当前位置:文档之家› 同济大学混凝土试验 大偏心受压柱试验报告

同济大学混凝土试验 大偏心受压柱试验报告

同济大学混凝土试验 大偏心受压柱试验报告
同济大学混凝土试验 大偏心受压柱试验报告

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊《混凝土结构基本原理》试验课程作业

L ENGINEERING

试验报告

试验课教师林峰

姓名

学号

手机号

任课教师顾祥林

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊《混凝土结构基本原理》试验课程作业

L ENGINEERING

大偏心受压柱试验报告

试验名称大偏心受压柱试验

试验课教师林峰

姓名

学号

手机号

任课教师

日期2014年11月18日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1. 试验目的

通过试验了解大偏心受压柱破坏的全过程,掌握测试混凝土受压构件基本性能的试验方法。同时巩固大偏心受压柱承载力的计算方法,并通过对理论值和试验值的比较加深对混凝

土基本原理的理解。

2. 试件设计

2.1 材料和试件尺寸

混凝土:C20

钢筋:使用I级钢筋作为箍筋,II级钢筋作为纵筋

试件尺寸(矩形截面):b×h×l=120×120×870mm

详细尺寸见图1大偏心受压柱配筋图

2.2 试件设计

(1)试件设计的依据

为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作

用位置,即偏心距e0,使试件的破坏状态为大偏心受压破坏。

(2)试件参数如表1

表1 试件参数表

试件尺寸(矩形截面)b×h×l=120×120×870mm

纵向钢筋(对称配筋)412

箍筋Φ6@100(2)

纵向钢筋混凝土保护层厚度15mm

配筋图图1

偏心距e0100mm

120

200

80

1

3

5

1

3

5

5

5

5

8

7

200

200

22

11

3 8@50

4 6@100

150

200

50

1

2

6φ12

4φ12

3 8@50

4φ12

1

2

120

1-12-2柱试件立面图

3 8@50

3 8@50

4双向钢丝网2片

尺寸170x90

4双向钢丝网2片

尺寸170x90

8@50

8@50

6@100

图1 大偏心受压柱配筋图

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

(3)试件承载力估算

N c=α1f c bh0ζ

N c e=α1f c bh02ζ(1-0.5ζ) + f y’ A s’(h0-a s ’)

e=e0+0.5h-a s

不妨令:A=

2

f2

c

1

bh

α

, B=)

c

1

-e

f h

bh

α, C=)

(

f-

y

'

-

'

'

s

s

h

从而有:

A

AC

2

4

B

B

-2-

+

=

ξ

得出本次试验试件的极限承载力的预估值为:Ncu=87.71kN

详细计算过程见附录1

2.3 试件的制作

根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定,成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。

取样或拌制好的混凝土拌合物,至少用铁锨再来回拌合三次。

将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口。

采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度为20±2℃的不流动的氢氧化钙饱和溶液中养护。标准养护龄期为28d(从搅拌加水开始计时)。

3.材性试验

3.1 混凝土材性试验

混凝土强度实测结果

试块留设时间: 2014年9月25日

试块试验时间: 2014年12月8日

试块养护条件:与试件同条件养护

试件尺寸150mm×150mm×150mm

实测立方体

抗压强度/MPa

平均立方体

抗压强度

/MPa

推定轴心

抗压强度

/MPa

推定轴心

抗拉强度

/MPa

推定

弹性模量

/GPa

23.4

22.5 17.1 1.89 26.75

22.0

22.2

注:轴心抗压强度、轴心抗拉强度、弹性模量根据国家标准《混凝土结构设计规范》GB

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊50010-2010推定。

3.2 钢筋材性试验

钢筋强度实测结果

公称直径

/mm

屈服荷载

/kN

极限荷载

/kN

屈服强度

平均值

/MPa

极限强度

平均值

/MPa 试件平均试件平均

6

光圆

11.6

11.3

16.0

15.7 400 556

11.2 15.6

11.2 15.6

12

带肋

60

62

71

73 548 646

6374

6273

4. 试验过程

4.1 加载装置

柱偏心受压试验的加载装置如图2所示。采用千斤顶加载,支座一端为固定铰支座,另一端为滚动铰支座以减少支座带来的水平荷载对构件的影响。铰支座垫板应有足够的刚度,避免垫板处混凝土局部破坏。

e0

P

e0

P

图2 柱偏心受压试验加载装置

4.2 加载制度

单调分级加载机制:

