当前位置:文档之家› 泵与风机学习报告doc

泵与风机学习报告doc

泵与风机学习报告doc
泵与风机学习报告doc

泵与风机学习报告

篇一:泵与风机课程总结

《泵与风机》课程总结

引言:

XX年下半学年,我们热能专业学习了《泵与风机》这门专业课程,通过一学期的学

习与认识,我初步掌握了泵与风机的专业常识及操作方面的知识。

泵与风机是一种利用外加能量输送流体的机械。通常将输送液体的机械称为泵,输送气体的

机械称为风机。按其作用,泵与风机用于输送液体和气体,属于流体机械;按其工作性质,

泵与风机是将原动机的机械能转化为流体的动能与压能,因此又属于能量转化机械。

泵与风机在生活中应用十分广泛,在农业中的排涝、灌溉;石油工业中的额输油和注水;化

学工业中的高温、腐蚀性流体的排送;冶金工业中的鼓风机流体的输送等等都离不开泵与风

机。

从我们专业角度来看,泵与风机在火力发电厂中的作用也不容小视。在火力发电厂中,

泵与风机是最重要的辅助设备,担负着输送各种流体,

以实现电力生产热力循环的任务。如:

排粉机或一次风机、送风机、引风机、给水泵、循环水泵、主油泵等等一些辅助设备。总之,

泵与风机在火电厂中应用极为广泛,起着极其重要的作用。其运行正常与否,直接影响火力

发电厂的安全及经济运行。

随着科学的发展,泵与风机正向着大容量、高参数、高转速、高效率、高自动化、高性

能和低噪音的方向发展。

课程学习:

第一章泵与风机的概述

第二节泵与风机的性能参数

泵与风机的性能参数有流量、扬程或全压、功率、效率、转速,水泵还有允许吸上真空

高度或允许气蚀余量等。

第三节泵与风机的分类及工作原理泵与风机按工作原理可分为三大类:

(一)叶片式

(二)容积式

(三)其他形式(喷水泵、水击泵)

按产生的压头分:

(一)低压泵、高压泵

(二)通风机、压气机(离心通风机、轴流通风机)

按产生的作用分:

(一)给水泵、凝结水泵、循环水泵、主油泵等等各种泵与风机的工作原理及特点:

1、离心式泵与风机 1、 2 、 3 、

2、轴流式泵与风机

3、混流式泵与风机

4、往复式泵与风机

5、齿轮泵

6、螺杆泵

7、罗茨泵

8、喷射泵

4、 5、

6、7 、

8、9 、

10、

第二章叶片式泵与风机的构造

第一节离心泵常用结构

1、单级单吸悬臂式离心泵

及其主要部件

2、多级单吸分段式离心泵

3、单级双吸中开式离心泵

离心泵的主要部件:

泵由转体、静体以及部分转体三类部件组成。转体主要包括叶轮、轴、轴套和联轴器;静体主要包括吸入式室、压出式、泵壳和泵座;部分转体部分主要包括密封装置、轴向平衡装置和轴承。

1、叶轮

2、吸入室

3、压出室

4、密封装置

第二节径向推力、轴向推力及其平衡方法

轴线向推力F1的计算公式:

轴向推力的平衡:

1

、单级泵轴向推力的平衡(平衡孔、平衡管、双吸叶轮、背叶片平衡)

2、多级泵轴向推力的平衡(叶轮堆对称排列、平衡盘、平衡鼓、双平衡鼓平衡)

第三节离心式风机的构造离心式风机结构示意图:离心式风机的主题部件:

1、叶轮

2、轴

3、进气箱

4、导流器

5、集流器

篇二:泵与风机测试技术读书报告

《泵与风机测试技术》

读书报告

水泵实验过程中常见故障及原因分析

学院:机械学院

班级:热能0903班

姓名:汪琼

学号:310904030321

XX年6月5日

水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。衡量水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。

为了满足国家相关生产规定要求以及企业提升自身研发能力和控制产品质量需要,投资建设泵试验台企业呈快速上升趋势。水泵出厂前应当进行试验,以保证其性能指标达到国家相关要求。

对于一些大企业,已经认识到检测系统的重要性,不论是对产品的质量监控还是品牌效应。企业有足够的实力建立更科学严谨的测试系统,对水泵的检测指标也更全面。企业会制定高于国家标准的企业标准,严格控制合格率。另外,由于国内许多大企业面向国际市场,而国外客户把水泵企业是否有有水泵测试台做为其供应商的首要条件。这对企业建立高标准测试系统起到较大的督促作用。由于潜油泵要下降几千米安装,其吊装成本较高,一旦泵在井下发生故障,由于维修停产会给采油企业造成的巨大的损失,因此,保证潜油泵的质量成为采油企业重中之重,完全有必要建立一套自己的测试系统。

水泵测试系统主要用于实验室,本身性质决定了其销售不是大批量的,通常每个企业购置一套系统即可,即便是独资的厂家,每条生产线配一套试验台,有四五套也就足够了。做好水泵的性能测试,提高水泵运行性能,势在必行!但是在泵在性能测试过程当中会遇到一系列的问题。

展。

一、泵的性能试验过程中常见故障及其原因分析

(一)开启以后不出水,其主要原因分析

1)引水不足。因为离心泵是不能自行抽气的,引水时必须使叶轮一半以上

有水(卧式结构)。也就是说水应该没过叶轮中心线以

上方可开车。对于立式结构的泵,首级叶轮应全部浸没在水中,否则泵不能正常出水。

2)根本引不上水。由于引水方式不对(引水的部位不对,对双暖中开泵

来说应在泵盖上顶引水,多级泵和油泵最好是出口某处引水),或者是管道漏气所致,需重新考虑引水方式或重新安装管道(特别是吸入侧管路系统),解决密封性的问题。

3)虽然引上水,还是不能正常工作。应检查被试验泵的安装高度是否符合

该泵汽蚀余量的要求,因为泵的运行处于严重汽蚀状态时,也是不能正常工作的;或是泵和吐出管路中存气严重,没有把存气充分排尽。

4)检查吸人侧阀门是否启开(即是否失灵),或者吸人管路是否有堵塞,若有此问题也会不上水而影响正常工作。

5)泵本身装配质量。如没有拧紧螺栓而造成揖气,或密封圈、密封垫损坏,或根本投装,有时甚至根本投有装叶轮,开车启后当熟不出水。

(二)开启后水量不足的主要原因分析

1)驱动电动机的转向与泵的转向不符(即泵反转)

2)吸入管道系统(包括管道,接头,阀门密封填料,吸入导压管,负压(真空)仪表等)存在微量漏气现象,也会使流量和扬程减少。

3)吸入管道有一定程度的堵塞现象,也会使流量和扬程减少;

4)有较严重汽蚀现象发生(即泵的几何安装高度过高,或吸入管路中的阻力损失过大)也会使流量和扬程不够。

力损失

5)泵本身问题,即叶轮装反,或叶轮流道严重堵塞,密封圈或密封垫微量漏气等

(三)试验时大流量开不上去的主要原因分析

1)大流量开不上去,但扬程也没有降下来,这说明性能试验只做了一半或多一点。这主要是吐出管路系统(特别是流量测量段)阻力过大,泵自身扬程已克服不了这些阻力,需要更换阻力损失较小的流量计,或在流量计前面(上游)串联上一台流量等于或稍大于被测试泵的辅助泵。

2)大流量开不上去,同时扬程值也明显下降,其主要原因分析:

①吸人管路局部遁流面积太小,或泵本身的过流能力太小,如Di、bi、P过小,排挤现象显著。

②大流量已发生汽蚀。

③泵设计时所选的水力模型本身水力性能不佳泵效率低。

◆泵效率低的因素主要有以下几个:

