当前位置:文档之家› 初中中考平面几何动点类问题压轴题

初中中考平面几何动点类问题压轴题

初中中考平面几何动点类问题压轴题
初中中考平面几何动点类问题压轴题

(2011河南)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D

从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E

从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一

个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接D E、E F.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗如果能,求出相应的t值;如果不能,说明理由.

(3)当t为何值时,△DEF为直角三角形请说明理由.

解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,

∴DF=t.

又∵AE=t,

∴AE=DF.(2分)

(2)解:能.理由如下:

∵AB⊥BC,DF⊥BC,

∴AE∥DF.

又AE=DF,

∴四边形AEFD为平行四边形.(3分)

∵AB=BCtan30°=5=5,

∴AC=2AB=10.

∴AD=AC﹣DC=10﹣2t.

若使AEFD为菱形,则需AE=AD,

即t=10﹣2t,t=.

即当t=时,四边形AEFD为菱形.(5分)

(3)解:①∠EDF=90°时,四边形EBFD为矩形.

在Rt△AED中,∠ADE=∠C=30°,

∴AD=2AE.

即10﹣2t=2t,t=.(7分)

②∠DEF=90°时,由(2)知EF∥AD,

∴∠ADE=∠DEF=90°.

∵∠A=90°﹣∠C=60°,

∴AD=AEcos60°.

即10﹣2t=t,t=4.(9分)

③∠EFD=90°时,此种情况不存在.

综上所述,当t=或4时,△DEF为直角三角形.(10分)

如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.

(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;

(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形

解:(1),△BPD与△CQP是全等.理由如下:

当P,Q两点分别从B,A两点同时出发运动2秒时

有BP=2×2=4cm,AQ=4×2=8cm

则CP=BC-BP=10-4=6cm

CQ=AC-AQ=12-8=4cm …(2分)

∵D是AB的中点

∴BD=1/2AB=1/2×12=6cm

∴BP=CQ,BD=CP …(3分)

又∵△ABC中,AB=AC

∴∠B=∠C …(4分)

在△BPD和△CQP中

BP=CQ

∠B=∠C

BD=CP

∴△BPD≌△CQP(SAS)…(6分)

(2)设当P,Q两点同时出发运动t秒时,

有BP=2t,AQ=4t∴t的取值范围为0<t≤3

则CP=10-2t,CQ=12-4t …(7分)

∵△CPQ的周长为18cm,

∴PQ=18-(10-2t)-( 12-4t)=6t-4 …(8分)

要使△CPQ是等腰三角形,则可分为三种情况讨论:

①当CP=CQ时,则有10-2t=12-4t

解得:t=1 …(9分)

②当PQ=PC 时,则有6t-4=10-2t 24.(本小题满分14分)

在△ABC 中,AB=BC ,将ABC 绕点A 沿顺时针方向旋转得△A 1B 1C 1,使点C l 落在 直线BC 上(点C l 与点C 不重合),

(1)如图9一①,当∠C>60°时,写出边AB l 与边CB 的位置关系,并加以证明; (2)当∠C=60°时,写出边AB l 与边CB 的位置关系(不要求证明);

(3)当∠C<60°时,请你在图9一②中用尺规作图法作出△AB 1C 1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由. 24.解:(1)1//AB CB 证明:由旋转的特征可知

11B AC BAC ∠=∠,1AC AC = ∵AB BC = ∴BAC C ∠=∠ ∵1AC AC = ∴1AC C C ∠=∠ ∴111B AC AC C ∠=∠ ∴1//AB CB (2)1//AB CB

(3)作图略。成立。理由与第一问类似。

25、(12分)已知Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 中点M ,连结DM 和BM ,

(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,求证:BM=DM 且BM ⊥DM ; (2)如图①中的△ADE 绕点A 逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立如果不成立,请举出反例;如果成立,请给予证明。

25. 本小题主要考查三角形、图形的旋转、平行四边形等基础知识,考查空间观念、演绎推理能力.满分12分. (1)证法1:

在Rt △EBC 中,M 是斜边EC 的中点, ∴ 12

BM EC =.

在Rt △EDC 中,M 是斜边EC 的中点, ∴ 12

DM EC =.

