当前位置:文档之家› 最优化数据挖掘理论与方法研究

最优化数据挖掘理论与方法研究

最优化数据挖掘理论与方法研究
最优化数据挖掘理论与方法研究

教育部推荐2014年度国家科学技术奖公示内容

项目名称: 最优化数据挖掘理论与方法研究

项目简介:

本项目以海量复杂数据为研究对象,把最优化的基本原理与数据挖掘相结合,将数据挖掘算法视为从众多的备选解中寻求“最优解”作为数据分类标准的问题,把数据挖掘启发式算法上升为系统式算法,在国际上率先提出最优化数据挖掘研究的新方向。

进一步以复杂数据智能分析和决策支持为研究对象,围绕数据、数据处理过程以及处理数据所涉及的知识体系的复杂性,围绕如何对挖掘产生的知识结合非结构化的主观知识(如情境、专家经验、用户偏好等)进行二次处理以便更好地支持决策,提出了多模型融合的基于多目标最优化的数据挖掘新技术、新方法。

项目取得的主要创新性成果包括:(1)在国际上率先提出了基于多目标最优化的数据挖掘理论框架和方法体系;(2)创立了数据挖掘规范化的研究框架,引领国内外学者进一步拓展最优化数据挖掘研究领域;(3)面向金融、生物医学等多领域的实际需求,开展了最优化数据挖掘研究领域的应用研究,其中“全国个人征信系统”对于我国经济建设和社会发展具有重要影响。

以上研究成果赢得了国内外学术界的高度关注和认同,8 篇代表性论著SCI 他引次数287 次,其中代表性论著1 的单篇SCI 他引次数81 次;20 篇核心论著SCI 他引次数463 次;6 篇论文被美国Web of Science 的基本科学指标ESI 列为领域学科十年来全球前百分之一的高引用论文。2012年,在国际著名杂志MIS Quarterly(Vol.36,N0.4),第二申报人被评为BI&A(商务智能与分析)领域排名第三的学者。

项目所发表论文被美国工程院院士等国际一流学者所引用,如最优化方面的国际权威、美国工程院院士Fred Glover认为:在基于多目标优化算法的基础上,提出了一个稳健的数据挖掘架构…, 在数据挖掘和数学规划交叉领域做出重要贡献。美国工程院院士、著名服务管理学者 Daniel Berg认为:这表明他们的团

队已经和国际学术团体结合在一起,并确立了中国在国际最优化和数据挖掘领域的领先地位。

本项目曾获得2012年度高等学校科学研究优秀成果奖(自然科学类)一等奖。

主要完成人及学术贡献、代表性论文专著目录:

彭怡,电子科技大学

彭怡投入该项目研究的工作量占本人工作量的80%。彭怡在国际率先提出了基于多目标最优化的数据挖掘理论框架和方法体系方面做出了重要贡献,贡献度20%:将最优化与数据挖掘相结合,参与共同提出了MCLP、MCQP等一系列效率高、实用性强、具有原创性的最优化数据挖掘模型;在创立数据挖掘规范化的研究框架,引领国内外学者进一步拓展最优化数据挖掘研究领域方面做出了主要贡献,贡献度40%:建立了最优化(多目标规划)数据挖掘的规范化框架的工作;针对决策方法对备选方案评价不一致这一多目标决策领域的难题,把领域专家的知识和经验融入决策过程中,创建了新的融合理论和方法。彭怡的主要贡献参见代表性论文[1、4、5、6]。

石勇,中国科学院大学

石勇投入该项目研究的工作量占本人工作量的80%。石勇在国际率先提出了基于多目标最优化的数据挖掘理论框架和方法体系方面做出了开创性贡献,贡献度40%:首先提出了将多目标最优化与数据挖掘相结合的创新思想;在创立数据挖掘规范化的研究框架,引领国内外学者进一步拓展最优化数据挖掘研究领域方面做出了主要贡献,贡献度30%:创立了数据复杂性机理及挖掘与决策支持的基础理论与方法;在通过实证研究为最优化数据挖掘相关应用奠定了重要基础方面做出了主要贡献,贡献度35%:发起并主持了相关实证研究工作。