1、泵本身的效率是最根本的影响。同样工作条件的泵,

效率可能相差15%以上。

2、离心泵的运行工况低于泵的额定工况,效率低,耗能大。

3、电机效率在运行中基本上保持不变,因此选择一台高效率的电机至关重要。 4机械效率的影响主要与设计及制造质量有关。泵选定后,后期管理影响较小。

5、水力损失包括水力摩擦和局部阻力损失。泵运行一定时间后,不可避免地造成叶轮及导叶等部件表面磨损,水力损失增大,水力效率降低。

6、泵的容积损失又称泄露损失,包括叶轮密封环、级间、轴向力平衡机构三种泄漏损失。容积效率的高低不仅与设计制造有关,更与后期管理有关。泵连续运行一定时间后,由于各部件之间摩擦,间隙增大,容积效率降低。

7、由于过滤缸堵塞、管线进气等原因造成离心泵抽空及空转。

8、泵启动前,员工不注重离心泵启动前的准备工作,暖泵、盘泵、灌注泵等基本操作规程执行不彻底,经常造成泵的气蚀现象,引起泵噪声大、振动大、泵效低。

9、安装时,泵、转矩转速传感器、驱动电动机三轴不同心。

(四)实验结果性能偏小的主要原因分析

1)、泵吸入系统或者泵本身的吸入侧有极微量的漏气现

象存在。

2)、测量误差超标(如实验方法不合理,测量仪表选用不合理,或数据显示有误,实验人员没有按照有关操作规程操作)。

3)、泵本身的问题:叶轮的过流面积过小;叶轮外径不够;叶轮的进出口叶片宽度、安放角、叶轮叶片的形状和扭曲情况、叶片包角等不符合设计图纸的要求;装配时叶轮出口中心与螺壳或导叶进口中心不对中。

4)、泵内部泄露严重,容积损失大大增加。

(五)试验结果性能偏大的主要原因分析

1)测量误差原因(即流量或测压仪表测量误差超标)。

①流量或压力测量方法有问题,应该用其他方法或其他仪表重测。

②测量仪表选择不合理,或测量仪表的精度已超差。

③测量环境不符合测试要求,如振动、强电磁场干扰、仪表没有接地。

④试验人员没有按有关程序操作。

2)泵的叶轮外径过大,流道过宽(叶轮的叶片进出口宽度过宽)。

二、汽蚀试验中常见的故障及其原因分析

1)调不到预定需做汽蚀试验的工况点,其原因是吸人管路系统中有漏气的地方。

2)调几点人口表压力值后,扬程值明显下降,其主要原因有:

①有喘振现象,这时需要放慢调节速度,即当调节人口表压力Pi值时,发现出口表压力值下降明显,但以后尚在缓慢回升中,需耐心等待,直至完全恢复为止。

②泵过流面积过大,使容腔内存气严重,一时无法将气带出去。

③吸人管路系统有漏气的地方。

④泵本身的汽蚀性能差。

3)试验结果汽蚀余量达不到要求:

①吸人管路系统或泵本身(靠近吸人侧)有漏气的地方。

②测量仪表误差过大或失灵。

③Pi的调节速度过快,或Pi改变幅度值过大。

④泵本身汽蚀性能不好,可检查以下几个方面:

a.检查D]和Do是否符合图纸(入口过流面积)的要求。

b.检查叶片进口安放角是否符合图样要求口。

c.检查叶片进口边的厚度是否符图。

d.检查叶轮叶片进口边是否齐口,轮廓处是否有凹凸不平的地方。

三、运行过程中常见的主要故障及其原因分析

(一)启动故障

泵不能启动或启动负荷大原因及处理方法如下:

1)电机不能正常启动

如果是电动机作为原动装置,首先用手拨动电机散热风扇,看转动是否灵活:如果灵活,可能为启动电容失效或容量减小,当更换相同值的启动电容;如果转不动,说明转子被卡死,当清洗铁锈后加润滑油脂,或清除卡转子的异物。

2)泵卡住。处理方法是用手盘动联轴器检查,必要时解体检查,消除动静部分故障。

篇三:泵与风机论文

浅析电厂泵与风机的节能

摘要经过对本课程的学习,我从中了解到了泵与风机在国民生产中的重要性。因此,我围绕节能这一命题在电厂泵与风机的方面进行论述。随着国家节能减排政策的推行,企业纷纷响应号召,制定了一系列以节水、节能、资源综合利用和环境保护为重点的技术改造措施。此类项目的可行性研究报告工作重点是要论证节能减排的技术上和经济上的可行性,而经济上论证项目的可行性又成为项目可行的一个关键。

关键词泵与风机节能经济效率合理性

前言

能源工业作为国民经济的基础,对于社会、经济的发展和人民生活水平的提高都极为重要。在高速增长的经济环境下,中国能源工业面临经济增长与环境保护的双重压力。而

且,受资金、技术、能源价格等因素的影响,中国能源利用效率比发达国家低很多,只及发达国家的50%左右,90%以上的能源在开采、加工转换、储运和终端利用过程中损失和浪费。由此可见,对能源的有效利用在我国已经非常迫切。

火电厂是最主要的能源消耗大户,在我国的二次能源结构中,约占74%。而在火力发电厂中,泵与风机是最主要的耗电设备,加上这些设备存在着“大马拉小车”的现象,同时由于这些设备长期连续运行和常常处于低负荷及变负荷运行状态,运行工况点偏离高效点,运行效率降低,大量的能源在终端利用中被白白地浪费掉。因此,对电厂泵与风机进行节能研究有着突出重要的意义。

一、我国发电厂泵与风机运行状况及节能潜力分析

火力发电厂中运行的泵与风机种类繁多,数量多,总装机容量大,耗电量大,约占全国火电发电量的6%。发电厂辅机的经济运行,尤其是大功率的泵与风机的经济运行,直接关系到厂用电率的高低,而厂用电率的高低是影响供电煤耗和发电成本的主要因素之一。

目前我国火电厂中除少量采用汽动给水泵,液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动。这种定速驱动的泵,由于采用出口阀,风机则采用入口风门调节流量,都存在严重的节流损耗。尤其在机组变负荷运行时,由于水泵和风机的运行偏离高效点,使运行效率降低。

有资料显示:我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。由于目前我国约2/3的泵、风机类机械在运行中需要调节流量,用阀门式挡板调节,能源损失和浪费很大,已经到了非改不可的地步了。

造成这种现象的原因是多方面的,主要是科研开发投入不足,科研与生产缺乏有机的结合;生产工艺落后,型线误差大,过流表面粗糙。目前我国大多采用木模整体铸造。由于中、高比转速离心式泵与风机叶片扭曲,造型起模困难,造型误差较大。目前我国使用的许多大型泵与风机,其性能实测值与样本给定值误差较大,这也是主要原因之一。

我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况偏离最优运行区,运行效率低,能耗高。设计选型时加保险系数,裕量过大,也会造成运行工况偏离最优区。

二、火电厂泵与风机节能改造的方法

针对我国泵与风机使用及运行实际情况,下面从提高泵与风机本身效率及与管网匹配程度两方面对泵与风机节能进行研究。

1.减小泵与风机内部损失,提高泵与风机效率。泵与风机在把原动机的机械能转换成流体的机械能的过程中,要产生各种能量损失,这些损失按其性质可分为机械损失、容

积损失和流动损失三部分。由于泵与风机内部流体运动的复杂性,上述各种损失至今仍不能用理论方法计算出精确的结果,主要依靠试验方法测定,再由此总结出半经验半理论的计算公式。要提高泵与风机本身的效率,就要减少上述各种损失。

(1)泵与风机的机械效率主要取决于泵与风机叶轮的几何形状,亦即决定于比转速值,所以应注意以下几点:1)在选择或设计扬程(全压)高的泵(风机)时,应该选择或设计转速较高而叶轮直径D2较小的这类泵(风机),避免选用或设计转速低而D2大的这类泵(风机)。