∴ BM =DM ,且点B 、C 、D 、E 在以点M 为圆心、BM 为半径的圆上. ∴ ∠BMD =2∠ACB =90°,即BM ⊥DM . 证法2:

证明BM =DM 与证法1相同,下面证明BM ⊥DM . ∵ DM =MC , ∴ ∠EMD =2∠ECD . ∵ BM =MC ,

∴ ∠EMB =2∠ECB .

∴ ∠EMD +∠EMB =2(∠ECD +ECB ). ∵ ∠ECD +∠ECB =∠ACB =45°, ∴ ∠BMD =2∠ACB =90°,即BM ⊥DM .

(2)当△ADE 绕点A 逆时针旋转小于45°的角时,(1)中的结论成立. 证明如下:

证法1(利用平行四边形和全等三角形):

连结BD ,延长DM 至点F ,使得DM =MF ,连结BF 、FC ,延长ED 交AC 于点H . ∵ DM =MF ,EM =MC ,

∴ 四边形CDEF 为平行四边形. ∴ DE ∥CF ,ED =CF . ∵ ED = AD , ∴ AD =CF . ∵ DE ∥CF , ∴ ∠AHE =∠ACF .

∵ 4545(90)45BAD DAH AHE AHE ∠=-∠=--∠=∠-,45BCF ACF ∠=∠-, ∴ ∠BAD =∠BCF . 又∵AB = BC ,

M

D

B

A

C

E

M D

B

A

C

E

H

F

A

∴ △ABD ≌△CBF . ∴ BD =BF ,∠ABD =∠CBF . ∵ ∠ABD +∠DBC =∠CBF +∠DBC , ∴∠DBF =∠ABC =90°.

在Rt △DBF 中,由BD BF =,DM MF =,得BM =DM 且BM ⊥DM . 证法2(利用旋转变换):

连结BD ,将△ABD 绕点B 逆时针旋转90°,点A 旋转到点C ,点D 旋转到点D ',得到△CBD ',则,,,BD BD AD CD BAD BCD '''==∠=∠且90DBD '∠=.连结MD '. ∵CED ∠CEA DEA =∠-∠

(180)45180(90)4545ECA EAC ECA BAD ECA BAD ECB BAD ECB BCD ECD =-∠-∠-=-∠--∠-=-∠+∠=∠+∠'=∠+∠'

=∠

∴ //DE CD '. 又∵DE AD CD '==,

∴ 四边形EDCD '为平行四边形. ∴ D 、M 、D '三点共线,且DM MD '=.

在Rt △DBD '中,由BD BD '=,DM MD '=,得BM =DM 且BM ⊥DM . 证法3(利用旋转变换):

连结BD ,将△ABD 绕点B 逆时针旋转90°,点A 旋转到点C ,点D 旋转到点D ',得到△CBD ',则,,,BD BD AD CD BAD BCD '''==∠=∠且90DBD '∠=. 连结MD ',延长ED 交AC 于点H .

∵ ∠AHD = 90°-∠DAH = 90°-(45°-∠BAD )= 45°+∠BAD ,

45ACD BCD ''∠=+∠,

∵BAD BCD '∠=∠,

M D

B

A

C

E

∴AHD ACD '∠=∠. ∴ //DE CD '. 又∵DE AD CD '==,

∴ 四边形EDCD '为平行四边形. ∴ D 、M 、D '三点共线,且DM MD '=.

在Rt △DBD '中,由BD BD '=,DM MD '=,得BM =DM 且BM ⊥DM .

4、 (14分)如图10,扇形OAB 的半径OA=3,圆心角∠AOB=90°,点C 是AB 上异于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,点G 、H 在线段DE 上,且DG=GH=HE (1)求证:四边形OGCH 是平行四边形

(2)当点C 在AB 上运动时,在CD 、CG 、DG 中,是否存在长度不变的线段若存在,请求出该线段的长度 (3)求证:2

2

3CD CH +是定值

24.(1)连结OC 交DE 于M ,由矩形得OM =CG ,EM =DM 因为DG=HE 所以EM -EH =DM -DG 得HM =DG

(2)DG 不变,在矩形ODCE 中,DE =OC =3,所以DG =1

(3)设CD =x ,则CE =2

9x -,由EC CD CG DE ?=?得CG =3

92

x x -

所以3

)39(2

22x x x x DG =--=2

所以HG =3-1-36322x x -= 所以3CH 2

=22

22212))3

9()36((3x x x x -=-+- 所以121232

222=-+=+x x CH CD 24.(本小题满分14分)