石勇的主要贡献参见代表性论文[1、4、5、6]。

寇纲,西南财经大学

寇纲投入该项目研究的工作量占本人工作量的80%。寇纲在国际率先提出了基于多目标最优化的数据挖掘理论框架和方法体系方面做出了重要贡献,贡献

度20%:将最优化与数据挖掘相结合,参与共同提出了MCLP、MCQP等一系列效率高、实用性强、具有原创性的最优化数据挖掘模型;在创立数据挖掘规范化的研究框架,引领国内外学者进一步拓展最优化数据挖掘研究领域方面做出了重要贡献,贡献度30%:参与了最优化(多目标规划)数据挖掘的规范化框架的工作;针对决策方法对备选方案评价不一致这一多目标决策领域的难题,把领域专家的知识和经验融入决策过程中,创建了新的融合理论和方法;在通过实证研究为最优化数据挖掘相关应用奠定了重要基础方面做出了重要贡献,贡献度20%:参与了实证研究工作。寇纲的主要贡献参见代表性论文[1、4、5、6]。 李建平,中国科学院科技政策与管理科学研究所

李建平投入该项目研究的工作量占本人工作量的80%。李建平在国际率先提出了基于多目标最优化的数据挖掘理论框架和方法体系方面做出了重要贡献,贡献度10%:提出了多种最优化数据挖掘模型,在提高支持向量机的特征选择和规则提取方面取得重要成果;在通过实证研究为最优化数据挖掘相关应用奠定了重要基础方面做出了重要贡献,贡献度25%:在生物信息学的特征分类、金融风险和能源风险的度量等问题上开展应用研究工作。李建平的主要贡献参见代表性论文[3]。

余乐安,北京化工大学

余乐安投入该项目研究的工作量占本人工作量的70%。 余乐安在通过实证研究为最优化数据挖掘相关应用奠定了重要基础方面做出了重要贡献,贡献度20%:在利用最优化数据挖掘方法对金融市场预测与金融风险度量等问题上开展应用研究工作。余乐安的主要贡献参见代表性论文[2、7、8]。

代表性论文目录

1)A Descriptive Framework for the Field of Data Mining and Knowledge

Discovery,International Journal of Information Technology & Decision Making, 彭怡, 寇纲, 石勇,Chen, Z. , 2008年7卷 4期639-682页, SCI他引81次。

2)Forecasting crude oil price with an EMD-based neural network

ensemble learning paradigm, ENERGY ECONOMICS ,余乐安, Wang, SY, Lai, KK, 2008年30卷 5期2623-2635页,SCI他引33次。

3)A multiple kernel support vector machine scheme for feature

selection and rule extraction from gene expression data of cancer tissue, Artificial Intelligence in Medicine, Chen ZY,李建平,Wei LW, 2007年41卷 2期161-175页, SCI他引24次。

4)A Multi-criteria Convex Quadratic Programming model for Credit

Data Analysis, Decision Support Systems,彭怡, 寇纲, 石勇, Z. Chen, 2008年44卷 4期1016, SCI他引19次。

5)FAMCDM: A Fusion Approach of MCDM Methods to Rank Multiclass

Classification Algorithms, OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 彭怡, 寇纲, Wang,GX, 石勇, 2011年39卷6期677-689, SCI他引12次。

6)Ensemble of software defect predictors: an AHP-based evaluation

method, International Journal of Information Technology &Decision Making, 彭怡, 寇纲, Wang, GX, Wu, WX, 石勇, 2011年10卷1期187-206页, SCI他引31次。

7)A Novel Nonlinear Ensemble Forecasting Model Incorporating GLAR

and ANN for Foreign Exchange Rates,Computers & Operations Research, 余乐安, Wang, SY, Lai, KK, 2005年32卷10期2523-2541页, SCI他引52次。

8)Credit Risk Assessment with a Multistage Neural Network Ensemble

Learning Approach, Expert Systems with Applications ,余乐安, Wang, SY, Lai, KK,2008年34卷2期, 1434-1444页, SCI他引35次。