2)在选择或设计高扬程(全压)的低比转速泵(风机)时,可采用多级的泵(风机),或适当增大叶轮叶片的出口安装角,尽量避免采用大的D2来达到高扬程(全压)的目的。

3)降低叶轮盖板外表面和泵壳内表面的粗糙度,可以减小△Pm3,从而使泵与风机的效率提高。

减小泵与风机的容积损失、提高容积效率主要从两方面着手:一是减小动、静间隙形成的泄漏流动的过流截面;二是设法增加泄漏流道的流动阻力。

(2)为减少泵与风机内部的流动损失,提高流动效率,在设计或改造泵与风机时,应注意以下几点:

1)合理确定过流部件各部位的流速值。

2)在流道内要尽量避免或减少出现脱流。

3)要合理选择各过流部件的进、出口角度,以减少流体的冲击损失。

4)过流通道变化要尽可能地平缓;在流道内要避免有尖角、突然转弯和扩大。

5)流道表面应尽量做到光滑和光洁,避免有粘砂、飞边、毛刺等铸造缺陷。

2.正确选定泵与风机的设计参数;对选型不当的泵与风机进行技术改造。一台泵与风机是否节电取决于很多因素,除自身的效率外,还与管网设计是否合理、阻力大小及与管网是否匹配良好等因素有关。所谓匹配指的是泵与风机设计的流量和扬程(风压)应与管网所需流量和扬程(风压)相符,也就是说泵(风机)所产生的扬程(全风压)应能克服管网阻力的前提下满足管网流量的需要。离心式泵与风机的流量通常是用调节门(风门或阀门)来调节的,调节门关得越小,节流损失越大,泵与风机使用效率越低。风机的高效率固然重要,但是如何提高泵与风机的运行效率更重要。而实现泵与风机和管网合理地匹配是节能降耗最有效的途径。

为了减轻或防止因泵与风机的额定参数大于实际运行参数而造成运行效率和可靠性降低,可以根据不同情况分别采用切割叶片及更换高效叶轮两种方法对泵与风机进行技术改造。我国现在使用的泵与风机有许多模型效率指标均不高,对这部分泵与风机,可以用高效泵与风机替换它,也可

以设计模型效率高的叶轮更换原叶轮,达到节能的目的。在我国已有科研部门和高校对这方面进行研究,并在实践中取得很好的效果。

3.电机换级和泵与风机降速。若泵与风机扬程或全压富裕量达50%~60%,则可将转速降低一档,以利节电。

4.泵与风机调速节能。由于目前电网还缺少专门带尖峰负荷的机组(例如坝库式水电机组,抽水蓄能机组,燃气轮机组等),所以一般电网的尖峰负荷和低谷负荷都要求火电机组来承担,火电机组不得不作调峰变负荷运行。在机组变负荷运行方式下,如果主要辅机采用高效可调速驱动系统取代常规的定速驱动系统,无疑可节约大量的节流损失,节电效果显著,潜力巨大。除此之外,由于可调速驱动系统都具有软起动功能,可使电厂辅机实现软起动,避免了由于电动机直接起动引起的电网冲击损失和机械冲击,从而可以防止与此有关的一系列事故的发生。

电站锅炉风机的风量与风压的富裕度以及机组的调峰运行导致风机的运行工况点与设计高效点相偏离,从而使风机的运行效率大幅度下降。一般情况下,采用风门调节的风机,在两者偏离10%时,效率下降8%左右;偏离20%时,效率下降20%左右;而偏离30%时,效率则下降30%以上。对于采用风门挡板调节风量的风机,这是一个固有的不可避免的问题。可见,锅炉送、引风机的用电量中,很大一部分

是因风机的型号与管网系统的参数不匹配及调节方式不当而被调节门消耗掉的。因此,改进离心风机的调节方式是提高风机效率,降低风机耗电量的最有效途径。辅机采用调速驱动后,机组的可控性提高了,响应速度加快,控制精度也提高了。从而使整个机组的控制性能大大改善,不但改善了机组的运行状况,还可以大大节约燃料,进一步节约能源。同时,采用变速调节以后,可以有效地减轻叶轮和轴承的磨损,延长设备使用寿命,降低噪声,大大改善起动性能。工艺条件的改善也能够产生巨大的经济效益。

泵与风机一样,除由于设计中层层加码,留有过大的富裕量,造成大马拉小车的现象之外,还由于为满足生产工艺上的要求,采用节流调节,造成更大的能源浪费现象。为了降低水泵的能耗,除了提高水泵本身的效率,降低管路系统阻力,合理配套并实现经济调度外,采用调速驱动是一种更加有效的途径。因为大多数水泵都需要根据主机负荷的变化调节流量,对调峰机组的水泵尤其如此。根据目前我国电网的负荷情况,大多数125MW机组已参与调峰,为扩大调峰能力甚至一些200MW机组也不得不参与调峰运行。所以为这类调峰机组配套的各种水泵最好采用调速驱动,以获得最佳节能效果。

对锅炉给水泵来说,节流损失的大小还与负荷和汽轮机的运行方式有关。在

同一种运行方式下负荷越小节流损失越大;在负荷相同时采用滑压运行方式的节流损失比采用定压运行方式还大。因此,对调峰和滑压运行机组,

采用调速给水泵的节电效果尤为显著。

以上对泵与风机节能改造的不同方法进行分析,其实远不止上述的几种方法,就调速节能而言,就可以通过很多种途径去实现(如采用液力偶合器、变频器、汽动给水泵、交流调速等),采用不同的调速装置,有不同的效果。在实际应用中应视具体情况具体分析,通过技术经济分析选用最优的改造方法,这样才能收到节能降耗的效果。

三、国内外发展趋势

目前,国内外发展趋势主要往以下几方面发展:

1.计算机技术的发展,使得三维紊流的数值模拟实用化,计算机优化设计更为有效,性能预估更准确,产品的更新换代加快,新的水力模型不断取代旧模型。

2.泵与风机模型试验技术不断提高,为新型泵与风机的研制提供了强有力的手段。性能测试精度接近水轮机模型试验水平,对效率测试的总误差可达0.3%。泵与风机内部流场的观测手段更加先进。泵与风机空化性能不断改善,大型水泵的运行安全性能普遍受到重视。在强调以人为本的今天,现场工作环境(设备的噪声和振动等)及检修工作量(设备寿命,尤其是叶轮的寿命)等指标正在成为设备选择的重

要指标。

3.对泵与风机性能要求更高,大型(1000KW以上)和年运行时间较长的中型泵与风机一般采用针对性设计和制造的方法,要求“量体裁衣”(即按现场实际运行扬程或风压和用户所需流量进行专门设计),较少套用定型产品,使得泵与现机性能与实际使用情况更好地吻合,从而取得最优的运行效果。

4.采用新的加工工艺,质量要求更高。型线的准确性及表面加工质量大大提高,产品的销售由价格主导转变为质量和性能主导。

结束语

现代科技迅猛发展,国际间技术交流日益频繁,技术及产品更新换代比较快,制造厂及科研单位应充分利用我国加入WTO这一历史机遇,加强国际间的交流合作,在充分利用、吸收、消化国外先进技术的同时,加大本国科研力量的