在正式加载前,为检查仪器仪表读数是否正常,需要预加载,预加载所用的荷载是分级荷载的前1级。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

正式分级加载/kN:0→5→10→15→20→25→30→35→40→45→50→55→60→破坏,在加载到60kN时,拆除所有仪表,然后加载至破坏,并记录破坏时的极限荷载。

4.3量测与观测内容

4.3.1 荷载

荷载按照分级加载,破坏时的极限荷载为92.344kN。具体取用的荷载值见表2

表2 荷载取值表

时间荷载(kN)时间荷载(kN)2014/11/18 14:090.0832014/11/18 14:5054.713 2014/11/18 14:10 4.7862014/11/18 14:5060.242 2014/11/18 14:119.9852014/11/18 14:5765.111 2014/11/18 14:1314.8542014/11/18 14:5770.64 2014/11/18 14:2719.6412014/11/18 14:5773.529 2014/11/18 14:2824.9222014/11/18 14:5777.16 2014/11/18 14:3830.0392014/11/18 14:5878.645 2014/11/18 14:3934.992014/11/18 14:5880.873 2014/11/18 14:4139.9412014/11/18 14:5884.339 2014/11/18 14:4645.0582014/11/18 14:5986.072 2014/11/18 14:4950.012014/11/18 14:5992.344

4.3.2 纵筋应变

纵筋应变由布置在柱内部纵筋表面的应变计量测,钢筋应变测点布置如图3

200

3

8

5

3

8

5

1

8

7

应变片

共计8片

33

1

2

120

3-3

应变片共计8片

图3 大偏心受压柱试验纵向钢筋应变测点布置

其中,1至8号应变片分别对应了通道43-1、43-2、43-3、43-4、43-6、43-7、43-8、43-9,通道43-6所对应的应变片损坏。具体数值见图7

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.3.3 混凝土应变

混凝土应变由布置在内部纵筋表面和柱表面混凝土上的应变计量测,混凝土应变测点布置如图4。

图4 大偏心受压柱试验混凝土应变测点布置

位移计1、2、3、4依次对应通道46-9、46-2、46-3、46-4。但在观测中发现位移计1、3的测量值并不是线性变化,可能位移计本身存在问题,如图8。

4.3.4 挠度

侧向挠度由柱长度范围内布置3个位移计量测,在荷载达到60kN的时候撤掉位移计。短期跨中挠度实测值可以按照公式()7

5

62

1

f

f

f

f+

-

=直接得出。侧向扰度测点布置见图5,依次对应通道46-8、46-6、46-7。

图5 大偏心受压柱试验侧向挠度测点布置

4.3.5 裂缝

实验前将柱四面用石灰浆刷白,并绘制50mm×50mm

的网格。试验时借助手电筒用肉

5

5

3

8

5

8

7

位移计

支杆

5

3

8

5

位移计6

位移计7

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊眼查找裂缝并且用铅笔标记出裂缝的位置、标号。之后对裂缝的发生发展情况进行详细观测,用读数放大镜测量各级荷载作用下的裂缝宽度、长度及裂缝间距,并用相机拍摄后手动绘制裂缝展开图。

