要代码 //找到接收消息的窗口(窗口名为Receiver) CString str="进程B"; CWnd *pWnd=CWnd::FindWindow(NULL,str); if(pWnd) { COPYDATASTRUCT buf; char * s=new char[m_Msg1.GetLength()]; //m_Msg1为CString类型的变量 s=m_Msg1.GetBuffer(0);

实验5 进程间通信实验

实验五进程间通信实验 一、实验目的 1、了解什么是信号。 2、熟悉LINUX系统中进程之间软中断通信的基本原理。 3、了解什么是管道 4、熟悉UNIX/LINUX支持的管道通信方式 二、实验内容 1、编写一段程序,使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按ctrl+c键),当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出以下信息后终止: Parent process is killed! <参考程序> #include #include #include #include #include int wait_mark; void waiting(),stop(); void main() {int p1, p2; signal(SIGINT,stop); while((p1=fork())==-1); if(p1>0) /*在父进程中*/ { while((p2=fork())==-1); If(p2>0) /*在父进程中*/ { wait_mark=1; waiting(0); kill(p1,10); kill(p2,12); wait( ); wait( ); printf("parent process is killed!\n"); exit(0); } else /*在子进程2中*/ { wait_mark=1; signal(12,stop); waiting();

实验报告三进程管理及进程通信

实验三进程管理及进程通信 实验环境: Linux操作系统 实验目的: (1)利用Linux提供的系统调用设计程序,加深对进程概念的理解。 (2)体会系统进程调度的方法和效果。 (3)了解进程之间的通信方式以及各种通信方式的使用。 实验方法: 用vi 编写c 程序(假定程序文件名为prog1.c)编 译程序 $ gcc -o prog1.o prog1.c 或 $ cc -o prog1.o prog1.c 运行 $./prog1.o 实验内容及步骤: 实验1 编写程序。显示进程的有关标识(进程标识、组标识、用户标识等)。经过5 秒钟后,执行另一个程序,最后按用户指示(如:Y/N)结束操作。 编程截图:

运行结果: 实验2 参考例程1,编写程序。实现父进程创建一个子进程。体会子进程与父进程分 别获得不同返回值,进而执行不同的程序段的方法。 例程1:利用fork()创建子进程 /* 用fork()系统调用创建子进程的例子*/ main() { int i; if (fork()) /*父进程执行的程序段*/ i=wait(); /* 等待子进程结束*/{ printf("It is parent process.\n"); printf("The child process,ID number %d, is finished.\n",i); } else{

Printf(“It is child process.\n”); Sleep(10); Exit(); } } 运行结果: 思考: 子进程是如何产生的?又是如何结束的?子进程被创建后它的运行环境是怎样建立的? 答:是由父进程用fock()函数创建形成的,通过exit()函数自我结束,子进程被创建后核心 将其分配一个进程表项和进程标识符,检查同时运行的进程数目,并且拷贝进程表项的数据,由子进程继承父进程所有文件。 实验3 参考例程2,编写程序。父进程通过循环语句创建若干子进程。探讨进程的家族树 以及子进程继承父进程的资源的关系。 例程2:循环调用fork()创建多个子进程。 /*建立进程树*/ #include main() { int i; printf(“My pid is %d, my father’s pid is %d\n”,getpid() ,getppid()); for(i=0; i<3; i++) if(fork()==0) printf(“%d pid=%d ppid=%d\n”, i,getpid(),getppid()); else { j=wait(0); Printf(“%d:The chile %d is finished.\n”,getpid(),j);

进程控制与进程间通信操作系统实验报告

工程大学实验报告 专业班级:姓名:学号: 课程名称:操作系统 实验成绩:指导教师:蔡敦波 实验名称:进程控制与进程间通信 一、实验目的: 1、掌握进程的概念,明确进程和程序的区别。 2、认识和了解并发执行的实质。 3、了解什么是信号。 4、熟悉LINUX系统中进程之间软中断通信的基本原理。 二、实验内容: 1、进程的创建(必做题) 编写一段程序,使用系统调用fork( )创建两个子进程,在系统中有一个父进程和两个子进程活动。让每个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 <参考程序>