第二章泵与风机的复习要点及例题

第二章离心式泵与风机的基本理论 流体在通过泵与风机时,只在叶轮中得到能量,叶轮是实现机械能转换成流体能量的场所,是泵与风机最主要的工作部件。泵与风机的基本理论也称泵与风机的叶轮理论,它是研 究流体在叶轮中的运动规律、流体在叶轮中如何得到能量、流体得到能量的大小与性质以及主要影响因素。 速度分析法是研究离心式泵与风机叶轮中流体运动规律的主要方法,它的基本点是速度 三角形。泵与风机的基本方程式是反映流体在叶轮中得到的能量与叶轮进出口流体速度的关系,它是本章的核心。本章还讨论了泵扬程、风机全压的计算方法,分析了不同叶片型式的 特点。 一、重点、难点提示 1. 重点 (1)速度三角形 (2)基本方程式 (3)泵扬程的计算 (4 )风机全压的计算 (5)不同叶片型式的特点与应用 2. 难点 (1 )基本方程式计算 (2)泵与风机扬程和全压的计算 (3)不同叶片型式的特点分析 3. 考核目标 (1 )能简述离心式泵与风机的工作原理。 (2)理解离心式叶轮中流体的绝对运动是圆周运动和相对运动的合成,能正确表述这三种运动,以及相应速度(圆周速度、相对速度和绝对速度)的大小、方向与哪些因素有关, 能熟练画出叶轮中某一处(特别是叶片进、出口处)流体速度三角形,并能对其进行正确标示,能熟练、正确地计算速度三角形中的各个参数,在计算中知道泵与风机的理论流量与实际流量的关系、理解排挤系数的含义。 (3)知道推导叶轮基本方程式的假设条件,熟记基本方程式的两种表达形式,并能根据 题目的具体条件进行熟练计算,知道叶轮扬程(或全压)由静能头和动能头组成以及各组成 的计算式,能利用基本方程式进行简单分析,知道提高叶轮扬程(或全压)的主要方法以及 特点。 (4)大体知道叶轮进口预旋的产生原因,以及对叶轮工作的影响。 (5)知道有限叶片叶轮中与无限多叶片叶轮中流体相对运动的差别,以及由此引起的叶轮出口速度三角形的区别,知道滑移系数的含义。 (6)知道由于实际流体有粘性,使得泵与风机的实际扬程(或全压)比理论扬程(或全压)低。 (7)在记住第一章泵扬程和风机全压定义的基础上,能熟练写出实际运行时和选择泵与风机时,扬程(或全压)计算公式,并能正确计算。 (8)知道离心式叶轮有三种叶片型式,能熟练画出这三种叶片型式的进出口速度三角形,并知道这三种速度三角形的特点。

流体力学泵与风机期末试卷与答案

《流体力学泵与风机》期末考试试卷参考答案 一、判断题(本大题共 10 小题,每小题1 分,共 10 分) 1.没有粘性的流体是实际流体。 错 (1分) 2.在静止、同种、不连续流体中,水平面就是等压面。如果不同时满足这三个条件,水 平面就不是等压面。错 (1分) 3.水箱中的水经变径管流出,若水箱水位保持不变,当阀门开度一定时,水流是非恒定流动。 错 (1分) 4.紊流运动愈强烈,雷诺数愈大,层流边层就愈厚。错 (1分) 5.Q 1=Q 2是恒定流可压缩流体总流连续性方程。错 (1分) 6.水泵的扬程就是指它的提水高度。错 (1分) 7.流线是光滑的曲线,不能是折线,流线之间可以相交。错 (1分) 8.一变直径管段,A 断面直径是B 断面直径的2倍,则B 断面的流速是A 断面流速的4倍。 对 (1分) 9.弯管曲率半径Rc 与管径d 之比愈大,则弯管的局部损失系数愈大。错 (1分) 10.随流动雷诺数增大,管流壁面粘性底层的厚度也愈大。错 (1分) 二、填空题(本大题共 4小题,每小题 3 分,共 12 分) 11.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 (3分) 12.均匀流过流断面上压强分布服从于水静力学规律。 (3分) 13.正方形形断面管道(边长为a),其水力半径R 等于4a R =,当量直径de 等于a d e = ( 3分) 14.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为 3 211 111s s s s + +=。管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82 .097 .0=,流量比Q 孔口 /Q 管嘴 等于 82 .060 .0= 。 (3分) 三、简答题(本大题共 4小题,每小题 3分,共 15 分) 15.什么是牛顿流体?什么是非牛顿流体? 满足牛顿内摩擦定律的流体为牛顿流体,反之为非牛顿流体。 (3分) 16.流体静压强的特性是什么? 流体静压强的方向垂直于静压面,并且指向内法线,流体静压腔的大小与作用面的方位无关,只于该点的位置有关。 (3分) 17.什么可压缩流体?什么是不可压缩流体? 流体的压缩性和热胀性很小,密度可视为常数的液体为不可压缩流体,反之为可压缩流体。(3分) 18.什么是力学相似?

泵与风机试题库-精品

泵与风机试题库 (课程代码 2252) 第一部分 选择题 一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1. 泵与风机是将原动机的 的机械。( ) A .机械能转换成流体能量 B .热能转换成流体能量 C .机械能转换成流体内能 D .机械能转换成流体动能 2. 按工作原理,叶片式泵与风机一般为轴流式、混流式和( )。 A.滑片式 B.螺杆式 C.往复式 D.离心式 3. 某台泵的转速由3000r/min 上升到3500r/min ,其比转速( ) A .增加 B .降低 C .不变 D .有可能增加,也可能降低,不可能不变 4. 中、高比转速离心式泵与风机在推导车削定律时,对车削前后的参数关系作了如下假设( ) A .2 '22'22' 2D D b b ,b b == B .e 2,'e 2,2 '22'2,D D b b ββ==,出口速度三角形相似 C .,b b 2' 2=e 2,'e 2,ββ=,出口速度三角形相似 D .叶轮在车削前后仍保持几何相似 5. 低比转速离心式泵与风机在推导车削定律时,对车削前后的参数关系作了如下假设( ) A .2'22'22'2 D D b b ,b b == B .e 2,'e 2,2 ' 22'2,D D b b ββ==,出口速度三角形相似 C .,b b 2' 2=e 2,'e 2,ββ=,出口速度三角形相似 D .叶轮在车削前后仍保持几何相似 6. 下述哪一种蜗舌多用于高比转速、效率曲线较平坦、噪声较低的风机 ( ) A.平舌 B.短舌 C.深舌 D.尖舌 7. 某双吸风机,若进气密度ρ=1.2kg/m 3,计算该风机比转速的公式为( ) A.43 v y p q n n = B.43v y )p 2.1(2q n n =

泵与风机课程总结

《泵与风机》课程总结 引言: 2010年下半学年,我们热能专业学习了《泵与风机》这门专业课程,通过一学期的学习与认识,我初步掌握了泵与风机的专业常识及操作方面的知识。 泵与风机是一种利用外加能量输送流体的机械。通常将输送液体的机械称为泵,输送气体的机械称为风机。按其作用,泵与风机用于输送液体和气体,属于流体机械;按其工作性质,泵与风机是将原动机的机械能转化为流体的动能与压能,因此又属于能量转化机械。 泵与风机在生活中应用十分广泛,在农业中的排涝、灌溉;石油工业中的额输油和注水;化学工业中的高温、腐蚀性流体的排送;冶金工业中的鼓风机流体的输送等等都离不开泵与风机。 从我们专业角度来看,泵与风机在火力发电厂中的作用也不容小视。在火力发电厂中,泵与风机是最重要的辅助设备,担负着输送各种流体,以实现电力生产热力循环的任务。如:排粉机或一次风机、送风机、引风机、给水泵、循环水泵、主油泵等等一些辅助设备。总之,泵与风机在火电厂中应用极为广泛,起着极其重要的作用。其运行正常与否,直接影响火力发电厂的安全及经济运行。 随着科学的发展,泵与风机正向着大容量、高参数、高转速、高效率、高自动化、高性能和低噪音的方向发展。 课程学习: 第一章泵与风机的概述 第二节泵与风机的性能参数 泵与风机的性能参数有流量、扬程或全压、功率、效率、转速,水泵还有允许吸上真空高度或允许气蚀余量等。 第三节泵与风机的分类及工作原理 泵与风机按工作原理可分为三大类: (一)叶片式 (二)容积式 (三)其他形式(喷水泵、水击泵) 按产生的压头分: (一)低压泵、高压泵 (二)通风机、压气机(离心通风机、轴流通风机) 按产生的作用分: (一)给水泵、凝结水泵、循环水泵、主油泵等等 各种泵与风机的工作原理及特点: 1、离心式泵与风机1、 2、 3、 2、轴流式泵与风机 3、混流式泵与风机 4、往复式泵与风机 5、齿轮泵 6、螺杆泵 7、罗茨泵