4.4 裂缝发展及破坏形态

(1)实验前构件初始状态

经过观察构件初始状态良好,肉眼观测没有初始裂缝

(2)各级荷载作用下构件裂缝发展情况

(0→20kN)当荷载较小时,受压区及受拉区混凝土和钢筋的应力都较小,受压区和受拉区钢筋、混凝土应变应力增长速度基本一致。

(20kN→70kN)混凝土远离轴向力一侧开始出现横向裂缝但比较细。随着荷载增加裂缝条数增加并且向受压区发展。此时受拉区钢筋应变飞速增长,可以推测出受拉区混凝土已经基本退出了工作,拉应力主要由钢筋承担。大概在70kN的时候,受拉钢筋屈服,裂缝进一步发展,使受压区高度减小,受压区应力增加,较薄弱处出现纵向裂缝。

(70kN→90kN)在荷载增加过程中,受压区高度不断减小并出现钢筋达到屈服应变,裂缝贯通,牛腿处混凝土被压溃,构件破坏。此后,荷载量测值下降。

(3)破坏情况如图6,裂缝展开图见附录三。

图6 构件破坏情况图

5. 试验数据处理与分析

依次获得荷载与纵筋应变、混凝土应变、侧向挠度、曲率的曲线图,并比较试验测量值和预估值。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊5.1 荷载-纵筋应变

图7 荷载-纵筋应变图

从图中可以看出,大偏心受压柱类似于受弯构件,分为受拉区和受压区,而且受拉区应变增长速率大于受压区,钢筋首先达到屈服强度。

5.2 荷载-混凝土应变

图8 荷载-混凝土应变图

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

可以从图中看出位移计1、3并不是成线性增长,而且46-9号通道测量的是受拉区的应变却在加载的开始呈现压应变,猜测是位移计在测量时出现的故障,也可能是混凝土开裂对位移计的测量产生影响。排除掉46-9,在0→10kN的荷载范围内,认为混凝土处于弹性阶段,应变基本符合平截面假定。

5.3 荷载-挠度

图9荷载-挠度曲线图

5.4 荷载-曲率

图10 荷载-曲率曲线图

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊5.5 构件承载力分析

kN

N

A

AC

h

A

C

h

bh

B

bh

A

a

h

A

f

bh

f

e

N

bh

f

N

mm

A

A

mm

a

h

h

mm

a

h

e

e

mm

d

c

a

a

cu

s

s

s

s

y

c

c

S

S

s

s

s

27

.

133

656

.0

2

4

B

B

-

52

.

9663563

)

21

99

(

08

.

226

548

)

(

-f

8125920

)

99

139

(

99

120

1.

17

1

-e

f

10055826

2

99

120

1.

17

1

2

f

)

(

)

5.0

1(

08

.

226

2

6

14

.3

99

21

120

139

21

120

5.0

100

5.0

21

2

12

15

2

2

y

c

1

2

2

c

1

2

c

1

c

1

2

2

s

=

=

-

+

=

-

=

-

?

?

-

=

'

-

'

'

=

=

-

?

?

?

?

=

=

=

?

?

?

=

=

'

-

'

'

+

-

=

=

=

?

?

=

'

=

=

-

=

-

=

=

-

?

+

=

-

+

=

=

+

=

+

=

'

=

ξ

α

α

α

ξ

ξ

α

ξ

α

预估该构件极限承载力为133.27kN,而实际测得的承载力为92.344kN,比与估值低出了30%。推测造成差距的原因为:

(1)材料性能的不确定性。由于混凝土材料是一种各项异性材料,而且即便使用相同的配比的混凝土材料性质也会有不同。而且材性试验中钢筋的屈服强度甚至达到了548MPa,远远超出了标准值,然而试验构件中的材料可能没有达到材料试验中的材料强度,致使实际测得的承载力小于理论值。

(2)计算该构件极限承载力的时候采用的是简化分析办法,按照合力大小不变、合力作用点位置不变的原则,将截面混凝土应力的曲边形图形简化成等效矩形时,大偏心受压的合力比折算值要大,即大偏心受压计算时偏于安全的。然而实际值却甚至小于理论值,可以推测本试验材料性能造成的误差远远大于计算模式造成的误差。