如图12,边长为1的正方形ABCD 被两条与边平行的线段

EF 、GH 分割为四个小矩形,EF 与GH 交于点P 。 (1)若AG=AE ,证明:AF=AH ;

图10

(2)若∠FAH=45°,证明:AG+AE=FH;

(3)若RtΔGBF的周长为1,求矩形EPHD的面积。

24.(本小题满分14分)

解:(1) 易证ΔABF≌ΔADH,所以AF=AH

(2) 如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB+BF,即:

FH=AG+AE

(3) 设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得(1x)2(1y)2=(xy1)2,

化简得xy=,所以矩形EPHD的面积为.

2.(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),

(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-1

2

x+b交折线

OAB于点E.

(1)记△ODE的面积为S,求S与b的函数关系式;

(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.

【答案】(1)由题意得B(3,1).

若直线经过点A(3,0)时,则b=3 2

若直线经过点B(3,1)时,则b=5 2

若直线经过点C(0,1)时,则b=1

①若直线与折线OAB的交点在OA上时,即1<b≤3

2

,如图25-a,

此时E (2b ,0)

∴S =

12OE ·CO =1

2

×2b ×1=b ②若直线与折线OAB 的交点在BA 上时,即

32<b <5

2

,如图2

此时E (3,3

2

b -

),D (2b -2,1) ∴S =S 矩-(S △OCD +S △OAE +S △DBE )

= 3-[

12(2b -1)×1+12×(5-2b )·(52b -)+12×3(32b -)]=252

b b - ∴23

125352

22

b b S b b b ?<≤

??

=?

?-<

如图,在梯形ABCD 中,AD∥BC,AD=3,DC=5,AB=

,∠B=45°,动点M 从点B 出发,沿线段BC 以

每秒1个单位长度的速度向终点C 运动;动点N 同时从C 点出发,沿C→D→A,以同样速度向终点A 运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设运动的时间为t 秒. (1)求线段BC 的长度;

(2)求在运动过程中形成的△MCN 的面积S 与运动的时间t 之间的函数关系式,并写出自变量t 的取值范围;并求出当t 为何值时,△MCN 的面积S 最大,并求出最大面积;

(3)试探索:当M ,N 在运动过程中,△MCN 是否可能为等腰三角形若可能,则求出相应的t 值;若不可能,说明理由.

D

E

x

y

C B A

O 图2

图1

D

E

x

y

C

B A

O

解答:解:(1)如图1,

分别过A,D作AE⊥BC,DF⊥BC,分别交BC于E,F;

∴EF=AD=3;

∵∠B=45°,AB=;

∴BE=AE=DF=4.(1分)

在Rt△DFC中,

CF=;(2分)

∴BC=BE+EF+CF=4+3+3=10;(3分)

(2)①如图2,

当0≤t≤5时,CN=BM=t,

MC=10﹣t;

过N作NG⊥于BC于点G;∴△NGC∽△DFC∴,即;∴NG=;

∴S=;

∵,函数开口向下;

∴当时,S max=10;(5分)

②如图3,

当5≤t≤8时,S=;

∵﹣2<0,即S随t的减小而增大;

∴当t=5时,S max=10;(6分)

综上:,

当t=5时,△MCN的面积S最大,最大值为10;

(3)当0≤t≤5时:CN=BM=t,MC=10﹣t;

①当MC=NC时,t=10﹣t,解得:t=5;(7分)

②当HM=MC时,如图4,

过N作NH⊥BC于点H,

则有HC=MH,可得:,

解得:;(8分)

③当MN=MC时,如图5,

过M作MI⊥CD于I,CI=,又,

即:,可得,解得:(舍去);(9分)

当5<t≤8时,如图6,

过C作CJ⊥AD的延长线于点J,过N作NK⊥BC于点K;

则:MC2=(10﹣t)2=t2﹣20t+100;MN2=(12﹣2t)2+42=4t2﹣48t+160;NC2=(t﹣2)2+42=t2﹣4t+20;

④当MC=NC时,t2﹣20t+100=t2﹣4t+20,解得:t=5(舍去);(10分)

⑤当MN=MC时,4t2﹣48t+160=t2﹣20t+100,

解得:(舍去);(11分)

⑥当MN=NC时,t2﹣4t+20=4t2﹣48t+160,

解得:(舍去).(12分)

综上:当时,△MCN为等腰三角形.