流体力学泵与风机期末复习重点总结

第一章绪论 作用在流体上的力 1kgf=9.807N 力作用方式的不同分为质量力和表面力。 质量力:作用在流体的每一个质点上的力。单位质量力f 或(X,Y,Z )N ╱kg 表面力:作用在流体某一面积上且与受力面积成正比的力。又称面积力,接触力。 表面力 单位N ╱㎡,Pa 流体的主要力学性质 流体都要发生不断变形,各质点间发生不断的相对运动。 液体的粘滞性随温度的升高而减小。 气体的粘滞性随温度的升高而增大。 黏度影响(流体种类,温度,压强) 压缩系数:单位体积流体的体积对压力的变化率。○ 流体的力学模型 将流体视为“连续介质”。 无粘性流体。 不可压缩流体。以上三个是主要力学模型。 第二章流体静力学 流体静压力:作用在某一面积上的总压力。 流体静压强:作用在某一面积上的平均或某一点的压强。 流体静压强的方向必然是沿着作用面的内法线方向。 在静止或相对静止的流体中,任一点的流体静压强的大小与作用面的方向无关,只与该点的位置有关。 静止流体质量力只有重力。 水平面是等压面。 水静压强等值传递的帕斯卡定律:静止液体任一边界面上压强的变化,将等值地传到其他各点(只要原有的静止状态不被破坏)。 自由面是大气和液体的分界面。 分界面既是水平面又是等压面。 液体静压强分布规律只适用于静止、同种,连续液体。 静止非均质流体的水平面是等压面,等密面和等温面。 静止气体充满的空间各点压强相等。 平面上的液体压力 水静压力的方向是沿着受压面的内法线方向。 作用于受压平面上的水静压力,只与受压面积A ,液体容重γ及形心的淹没深度h c 有关。 作用于平面的水静压力数值上等于压强分布图形的体积。 曲面上的液体压力 压力体:受压曲面与其在自由面投影面积之间的柱体。 垂直于表面的法向力(P ) 平行于表面的切向力(T )

泵与风机运行注意问题

泵与风机运行中的几个问题 泵与风机的运行状况对电厂的安全、经济运行十分重要。目前泵与风机在运行中还存在不少问题,如运行效率偏低、振动、磨损等问题。近几年来,低效产品已逐步被较高效率的新产品所取代,并随着各种新型、高效调节装置的使用,运行效率已得到了大大改善。现仅就启动、运行、故障分析,特别是振动、磨损等方面的问题讨论如下: 一、泵的启动、运行及故障分析 (一)泵的启动 水泵启动前应先进行充水、暖泵、及启动前的检查等准备工作,然后才能启动。 1、充水 水泵在启动前,泵壳和吸水管内必须先充满水,这是因为在有空气存在的情况下,泵吸入口不能形成和保持足够的真空。 例如,为了在循环水泵的泵壳和吸水管内形成真空,在中央水泵房一般要附设专门用来抽空气的电动真空泵。靠近汽轮机房就地安装的循环水泵除装有一台电动真空泵外,还设有射汽抽气器或射水抽气器;而与大型火力发电厂的循环水泵配套的真空泵则常采用液环泵,亦称水环式真空泵,以便将泵内的空气抽出,形成真空使水泵充水。 对于高压锅炉给水泵,在其吸入口管的最高点或前置泵连接管的最高点,均设有能自动排除空气和气体的装置,以便在启动之前(经过检修或长期停运后)逐步向给水泵充水,排出泵内的空气。 2、暖泵 随着机组容量的增加,锅炉给水泵启动前暖泵已成为最重要的启动程序之一。这是因为:一方面,处于冷态下的给水泵,其内部存水及泵本身的温度等级都很低;另一方面,对于处于热态下的给水泵,无论其采用什么型式的轴端密封,均会有一些低温冷却水漏入泵内,若此时其出水阀密封性较差,特别是其逆止阀漏水,也会使一些低温水流入泵内。不同温度的水在泵内形成分层,上层为热水而下层为冷水,使泵受热不均,造成泵体上下温差。如果启动前暖泵不充分,启动后,给水泵将受到高温水的直接热冲击,造成热胀不均,加剧泵体的上下温差,使泵体产生拱背变形、漏水、泵内动静部分磨损甚至抱轴等事故。因此,锅炉给水泵无论是在冷态或热态下启动,在启动前都必须进行暖泵。暖泵方式分为正暖(低压暖泵)和倒暖(高压暖泵)两种形式,现以双壳体泵为例简述如下: 所谓正暖,是指暖泵用水取自水温较低的除氧器,暖泵水从给水泵的进口流入泵内,流过末级之后又经过内外壳体间的隔层流出。正暖方式的缺点:一是它不利于缩小泵壳体上、下部的温差,特别是在高压侧下部容易形成不流通的死区,不易使泵壳体受热均匀;二是不经济,当泵处于热备用时,暖泵水不断地排向地沟,造成浪费。 所谓倒暖,是指暖泵用水取自水温较高的压力母管,引进给水泵内外壳体间的夹层,再从给水泵的末级流向首级,最后由泵的进口流回除氧器。给水泵处于热备用状态时,常采用

(完整版)泵与风机的分类及其工作原理

第一章泵与风机综述 第一节泵与风机的分类和型号编制 一、泵与风机的分类 泵与风机是利用外加能旦输送流体的流体机械。它们大量地应用于燃气及供热与通风专业。根据泵与风机的工作原理,通常可以将它们分类如下: (一)容积式 容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或排出流体。按其结构不同,又可再分为; 1.往复式 这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活塞泵(piston pump)等; 2.回转式 机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。 (二)叶片式 叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。通过叶轮的旋转对流体作功,从而使流体获得能量。 根据流体的流动情况,可将它们再分为下列数种: 1.离心式泵与风机; 2.轴流式泵与风机; 3.混流式泵与风机,这种风机是前两种的混合体。 4.贯流式风机。 (三)其它类型的泵与风机 如喷射泵(jet pump)、旋涡泵(scroll pump)、真空泵(vacuum pump)等。 本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、运行、调节和选用方法等知识。由于制冷专业常用泵是以不可压缩的流体为工作对象的。而风机的增压程度不高(通常只有9807Pa或1000mmH2O以下),所以本篇内容都按不可压缩流体进行论述。 二、泵与风机的型号编制 (一)、泵的型号编制 1、离心泵的基本型号及其代号 泵的型式型式代号泵的型式型式代号 单级单吸离心泵IS.B大型立式单级单吸离心泵沅江

流体力学泵与风机_课后题答案详解

流体力学泵与风机部分习题答案 2-15 解:(1)当1γ为空气 21p p = ()A B p h z p =++γ ()h z p p p B A +=-=?γ 3.01000 8.9??= k p a pa 94.22940== (2)当1γ为油 31p p = ()z H h p p A +++=γ1 ()H h p p B γγ++=13 H h z H h p p p p p B A γγγγγ--+++-=-=?131 h z h 1γγγ-+= 1.09000 2.010008.91.010008.9?-??+??= k p a pa 04.22040== 2-16 解:21p p = ()211h h H p p M +++=水γ 212h h p p a 汞油γγ++= ()2121h h p h h H p a M 汞油水γγγ++=+++ ()2.010008.96.1378502.05.110008.998011???+?=++??+-h h 26656785098002.098005.1980098011+=+?+?+-h h 1960147009802665619501--+=h m h 63.51= 2-28 解:()21h h p -=γ