(3)构件的尺寸可能和设计值不符合,使承载力低于理论值。

6结论

这次试验我充分了解了大偏心受压柱的破坏过程。大偏心受压构件的应力分布类似于双筋适筋梁受弯。随着荷载的加大,受拉区的混凝土出现横向裂缝退出工作,该区的钢筋承担大部分拉应力而使其应力和应变增速加快,裂缝增多并向受压区发展,受压区高度减小,混凝土应力增大。当受拉区的钢筋应变达到屈服应变的时候,钢筋屈服,截面处形成一主裂缝。但受压区混凝土压应变达到其极限抗压应变时,受压区较薄弱处出现纵向裂缝,混凝土被压碎而使构件破坏。

同时,通过理论值和实测值的比较可以看出,在考虑到混凝土材料性能的不定性情况下,大偏心受压的计算是偏于安全的,实际的极限承载力要大于设计的理论值。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊附录一

极限承载力估算

kN

N

A

AC

h

A

C

h

bh

B

bh

A

a

h

A

f

bh

f

e

N

bh

f

N

mm

A

A

mm

a

h

h

mm

a

h

e

e

mm

d

c

a

a

cu

s

s

s

s

y

c

c

S

S

s

s

s

71

.

87

551

.0

2

4

B

B

-

4.

5907470

)

21

99

(

08

.

226

335

)

(

-f

6367680

)

99

139

(

99

120

4.

13

1

-e

f

7880004

2

99

120

4.

13

1

2

f

)

(

)

5.0

1(

08

.

226

2

6

14

.3

99

21

120

139

21

120

5.0

100

5.0

21

2

12

15

2

2

y

c

1

2

2

ck

1

2

ck

1

ck

1

2

2

s

=

=

-

+

=

-

=

-

?

?

-

=

'

-

'

'

=

=

-

?

?

?

?

=

=

=

?

?

?

=

=

'

-

'

'

+

-

=

=

=

?

?

=

'

=

=

-

=

-

=

=

-

?

+

=

-

+

=

=

+

=

+

=

'

=

ξ

α

α

α

ξ

ξ

α

ξ

α

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊附录二:实验数据处理

荷载(kN)挠度(mm)曲率(10-6/mm)0.083-0.002 6.66667E-05

4.7860.2510.0006

9.9850.3860.000383333

14.8540.71850.001316667

19.6410.68150.0024

24.9220.99550.003

30.039 1.2950.0052

34.99 1.61750.005333333

39.941 1.97950.00605

45.058 2.2820.008016667

50.01 2.8390.0086

54.713 3.0510.009

60.242 3.50950.00945

65.111 4.064

70.64 4.3695

73.529 4.464

77.16 4.412

78.645 4.4535

80.873 4.413

84.339 4.329

86.072 4.2675

92.344 4.1

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊附录三:裂缝展开图

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

同济大学混凝土试验 梁剪压破坏实验报告

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊《混凝土结构基本原理》试验课程作业 L ENGINEERING 梁受剪试验(剪压破坏)试验报告 试验名称梁受剪试验(剪压破坏) 试验课教师林峰 姓名 学号 手机号 任课教师 日期2014年11月25日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1. 试验目的 通过试验学习认识混凝土梁的受剪性能(剪压破坏),掌握混凝土梁的受剪性能试验的测试方法,巩固课堂知识,加深对于斜截面破坏的理解。 2. 试件设计 2.1 材料和试件尺寸 试件尺寸(矩形截面):b×h×l=120×200×1800mm; 混凝土强度等级:C20; 纵向受拉钢筋的种类:HRB335; 箍筋的种类:HPB235; 2.2 试件设计 (1)试件设计依据 根据剪跨比l和弯剪区箍筋配筋量的调整,可将试件设计为剪压、斜压和斜拉破坏,剪压破坏的l满足1≤l≤3。进行试件设计时,应保证梁受弯极限荷载的预估值比剪极限荷载预估值大。 (2)试件参数如表1 表1 试件参数 试件尺寸(矩形截面)120×200×1800mm 下部纵筋②218 上部纵筋③210 箍筋①φ6@150(2) 纵向钢筋混凝土保护层厚度15mm 配筋图见图1 加载位置距离支座400mm 12 3 图1 试件配筋图 (3)试件加载估算 ①受弯极限荷载 ) ( / 2 1 2 ' - ' ' = ' - = ' ' = s s y u s s s y y s s a h A f M A A A f f A A