苏教版中考数学压轴题动点问题

苏教版中考数学压轴题动 点问题 Modified by JEEP on December 26th, 2020.

运动变化型问题专题复习 【考点导航】 运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型.【答题锦囊】 例1 如图在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C 以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒). (1)设四边形PCQD的面积为y,求y与t的函数关系式; (2)t为何值时,四边形PQBA是梯形 (3)是否存在时刻t,使得PD∥AB若存在,求出t的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由. 例2如图2,直角梯形CD ,AD=4,DC=3,动点P从点 A出发,沿A→D→C→B方向移动,动点P移动的路程为x,点Q移动的路程为y,线段 PQ平分梯形ABCD (1)求y与x的函数关系式,并求出x y ,的取值范围;(2)当PQ∥AC时,求 x y ,的值; (3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积若能,求出此时x的值;若不能,说明理由. 例3 如图3,在平面直角坐标系中,以坐标原点O为圆心,2 为半径画⊙O,P是⊙O上一动点,且P的切线与x轴相交于点A,与y轴相交于点B. (1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由; (2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形若存在,请求出Q点的坐标;若不存在,请说明理由. 例4如图7①,一张三角形纸片ABC沿斜边AB的中线CD把这张 纸片剪成 11 AC D ?和 22 BC D ? 11 AC D沿直线 2 D B(AB)方向平 移(点 12 ,,, A D D B始终在同一直线上),当点.在平移过程中,11 C D与 2 BC交于点E, 1 AC与222 C D BC 、分别交于点F、P. ⑴当 11 AC D ?平移到如图7③所示的位置时,猜想图中的 1 D E与 2 D F的数量关系,并证明你的猜想; ⑵设平移距离 21 D D为x, 11 AC D ?与 22 BC D ?重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围; ⑶对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原ABC ?面积的 1 4 .若存在,求x的值;若不存在,请说明理由. 【中考预 测】 ⒈如图8①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点. 如图8②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况). (1)当x为何值时,OP∥AC Q B M 图1 AC D Q P B 图2 1 2 2 D ① 2 1 ②

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学压轴题动点问题

2016年中考数学压轴题动点问题 一、选择题 1. (2016·湖北鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s. 设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是() 【考点】动点函数的图像问题. 【分析】分别判断点P在AB、在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2)的变化情况进行求解即可. 2.(2016年浙江省台州市)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是() A.6 B.2+1 C.9 D. 【考点】切线的性质. 【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值 故选C. 3.(2016年浙江省温州市)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB

方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是() A.一直减小B.一直不变C.先减小后增大D.先增大后减小 【考点】动点问题的函数图象. 【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可. 4.(2016.山东省泰安市,3分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是() A.B. C. D. 【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学压轴题(对称问题、双动点对称问题)

(2014?济宁,第22题11分)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C; (1)求该抛物线的解析式; (2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由; (3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M ,是否存在这样的点P, 使四边形PACM是平行四边形若存在,求出点P的坐标;若不存在,请说明理由. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本 问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标; (3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解. 解 答: 解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点, ∴,解得.∴抛物线的解析式为y=x2﹣x﹣. (2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D, ∵点C在直线y=2x上,∴C(5,10) ∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD. ∵OA =5,AC =10, ∴OC ===.∵S△OAC=OC ?AD=OA?AC,∴AD=.∴AA′=,

在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°, ∴Rt △A′EA∽Rt△OAC.∴,即. ∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4), 当x =﹣3时,y=×(﹣3)2+3﹣=4.所以,点A ′在该抛物线上. (3)存在.理由:设直线CA′的解析式为y=kx+b, 则,解得∴直线CA′的解析式为y =x +…(9分)设点P 的坐标为(x,x2﹣x﹣),则点M为(x,x+). ∵PM∥AC, ∴要使四边形PACM是平行四边形,只需PM= AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10. 解得x1=2,x2=5(不合题意,舍去) 当x=2时,y=﹣. ∴当点P运动到(2,﹣)时,四边形PACM是平行四边形. 点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、 勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