() () () b h h h b h h h h P 0 2210 212145 sin 45 sin 21-+--= γγ ()() 145 sin 22310008.9145 sin 232310008.92 10 ?-??+?-? -???= kN N 65.343465022 510008.9==? ?= () () ()P bl h h h bl h h h h l D D D 2 22110 212145 sin 45 sin 2 1-+--=γγ m 45.22 2 510008.92 22210008.923 22 210008.9=? ????+? ? ?= 2-32 解:b h h b h h P 0 22 21 45 sin 2 145 sin γγ+ = 22 22210008.92 122 22110008.9?? ???+ ????= kN N 8576.1106.1108572810008.9==??= P h h b h h h h b h h l D 0 2102202102145sin 3245sin 2145sin 245sin ? ?? ?? ++??? ??+=γγ 2810008.92 3 72410008.9222410008.9??? ??+???= 2613= 267 22613=-=p l T P G l T l P l G ?=?+? 226 72810008.9162.19?=???+?T kN T 31.1013 4.27481.9=+ = 2-41 解:245sin 0 =?=r h b h h P x ?? ??=2 1γ 421221000 8.9?? ? ??=

泵与风机考试试题,习题及答案

泵与风机考试试题 一、简答题(每小题5分,共30分) 1、离心泵、轴流泵在启动时有何不同,为什么? 2、试用公式说明为什么电厂中的凝结水泵要采用倒灌高度。 3、简述泵汽蚀的危害。 4、定性图示两台同性能泵串联时的工作点、串联时每台泵的工作点、仅有 一台泵运行时的工作点 5、泵是否可采用进口端节流调节,为什么? 6、简述风机发生喘振的条件。 二、计算题(每小题15分,共60分) 1、已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片 厚度占出口面积的8%,流动角β2=20?,当转速n=2135r/min时,理论 流量q VT=240L/s,求作叶轮出口速度三角形。 2、某电厂水泵采用节流调节后流量为740t/h,阀门前后压强差为980700Pa, 此时泵运行效率η=75%,若水的密度ρ=1000kg/m3,每度电费0.4元,求:(1)节流损失的轴功率?P sh; (2)因节流调节每年多耗的电费(1年=365日) 3、20sh-13型离心泵,吸水管直径d1=500mm,样本上给出的允许吸上真空 高度[H s]=4m。吸水管的长度l1=6m,局部阻力的当量长度l e=4m,设 沿程阻力系数λ=0.025,试问当泵的流量q v=2000m3/h,泵的几何安装高 度H g=3m时,该泵是否能正常工作。 (当地海拔高度为800m,大气压强p a=9.21×104Pa;水温为30℃,对应饱 和蒸汽压强p v=4.2365 kPa,密度ρ=995.6 kg/m3) 4、火力发电厂中的DG520-230型锅炉给水泵,共有8级叶轮,当转速为n =5050r/min,扬程H=2523m,流量q V=576m3/h,试计算该泵的比转 速。

泵与风机习题及复习大纲

名词解释 泵与风机的体积流量 泵与风机的效率. 气蚀 相似工况点 泵与风机的体积流量 必需汽蚀余量 运动相似 简答题 1.给出下列水泵型号中各符号的意义: ①60—50—250 ②14 ZLB—70 2.为什么离心式水泵要关阀启动,而轴流式水泵要开阀启动 3.用图解法如何确定两台同型号泵并联运行的工作点 试述轴流式泵与风机的工作原理。 叶片式泵与风机的损失包括哪些 试叙节流调节和变速调节的区别以及其优缺点。 计算题 1、用水泵将水提升30m高度。已知吸水池液面压力为×103Pa,压出液面的压力为吸水池液面压力的3倍。全部流动损失hw=3m,水的密度ρ=1000kg/m3,问泵的扬程应为多少m 2已知某水泵的允许安装高度〔Hg〕=6m,允许汽蚀余量〔Δh〕=,吸入管路的阻力损失hw=,输送水的温度为25℃,问吸入液面上的压力至少为多少Pa(已知水在25℃时的饱和蒸汽压力pv=,水的密度ρ=997kg/m3) 3某循环泵站中,夏季为一台离心泵工作,泵的高效段方程为H=30-250Q2,泵的叶轮直径D2=290mm,管路中阻力系数s=225s2/m5,静扬程H sT=14m,到了冬季,用水量减少了,该泵站须减少12%的供水量,为了节电,到冬季拟将另一备用叶轮切削后装上使用。问该备用叶轮应切削外径百分之几 4今有一台单级单吸离心泵,其设计参数为:转速n=1800r/min、流量qv=570m3/h、扬程H=60m,现欲设计一台与该泵相似,但流量为1680m3/h,扬程为30m的泵,求该泵的转速应为多少5已知某锅炉给水泵,叶轮级数为10级,第一级为双吸叶轮,其额定参数为:流量qv=270m3/h、扬程H=1490m、转速n=2980r/min,求该泵的比转速。 绪论 水泵定义及分类 1.主要内容:水泵的定义和分类(叶片式水泵、容积式水泵及其它类型

南师大泵与风机试题及答案

南京师范大学《泵与风机》试题 一、填空题(每空1分,共10分) 1.泵与风机的输出功率称为_______。 2.绝对速度和圆周速度之间的夹角称为_______。 3.离心式泵与风机的叶片型式有_______、_______和_______三种。 4.为保证流体的流动相似,必须满足_______、_______和_______三个条件。 5.节流调节有_______节流调节和_______节流调节两种。 二、单项选择题(在每小题的四个备选答案中,选出一 个正确答案,并将正确答案的序号填在题干的括号内。每小题1分,共10分) 1.风机的全压是指( )通过风机后获得的能量。 A.单位重量的气体 B.单位质量的

气体 C.单位时间内流入风机的气体 D.单位体积的气体 2.低压轴流通风机的全压为( ) A. 1~3kPa B. 0.5kPa以下 C. 3~15kPa D. 15~340kPa 3.单位重量的液体从泵的吸入口到叶片入口压力最低处的总压降称为( ) A.流动损失 B.必需汽蚀余量 C.有效汽蚀余量 D.摩擦损失 4.关于冲击损失,下列说法中正确的是( ) A.当流量小于设计流量时,无冲击损失 B.当流量大于设计流量时,冲击发生在工作面上 C.当流量小于设计流量时,冲击发生在非工作面上

D.当流量小于设计流量时,冲击发生在工作面上 5.下列哪个参数与泵的有效汽蚀余量无关?( ) A.泵的几何安装高度 B.流体温度 C.流体压力 D.泵的转速 6.关于离心泵轴向推力的大小,下列说法中不正确的是( ) A.与叶轮前后盖板的面积有关 B.与泵的级数无关 C.与叶轮前后盖板外侧的压力分布有关 D.与流量大小有关 7.两台泵并联运行时,为提高并联后增加流量的效果,下列说法中正确的是( ) A.管路特性曲线应平坦一些,泵的性能曲线应陡一些 B.管路特性曲线应平坦一些,泵的性能曲线应平坦

流体力学泵与风机(教学大纲)

《流体力学泵与风机》课程教学大纲 课程简介 课程简介:本门课程讲述流体的基本概念和属性,尤其是流体与刚体和固体在力学行为方面的区别。以此为基础和出发点,介绍流体静平衡所遵循规律及点压和面压的计算方法,并以介绍流体运动的一系列基本概念为前提,推导出流体力学的三大基本方程。然后介绍管路系统的水力计算和流体孔口出流计算以及水击现象的基本概念,并介绍相似性原理和因次分析方法,讲述泵与风机工作原理及典型结构,了解泵与风机的实际运行知识,重点掌握如何选择泵与风机。 课程大纲 一、课程的性质与任务: 本课程是热能与动力工程、建筑环境与设备工程专业的主干技术基础课程之一,是学科基础课。本课程是研究流体的基本力学规律及其在工程(特别是本专业各类工程)中应用的一门学科。 本课程以流体力学基础为主,流体力学部分学生主要应掌握基本理论和计算方法,特别是一元流动的基本理论和计算方法,需要牢固掌握泵与风机结构、工作原理和运行维护知识。这为后续课程的学习提供必要基础知识和计算方法,同时,也为学生今后解决生产实际问题打下理论基础和技能准备。 二、课程的目的与基本要求: 本课程以讲述流体力学基本概念、基础知识和基本原理为主,特别 是一元流动的基本理论和计算方法,培养学生从纷繁复杂的流体运动中 突出主要矛盾、忽略次要矛盾、提炼力学模型的辩证唯物主义的科学思 维方法,着重培养学生解决工程问题的能力。了解流体力学课程的基本 内容及其在制冷、空调、建筑给排水、食品冷藏等工程中的应用,认识