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

数据挖掘原理与实践蒋盛益版期末复习

第一章 数据挖掘定义 技术层面:数据挖掘就是从大量数据中,提取潜在有用的信息和知识的过程。 商业层面:数据挖掘就是一种商业信息处理技术,其主要特点是对大量业务数据进行抽取、转换、分析和建模处理,从中提取辅助商业决策的关键性数据。 数据挖掘任务 预测任务 根据其它属性的值预测特定属性的值,如分类、回归、离群点检测。 描述任务 寻找概括数据中潜在联系的模式,如聚类分析、关联分析、演化分析、序列模式挖掘。 (1) 分类(Classification)分析 分类分析,通过分析示例数据库中的数据为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用此分类规则对其它数据库中的记录进行分类。 分类分析广泛应用于用户行为分析(受众分析)、风险分析、生物科学等。 (2) 聚类(Clustering)分析 “物以类聚,人以群分”。聚类分析技术试图找出数据集中的共性和差异,并将具有共性的对象聚合在相应的类中。聚类可以帮助决定哪些组合更有意义,广泛应用于客户细分、定向营销、信息检索等等。 (3) 回归(Regression )分析 回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种分析方法。其可应用于风险分析、作文自动评分等领域。 (4) 关联(Association)分析 关联分析,发现特征之间的相互依赖关系,通常是从给定的数据集中发现频繁出现的模式知识(又称为关联规则)。关联分析广泛用于市场营销、事务分析等领域。 聚类与分类的主要区别 聚类与分类是容易混淆的两个概念,聚类是一种无指导的观察式学习,没有预先定义的类。而分类问题是有指导的示例式学习,预先定义的类。 数据挖掘过程 数据挖掘和知识发现紧密相连。知识发现是从数据中发现有用知识的整个过程 ?知识发现的主要步骤: ?数据清洗。其作用是清除数据噪声和与挖掘主题明显无关的数据。 ?数据集成。其作用是将来自多数据源中的相关数据组合到一起。 ?数据转换。其作用是将数据转换为易于进行数据挖掘的数据存储形式。 ?数据挖掘。其作用是利用智能方法挖掘数据模式或规律知识。 ?模式评估。其作用是根据一定评估标准从挖掘结果筛选出有意义的相关知识。 ?知识表示。其作用是利用可视化和知识表达技术,向用户展示所挖掘的相关知识

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

数据挖掘原理与实践-蒋盛益-答案

习题参考答案 第1 章绪论 1.1 数据挖掘处理的对象有哪些?请从实际生活中举出至少三种。 答:数据挖掘处理的对象是某一专业领域中积累的数据,对象既可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。数据形式和结构也各不相同, 可以是传统的关系数据库,可以是面向对象的高级数据库系统,也可以是面向特殊应用的 数据库,如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是Web 数据 信息。 实际生活的例子: ①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。 ②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。 ③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。 ④市场业中应用数据挖掘技术进行市场定位、消费者分析、辅助制定市场营销策略等。 1.2 给出一个例子,说明数据挖掘对商务的成功是至关重要的。该商务需要什么样的数据挖掘功能?它们能够由数据查询处理或简单的统计分析来实现吗? 答:例如,数据挖掘在电子商务中的客户关系管理起到了非常重要的作用。随着各个电子商务网站的建立,企业纷纷地从“产品导向”转向“客户导向”,如何在保持现有的客户 同时吸引更多的客户、如何在客户群中发现潜在价值,一直都是电子商务企业重要任务。但是,传统的数据分析处理,如数据查询处理或简单的统计分析,只能在数据库中进行 一些简单的数据查询和更新以及一些简单的数据计算操作,却无法从现有的大量数据中 挖掘潜在的价值。而数据挖掘技术却能使用如聚类、关联分析、决策树和神经网络等多 种方法,对数据库中庞大的数据进行挖掘分析,然后可以进行客户细分而提供个性化服务、可以利用挖掘到的历史流失客户的特征来防止客户流失、可以进行产品捆绑推荐等,从而使电子商务更好地进行客户关系管理,提高客户的忠诚度和满意度。 1.3 假定你是Big-University 的软件工程师,任务是设计一个数据挖掘系统,分析学校课程数据库。该数据库包括如下信息:每个学生的姓名、地址和状态(例如,本科生或研究生)、所修课程,以及他们的GPA。描述你要选取的结构,该结构的每个成分的作用是什么?答:任务目的是分析课程数据库,那么首先需要有包含信息的关系型数据库系统,以便查找、提取每个属性的值;在取得数据后,需要有特征选择模块,通过特征选择,找出要分析 的属性;接下来需要一个数据挖掘算法,或者数据挖掘软件,它应该包含像分类、聚类、关联分析这样的分析模块,对选择出来的特征值进行分析处理;在得到结果后,可以用 可视化软件进行显示。 1.4 假定你作为一个数据挖掘顾问,受雇于一家因特网搜索引擎公司。通过特定的例子说明,数据挖掘可以为公司提供哪些帮助,如何使用聚类、分类、关联规则挖掘和离群点检测 等技术为企业服务。 答: (1) 使用聚类发现互联网中的不同群体,用于网络社区发现; 第2 页共27 页 (2) 使用分类对客户进行等级划分,从而实施不同的服务; (3) 使用关联规则发现大型数据集中间存在的关系,用于推荐搜索。如大部分搜索了“广外”的人都会继续搜索“信息学院”,那么在搜索“广外”后会提示是否进进一步搜 索“信息学院”。