运行的结果是bca. 首先创建进程p1,向子进程返回0,输出b.又创建进程p2,向子进程返回0,输出c,同时向父进程返回子进程的pid,输出a 2、修改已编写的程序,将每个进程的输出由单个字符改为一句话,再观察程序执行时屏幕上出现的现象,并分析其原因。(必做题) <参考程序> # include int main() { int p1, p2, i; while((p1=fork())= = -1); if(p1= =0) for(i=0;i<500;i++) printf(“child%d\n”,i); else { while((p2=fork())= =-1); If(p2= =0) for(i=0;i<500;i++) printf(“son%d\n”,i); else for(i=0;i<500;i++) printf(“daughter%d\n”,i); } }

运行的结果是如上图所示. 首先创建进程p1,向子进程返回0,并for语句循环输出child +i字符串.又创建进程p2,向子进程返回0,输出字符串son+i,同时向父进程返回子进程的pid,输出字符串duaghter +i ,各打印5次。

实验三进程通信

实验三进程通信 一.实验学时与类型 学时:2,课外学时:自定 实验类型:设计性实验 二.实验目的 了解Linux的软中断、管道、消息队列、共享存储区等进程间通信方式。 三.实验容 1. 软中断通信机制 (1) 请编写一个程序:循环输出“how are you?”,在按下Ctrl+C后中断显示,输出“Byebye!”后退出程序。 #include #include int k=1; void int_func(int sig) //软中断处理函数 { k=0; } Int main() { signal(SIGINT,int_func);//预置软中断信号处理函数 While(k==1) Printf(“how are you?\n”); Printf(“byebye!”); } (2)使用信号机制实现父子进程同步,父进程先输出A,然后子进程输出B。 #include #include int k=1; void func(int sig) { k=0; } main() { int pid;

pid=fork(); if(pid>0) { printf(“A\n”); kill(pid,12); } else if(pid==0) { signal(12,func); while(k==1) sleep(1); printf(“B\n”); } } 2. 管道机制 (1) 父子进程通过管道传送一串字符。要求:子进程随机从键盘输入一串字符,通过管道发给父进程,父进程从管道中将消息读出并显示出来。 #include #include main() { int pid, fd[2] ; char outpipe[50], inpipe[50]; pipe(fd); pid=fork(); if (pid==0) { Printf(“please input some message:\n”); Fgets(inpipe,sizeof(inpipe),stdin); write(fd[1],inpipe,50); } else if (pid>0); { wait(0); Printf(“father get this message:\n”); read(fd[0],outpipe,50); printf(“%s\n”,outpipe); } }

实验三进程间通信

实验三进程间通信班级: xxx 学号: xxx 姓名: xxx 分数: 1、实验目的: Linux系统的进程通信机构(IPC)允许在任意进程间大批量的交换数据。本实验的目的是了解和熟悉Linux支持的通信机制、共享存储区机制及信号量机制。 2、实验预备内容: 阅读Linux系统的等源码文件,熟悉Linux的三种通信机制。 3、实验内容: (1)消息的创建,发送和接收 (2)使用系统调用msgget(),msgsnd(),msgrev()及msgctl()编制一长度为1k的消息发送和接收程序。 <程序设计> (1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。 (2)SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。SERVER 每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后一个消息,即是SERVER端需要的结束信号。CLIENT每发送一条 信息后显示一句“(client)sent”。 (4)父进程在SERVER和CLIENT均退出后结束。 4、源代码及运行截图: #include <> #include #include #include #define MSGKEY 75 struct msgform { long mtype; char mtext[1030]; }msg; int msgqid,i; void CLIENT() { int i; msgqid=msgget(MSGKEY,0777); for (i=10;i>=1;i--) { =i;

相关主题
文本预览
相关文档 最新文档