几何压轴题

中考数学动态几何、类比探究专项训练方法指导中考数学第22题常考查动态几何、类比探究。本讲重点对动态几何、类比探究进行专项训练。 一、动态几何动点问题: 速度已知的几何问题。 1. 研究基本图形; 2. 分析起点、终点、状态转折点,确定分段; 3. 根据几何特征表达线段长,建等式求解 二、几何综合问题常以三角形、四边形为背景,结合几何变换、几何模型、几何结构等进行考查。 1. 找特征(中点、特殊角、折叠等)、找模型(相似结构、三线合 一、面积等); 2. 借助问与问之间的联系,寻找条件和思路。 三、类比探究图形结构类似、问法类似,常含探究、类比等关键词。 1. 照搬:照搬上一问的方法、思路解决问题。如照搬字母、照搬辅助线、照搬全等、照搬相似。 2. 找结构:寻找不变的结构,利用不变结构的特征解决问题。 常见不变结构及方法: ① 直角,作横平竖直的线,找全等或相似; ② 中点,作倍长,通过全等转移边和角; ③ 平行,找相似,转比例。

中考几何压轴题2017辅导 1、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α, 得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否 仍然成立,并选取图2证明你的判断. (2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由. (3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=1 2 ,求22 BE DG +的值.

中考数学压轴题动点

中考专题——动点问题详细分层解析(一) 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是 GH=32NH=2132?OP=2. (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+23363 1,解得6=x .经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 23363 12=+x ,解得0=x .经检验,0=x 是原方程的根,但不符合题意. ③PH=GH 时,2=x . 综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式 例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. H M N G P O A B 图1 x y

最新七年级下册数学几何压轴题集锦

在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。 1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。 2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在, 求出点E 的坐标。 1、 2 a b m b a-+b+3=0=14.ABC A S 如图,已知(0,),B (0,),C (,)且(4), o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标 (2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。求证:平分; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,

MPQ ECA ∠∠的大小是否发生变化,若不变,求出其值。 2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE; (2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。 图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。 x B C B C

(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。 4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为? 5、已知∠A=∠C=90°. (1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关 B C A C F A

2020各地中考几何综合压轴题汇总

2020各地中考几何综合压轴题汇总 一.解答题(共50小题) 1.(2020?天水)性质探究 如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为. 理解运用 (1)若顶角为120°的等腰三角形的周长为4+2 ,则它的面积为; (2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展 顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示) 2.(2020?青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 特例感知: (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证: (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC 于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想. 联系拓展: (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

3.(2020?河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C .点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B. (1)当点P在BC上时,求点P与点A的最短距离; (2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长; (3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示); (4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK ,请直接写出点K被扫描到的总时长. 4.(2020?襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图1,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=°; (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当 时,过点D作AE的垂线,交AE于点P,交AC 于点K,若CK ,求DF的长. 5.(2020?牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. E B F C D A

所以22(22)3BF k k k = += 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD , ∴四边形 AGBD 是平行四边形.

初中数学压轴题---几何动点问题专题训练(含详细答案)

初中数学压轴题---几何动点问题专题训练 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米, ∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 15 32104 x x =+?,

中考数学压轴题专题:动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01 :动点问题 25. (2012 吉林长春10 分)如图,在Rt △KBC 中,/ACB=90 °,AC=8cm , BC=4cm , D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD —DE —EB运动,到点B停止.点P在AD上以5cm/s的速度运动,在折线DE—EB上以1cm/s的速度运动.当点P与点A 不重合时,过点P作 PQ丄AC于点Q,以PQ为边作正方形PQMN ,使点M落在线段AC 上.设点P的运动时间为t(s). (1 )当点P在线段DE上运动时,线段DP的长为___________ cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值. (3)当正方形PQMN 与△ABC重叠部分图形为五边形时,设五边形的面积为S (cm2), 求S与t的函数关系式. (4)连结CD?当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M 连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1) t —2。 (2)当点N落在AB边上时,有两种情况:

①如图(2) a ,当点N 与点D 重合时,此时点P 在DE 上,DP=2=EC , 即 t — 2=2 , t=4。 ②如图(2) b ,此时点P 位于线段EB 上. ???DE=1 2 AC=4 ,???点P 在DE 段的运动时间为 4s , ???PE=t -6 ,「.PB=BE-PE=8-t , PC=PE+CE=t-4 。 ???PN //AC , ??? △NP s/BAC 。???PN : AC = PB : BC=2 , /-PN=2PB=16-2t 。 由PN=PC ,得 20 16-2t=t-4 ,解得 t= 。 3 综上所述,当点 20 N 洛在AB 边上时,t= 4 或t= 3 (3)当正方形PQMN 与/ABC 重叠部分图形为五边形时,有两种情况: DP=t-2 , PQ=2 , .-.CQ=PE=DE-DP=4- (t-2 ) =6-t , AQ=AC-CQ=2+t AM=AQ-MQ=t VMN //BC ,./\FM S /ABC °.FM : BC = AM : AC=1 : 2,即 FM : AM=BC : AC=1 : 2。 ①当2 v t v 4时,如图(3) a 所示。