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.doczj.com/doc/d412383712.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.doczj.com/doc/d412383712.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.doczj.com/doc/d412383712.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.doczj.com/doc/d412383712.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.doczj.com/doc/d412383712.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.doczj.com/doc/d412383712.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

第九章 最优化方法

第九章 最优化方法 本章主要介绍线性规划、0-1规划、非线性规划等问题的MATLAB 求解。 9.1 线性规划(Linear Programming ,简写为LP )问题 线性规划问题就是求多变量线性函数在线性约束条件下的最优值。满足约束条件的解称为可行解,所有可行解构成的集合称为可行域,满足目标式的可行解称为最优解。 MATLAB 解决的线性规划问题的标准形式为: min z f x ¢ =? .. A x b s t Aeq x beq lb x ub ì祝??? ?í??#??? 其中,,,,,f x b beq lb ub 为列向量,,A Aeq 为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。 在MATLAB 中求解线性规划问题函数为linprog ,其使用格式为: [x, fval, exitflag, output, lambda] = linprog(f, A, b, Aeq, beq, lb, ub) 输入部分:其中各符号对应线性规划问题标准形式中的向量和矩阵,如果约束条件中有缺少,则其相应位置用空矩阵[]代替。 输出部分:其中x 为最优解,用列向量表示;fval 为最优值;exitflag 为退出标志,若exitflag=1表示函数有最优解,若exitflag=0表示超过设定的迭代最大次数,若exitflag=-2,表示约束区域不可行,若exitflag=-3,表示问题无解,若exitflag=-4,表示执行迭代算法时遇到NaN ,若exitflag=-5,表示原问题和对偶问题均不可行,若exitflag=-7,表示搜索方向太小,不能继续前进;output 表明算法和迭代情况;lambda 表示存储情况。 例1 用linprog 函数求下面的线性规划问题

数据挖掘分类算法介绍

数据挖掘分类算法介绍 ----------------------------------------------------------------------------------------------------------------------------- 分类是用于识别什么样的事务属于哪一类的方法,可用于分类的算法有决策树、bayes分类、神经网络、支持向量机等等。 决策树 例1 一个自行车厂商想要通过广告宣传来吸引顾客。他们从各地的超市获得超市会员的信息,计划将广告册和礼品投递给这些会员。 但是投递广告册是需要成本的,不可能投递给所有的超市会员。而这些会员中有的人会响应广告宣传,有的人就算得到广告册不会购买。 所以最好是将广告投递给那些对广告册感兴趣从而购买自行车的会员。分类模型的作用就是识别出什么样的会员可能购买自行车。 自行车厂商首先从所有会员中抽取了1000个会员,向这些会员投递广告册,然后记录这些收到广告册的会员是否购买了自行车。 数据如下:

在分类模型中,每个会员作为一个事例,居民的婚姻状况、性别、年龄等特征作为输入列,所需预测的分类是客户是否购买了自行车。 使用1000个会员事例训练模型后得到的决策树分类如下:

※图中矩形表示一个拆分节点,矩形中文字是拆分条件。 ※矩形颜色深浅代表此节点包含事例的数量,颜色越深包含的事例越多,如全部节点包含所有的1000个事例,颜色最深。经过第一次基于年龄的拆分后,年龄大于67岁的包含36个事例,年龄小于32岁的133个事例,年龄在39和67岁之间的602个事例,年龄32和39岁之间的229个事例。所以第一次拆分后,年龄在39和67岁的节点颜色最深,年龄大于67岁的节点颜色最浅。 ※节点中的条包含两种颜色,红色和蓝色,分别表示此节点中的事例购买和不购买自行车的比例。如节点“年龄>=67”节点中,包含36个事例,其中28个没有购买自行车,8个购买了自行车,所以蓝色的条比红色的要长。表示年龄大于67的会员有74.62%的概率不购买自行车,有23.01%的概率购买自行车。 在图中,可以找出几个有用的节点: 1. 年龄小于32岁,居住在太平洋地区的会员有7 2.75%的概率购买自行车; 2. 年龄在32和39岁之间的会员有68.42%的概率购买自行车; 3. 年龄在39和67岁之间,上班距离不大于10公里,只有1辆汽车的会员有66.08%的概率购买自行车;

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

相关主题
文本预览
相关文档 最新文档