到流体力学是热能与动力工程、建筑环境与设备工程专业的主要专业技术基础课。并通过一定数量习题和实验,使学生具有足够的感性认识和实际动手的能力。通过学习,能正确掌握本课程对各类流体力学问题的分析和处理方法。 三、面向专业: 热能与动力工程、建筑环境与设备工程 四、先修课程: 《高等数学》、《大学物理》、《工程数学》、《工程力学》等。 五、本课程与其它课程的联系: 本课程的先修课程:《高等数学》、《大学物理》、《工程数学》、《工程力学》等。与本课程之间联系是: 1)高等数学:本课程需要高等数学中微分学、积分学、场论等方面 的基础知识; 2)大学物理:大学物理中的力学、分子物理学和热力学以及振动和 波都是学习本课程的基础; 3)工程力学:工程力学是学习本课程的重要基础,特别是其中连续 介质取分离体的概念,应力的概念,受力分析与平衡方程式,牛 顿第二定理及动量定律等。 本课程的后续课程:《传热传质学》、《流体输配管网》、《暖通空调》、《制冷原理与设备》、《汽轮机》等,本课程是学好这些后续课程必备的专业基础。 六、教学内容安排、要求、学时分配及作业: 第一章绪论(4学时) 1.流体力学的研究对象、任务及应用(B); 2.作用在流体上的力(A); 3.流体的主要力学性质(A); 4.流体的力学模型(B)。 作业:P12—P13,习题1-3、1-7、1-9、1-12、1-14. 第二章流体静力学(8学时) 1.流体静压强及其特性(A);

工程流体力学泵与风机课后答案

第1章绪论 1.1 试从力学分析的角度,比较流体与固体对外力抵抗能力的差别。 答:固体在承受一定的外力后才会发生形变; 而流体只要承受任何切力都会发生流动,直到切力消失; 流体不能承受拉力,只能承受压力。 1.2 何谓连续介质模型?为了研究流体机械运动的规律,说明引用连续介质模型的必要性和可能性。 答:把流体当做是由密集质点构成的、内部无空隙的连续体来研究,这就是连续介质模型。建立连续介质模型,是为了避开分子运动的复杂性,对流体物质的结构进行简化,建立连续介质模型后.流体运动中的物理量都可视为空间坐标和时间变址的连续函数.这样就可用数学分析方法来研究流体运动。 1.3 按作用方式的不同,以下作用力:压力、重力、引力、摩擦力、惯性力,哪些是表面力?哪些是质量力? 答:压力、摩擦力是表面力;重力、引力、惯性力是质量力。 1.4 为什么说流体运动的摩擦阻力是内摩擦阻力?它与固体运动的摩擦力有何不同? 答:上平板带动与其相邻的流层运动,而能影响到内部各流层运动,说明内部各流层间存在切向力,即内摩擦力,这就是黏滞性的宏观表象。也就是说,黏滞性就是流体的内摩擦特性。摩擦阻力存在于内部各流层之间,所以叫内摩擦阻力。固体运动的摩擦力只作用于固体与接触面之间,内摩擦阻力作用于流体各流层之间。 1.5 什么是流体的粘滞性?它对流体流动有什么作用?动力粘滞系数μ和运动粘滞系数v有何区别及联系? 答:黏滞性的定义又可表示为流体阻抗剪切变形的特性。由于流体具有黏性,在流动时存在着内摩擦力,便会产生流动阻力,因而为克服流动阻力就必然会消耗一部分机械能。消耗的这部分机械能转变为热,或被流体吸收增加了流体的内能,或向外界散失,从而使得推动流体流动的机械能越来越小。运动黏滞系数是动力黏滞系数与密度的比。 1.6 液体和气体的粘度随着温度变化的趋向是否相同?为什么? 答:水的黏滞系数随温度升高而减小,空气的黏滞系数则随温度升高而增大。原因是液体分子间的距离小,分子间的引力即内聚力是构成黏滞性的主要因素,温度升高,分子动能增大,间距增大,内聚力减小,动力黏滞系数随之减小:气体分子间的距离远大于液体,分子热运动引起的动掀交换是形成黏滞性的主要因素.温度升高.分子热运动加剧,动址交换加大,动力黏滞系数随之增大。 1.7 液体和气体在压缩性和热胀性方面有何不同?他们对密度有何影响? 答:压缩性是流体因压强增大.分子间距离减小,体积缩小,密度增大的性质。热胀性是温度升高.分子间距离增大,体积膨胀,密度减小的性质。水的压缩性和热胀性都很小,一般均可忽略不计。气体具有显著的压缩性和热胀性。压强与温度的变化对气体密度的影响很大。

流体力学泵与风机 蔡增基 第五版 下 答案讲解学习

流体力学泵与风机蔡增基第五版下答 案

1.描绘出下列流速场 解:流线方程: y x u dy u dx = (a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43 直线族 (b )4=x u ,x u y 3=,代入流线方程,积分: c x y +=283 抛物线族 (c )y u x 4=,0=y u ,代入流线方程,积分: c y = 直线族 (d )y u x 4=,3=y u ,代入流线方程,积分: c y x +=232

抛物线族 (e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243 椭圆族 (f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22 双曲线族 (g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22 同心圆 (h )4=x u ,0=y u ,代入流线方程,积分:c y =

直线族 (i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=2 2 抛物线族 (j )x u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (k )xy u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (l )r c u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y +=

220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x = 直线族 (m )0=r u ,r c u =θ,220y x cy r y r c u x +-=-=,220y x cx r x r c u y +=+= 代入流线方程积分:c y x =+22 同心圆 2.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。如果是有旋流动,它的旋转角速度的表达式是什么? 解:无旋流有:x u y u y x ??=??(或r r u u r ??=??θθ) (a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动 对有旋流动,旋转角速度:)(21y u x u x y ??-??=ω (b )23 =ω (c )2-=ω (d )2-=ω (e )27 -=ω (g )4-=ω (i )2-=ω (k )x 2-=ω

论《泵与风机运行及检修》优质核心课程建设过程

论《泵与风机运行及检修》优质核心课程建设过程 教育部相关文件(教高〔2011〕8号)文件中提出,“通过优质核心课程建设,推动各专业进一步明确专业核心能力和实践技能要求, ...... 促进教学质量的全面提升。”《泵与风机运行及检修》课程是我院电厂设备运行与维护专业的一门专业核心课程,同时也是从事电厂设备的运行、安装调试和检修岗位工作的理论结合实践的课程,该课程建设能否达到“优质”水平,将对本专业人才培养目标的实现起到深远影响。 1 课程建设的思路 《泵与风机运行及检修》优质核心课程建设之初,先由具有多年一线教学经验,且下厂实践锻炼的双师型教师根据专业培养目标来初步制定课程建设方案,提出改革创新的重点难点,并聘请热电厂从事设备运行维护的专家教学专家共同论证方案的可行性,再由建设团队负责人制定出课程建设提纲,最后由团队成员按照提纲完成各自建设内容,落实工作。 2 课程建设的内容 具体说来,我学院《泵与风机运行及检修》课程建设主要包括该前期课程调研、课程标准制定、教学资源建设、教学材料建设等四个方面。 2.1 课程调研 课程调研主要通过深入包头东华热电、东方希望包头铝业自备电厂等企业一线岗位考察、同泵与风机相关工作岗位的专工进行沟通走访、咨询请教企业高工等方式进行,从而全面了解泵与风机行业对该课程知识体系的专业技能的要求,然后根据典型的工作过程设计教学情境,力求让课堂环境贴近工作现场,让课程内容贴近于工作任务,使学生从一开始就明确自己所学课程的目的、课程的重要技能点在哪里,一进入企业就能用所学知识解决处理实际问题。