中考圆有关的动点几何压轴题

北辰教育学科老师辅导讲义

(3)联结P B ,当点P 是AB 的中点时,求△ABP 的面积与△ABD 的面积比 ABD ABP S S ??的值. 定圆结合直角三角形,考察三 角形相似,线段与三角形周长 的函数关系 2(2010上海)如图, 在Rt △ABC 中,∠ACB=90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连接DE 并延长,与线段BC 的延长线交于点P . (1)当∠B=30°时,连接AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若tan ∠BPD=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式. 定圆结合直角三角形,考察两线段函数关系,圆心距,存在性问题 3.如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y . (1)求y 关于x 的函数解析式,并写出它的定义域; (2)如果⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=OB 时,求⊙O 1的半径; (3)是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由. 定圆中结合平行线,弧中点,考察两线段函数关系,圆相切 4(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. 动圆结合直角梯形,考察圆相切和相似 5(14分)(2014金山区二模)如图,已知在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=4,AD=3,sin ∠DCB=,P 是边CD 上一点(点P 与点C 、D 不重合),以PC 为半径的⊙P 与边BC 相交于点C 和点Q . (1)如果BP ⊥CD ,求CP 的长; (2)如果PA=PB ,试判断以AB 为直径的⊙O 与⊙P 的位置关系; O P D C B A 第25题图 备用图 O C B A A B E F C D O (第25题图1) A B E F C D O

中考数学压轴题(动点)

中考数学压轴题总结(动点) (一) 因动点产生的相似三角形问题 例1,已知抛物线的方程C 1:1(2)()y x x m m =-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧. (1)若抛物线C 1过点M (2, 2),数m 的值; (2)在(1)的条件下,求△BCE 的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由. 图1 思路点拨 1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小. 2.第(4)题的解题策略是:先分两种情况画直线BF ,作∠CBF =∠EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程. 满分解答 (1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-?-.解得m =4. (2)当m =4时,2111(2)(4)2442 y x x x x =-+-=-++.所以C (4, 0),E (0, 2). 所以S △BCE =1162622 BC OE ?=??=. (3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么 HP EO CP CO =. 因此234HP =.解得32 HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BC CB BF =,即2BC CE BF =?时,△BCE ∽△FBC .

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案 一、解答题(共30小题) 1.观察猜想 (1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=; 探究证明 (2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程; 拓展延伸 (3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论 2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC (1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=; (2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由 (3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长

3.(1)问题发现 如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE 填空: ①的值为;②∠DBE的度数为. (2)类比探究 如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由; (3)拓展延伸 如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案. 4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以 点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系. (2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.

七年级下册数学几何压轴题集锦

在矩形ABCD中,点E为BC边上的一动点,沿AE翻折,△ABE与△AFE重合,射线AF与直线CD交于点G。 1、当BE:EC=3:1时,连结EG,若AB=6,BC=12,求锐角AEG的正弦值。 2、以B为原点,直线BC和直线AB分别为X轴、Y轴建立平面直角坐标系,AB=5,BC=8,当点E从原点出发沿X正半轴运动时,是否存在某一时刻使△AEG成等腰三角形,若存在,求出点E的坐标。 ~ 1、2 a b m b a-+b+3=0=14. ABC A S 如图,已知(0,),B(0,),C(,)且(4), o y= DC FD ADO ⊥∠∠ ∠ (1)求C点坐标 (2)作DE,交轴于E点,EF为AED的平分线,且DFE90。 求证:平分; \ (3)E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,

且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中, MPQ ECA ∠∠的大小是否发生变化,若不变,求出其值。 2、如图1, AB B A B C B C

C F A (1)如 图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系说明你的理由。 (2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系说明你的理由。 (3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系说明你的理由。 % 6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。 A E (2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系为什么 B B

相关主题
文本预览
相关文档 最新文档