2.2 课程标准 一门专业课程建设的“优质”与否,课程标准的制定是核心。《泵与风机运行及检修》课程标准主要包括”课程性质与定位”、“课程目标”、“课程内容及学习情境设计”、“考核与评价”、“教学实施条件”等五项内容,而“课程内容及课程情境设计”是课程标准中最最要的内容。 例如,设计“泵与风机的运行工况与调节”教学情境时,按照实际工作过程,又把它拆分成几个子学习情境:子情境1—泵与风机的工作点及工作点稳定性、子情境2—泵与风机工作点调节、子情境3—泵与风机的汽蚀与抗汽蚀措施、子情境4—泵与风机运行故障分析。每个子情境都会列出学生的学习目标、学习任务;教师的教学内容、教学方法及实施过程。 有了详细的学习情境设计,授课教师可以牢牢把握住课程知识、技能要点。 2.3 教学资源建设 教学资源主要包括教学团队的优化配备、校园模拟实训室建设、校外实习实训基地建设等。 本课程的教学团队配备了本校专职教师(双师)、企业兼职教师(高工),整体素质较强。而且现已建成了泵与风机实训室、电工电子实训室、火电系统仿真模拟实训室等理实一体化实训室。此外,也与包头东华热电有限公司、包头第三热电厂等合作,相继建立了校外实习实训基地。 2.4 教学材料建设 教学材料建设包括授课计划、授课教案、电子课件、教学视频、课程教材、实践教学指导书、在线测试、试题/试卷库等。 教学材料的建设中,教材建设是教学材料建设的重点及难点,开发教材也是我学院建设《泵与风机运行及检修》优质核心课程的主要特色。根据课程标准,将本课程分为三大模块,即泵与风机电气控制模块、泵与风机运行操作模块、泵与风机维护检修模块。每个模块侧重点不同,但是各模块间相互切合,是一个有机整体,即都是服务于

流体力学泵与风机 蔡增基 第五版 下 答案

1、描绘出下列流速场 解:流线方程: y x u dy u dx = (a)4=x u ,3=y u ,代入流线方程,积分:c x y +=43 直线族 (b)4=x u ,x u y 3=,代入流线方程,积分:c x y +=283 抛物线族 (c)y u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (d)y u x 4=,3=y u ,代入流线方程,积分:c y x +=232

抛物线族 (e)y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2 243 椭圆族 (f)y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22 双曲线族 (g)y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22 同心圆 (h)4=x u ,0=y u ,代入流线方程,积分:c y = 直线族 (i)4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22

抛物线族 (j)x u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (k)xy u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (l)r c u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y += 220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x = 直线族

流体力学泵与风机期末复习资料

一、选择题 1、流体运动的两种重要参数是(A)。 (A)压力、速度;(B)压力、温度;(C)比容、密度;比容、速度。 2、雷诺数Re可用来判别流体的流动状态,当(A )时是紊流状态。 (A) Re>2000 (B) Re<2000; Re>1000; Re<1000。 3、流体流动时引起能量损失的主要原因是(D )。 (A)流体的压缩性;(B)流体膨胀性;(C)流体的不可压缩性;(D)流体的粘滞性。4、( C)管路各段阻力损失相同。 (A)短管管系;(B)串联管系;(C)并联管系;(D)分支管系。 5、温度升高对流体粘度影响是(B ) (A)液体粘度上升,气体粘度下降(B)液体粘度下降,气体粘度上升;(C)液体和气体粘度都上升; (D) 液体和气体粘度都下降 6、下列四种泵中,相对流量最高的是(B )。 (A)离心泵;(B)轴流泵;(C)齿轮泵;(D)螺杆泵。 7、效率最高的叶轮叶片型式是(C ) (A) 前向型 (B)径向型 (C) 后向型 (D)轴向型 8、机械密封装置属于(B ) (A)级间密封装置; (B) 轴封装置; (C)内密封装置(D)填料密封装置 9、站在电机侧的端面,面对风壳,风轮为顺时针旋转的风机是(A)风机。 (A)右旋 (B)左旋; (C)左右旋; 10、某台水泵在运行过程中,出现了轴承润滑不良,轴承处的机械摩擦比较严重,转速没有明显变化,这时相应地会出现(D )。 A.流量减小、扬程降低、电动机功率增大; B.流量减小、扬程降低、电动机功率减小; C.流量减小、扬程降低、电动机功率变化不明显; D.流量和扬程不变、电动机功率增大。 二、填空题

泵与风机的运行与调节

第六章 泵与风机的运行与调节 主要内容 (一)管网特性及泵与风机运行 (二)泵与风机的联合运行 (三)泵与风机运行工况的控制调节 (四)泵与风机的叶片切割和加长 (五)泵与风机运行中的几个问题 (一)管网特性及泵与风机运行 1、管网特性曲线及其影响因素 2、泵与风机的稳定运行 1、管网特性及其影响因素 所谓管网特性,就是管网中的流量Q 与所需要消耗的压头H C 之间的关系。 管网特性主要与哪些因素相关? 首先,根据水泵的管网特性方程讨论其影响因素,如P111,图5-1示,列伯努利方程: A-1: 2-B : 式中H w g 与H w j 为进、出管阻损。 两式相减,并整理后可以得到该水泵管网所需要消耗压头的表达式: 式中,管网阻力特性系数: 管路的静扬程:H s t 为抛物线的截距,H s t 与流量Q 无关, 第二项φ与流量Q 呈平方关系,说明管网特性曲线为二次抛物线,则其管网特性曲线如P112,图5-2中上方的二次曲线。 同理可得风机管网特性曲线。类似前述E q 的形式(推导略): H H V P V P g w g A A g g g g .21 1 222+++=+ρρ H H V P V P j w j B B g g g g .222 2 22+++= +ρρQ F H V H V H H P P H V V V V H H H H P P P P H g d l g d l g g g g g g g g g g t s t s w t A B C A B j w g w j g A B C 2 2.2.22 22212..1 2 2)(2)()2()() 2222()(ζλζλρρρρρ∑+∑+=∑+∑+=+∑++-=--++++++-=-=

泵与风机课后知识题目解析(标准规定版)

扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。 全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。 轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。 如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。 泵与风机(课后习题答案) 第一章 1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm, 2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min , 试画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论

扬程T H ∞。 解:由题知:流体径向流入叶轮 ∴1α=90° 则: 1u = 1n 60 D π= 3178101450 60 π-???=13.51 (m/s ) 1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s ) ∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V = 122V q D b π=0.086 0.3810.019 π??=3.78 (m/s ) 2u = 2D 60 n π= 3381101450 60 π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s ) T H ∞= 22u u V g ∞=28.9118.52 9.8 ?=54.63 (m ) 1-2有一离心式水泵,其叶轮外径2D =220mm,转速n=2980r/min ,叶片出口安装角2a β=45°,出口处的轴面速度2m v =3.6m/s 。设流体径向流入叶轮,试按比例画出出口速度三角形,并计算无限多叶片叶轮的理论扬程T H ∞,又若环流系数K=0.8,流动效率h η=0.9时,泵的实际扬程H 是多少? 解:2u = 2D 60 n π= 0.222980 60 π??=34.3 (m/s ) ∵2m V =3.6 m/s 2a β=45°∴2w =22sin m a v β=5.09 (m/s ) 画出出口速度三角形 2u V ∞=2u -2m V ctg 2a β=34.31-3.6?ctg45°=30.71 (m/s ) ∵1α=90°T H ∞= 22u u V g ∞=34.3130.71 9.8 ?=107.5 (m) 实际扬程H=K T H =K h ηT H ∞=0.8?0.9?107.5=77.41 (m)

相关主题
文本预览
相关文档 最新文档