┊ ┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ M u u P 2.0 M= uM P=105.25kN ②受剪极限承载力 sv u tk0yk0 1.75 1 A V f bh f h s l =+ + uQ u 2 P V = 其中,当 1.5 l<时,取 1.5 l=,当3 l>时,取3 l=。 uQ P=65.98kN 可以发现 uQ P< uM P,所以试件会先发生受剪破坏。具体计算过程见附录一。 2.3 试件的制作 根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定,成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 取样或拌制好的混凝土拌合物,至少用铁锨再来回拌合三次。 将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口。 采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度为20±2℃的不流动的氢氧化钙饱和溶液中养护。标准养护龄期为28d(从搅拌加水开始计时)。 3.材性试验 3.1 混凝土材性试验 凝土强度实测结果 试块留设时间: 2014年9月25日 试块试验时间: 2014年12月8日 试块养护条件:与试件同条件养护 1 2 1 1 1 1 ) 5.0 1( u u u c u s y c M M M bh f M A f bh f +' = - = = ξ ξ α ξ α

最新整理大偏心受压柱学习资料

同济大学 混凝土结构基本原理 实验报告 (共9页) 姓名梁炜炼 学号1350240 专业建筑工程 学院土木工程学院 指导老师鲁亮 同济大学结构工程与防灾研究所2015年12月28日

1.实验目的和内容 1.1、试验目的 通过试验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土大偏心受压构件基本性能的试验方法。 1.2、试验内容 对大偏心短柱施加轴向荷载直至破坏。观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。 2.试件介绍 (1)试件设计的依据 为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作用位置,即偏心距e0=200mm,使试件的破坏状态为大偏心受压破坏。 (2)试件的主要参数 ①试件尺寸 截面尺寸:200×400mm2 (两端);200×200mm2 (中部); 试件长度:1300mm; ②混凝土强度等级:C25

③纵向钢筋:8B18(两端);4B18(中部)。 ④箍筋:8Φ8@50(两端);4Φ8@100(中部); ⑤纵向钢筋混凝土保护层厚度:25mm ⑥试件的配筋情况(如上图所示); ⑦取偏心距e0=200mm 3. 试件材料力学性能试验结果 钢筋力学性能试验结果 4. 试件验算 柱极限承载力 不妨令:2 1c 02 f bh A α= ,1c 00()B f bh e h α=-,y s 0s ()C f A h a '''=--, 从而有:ξ=

KN N mm e e h A f bh f e N bh f N cu s S y o c cu o c cu 5.261238 .0, 266a -h 5.0)()5.01(s 0'0''2 11==∴=+=-+-==ξαξξαξ α 5. 试验方法 5.1加载装置 柱偏心受压试验的加载装置如图所示。采用千斤顶加载,支座一端为固定铰支座,另一端为滚动铰支座。铰支座垫板应有足够的刚度,避免垫板处混凝土局压破坏。 图5.1 柱偏心受压试验加载装置 5.2 加载方式 (1)单调分级加载机制 实际的加载等级为0-20kN-40kN-60kN-80kN-100kN-120kN-破坏 5.3量测内容 (1)纵筋应变 由布置在柱内部纵筋表面的应变计量测,钢筋应变测点布置如下图。

同济大学混凝土结构设计原理考试试卷及答案

同济大学混凝土结构设计原理考试试卷 一、选择(每小题2分,共24分) 1. 混凝土轴心抗压强度试验标准试件尺寸是()。 A.150×150×150;B.150×150×300; C.200×200×400;D.150×150×400; 2. 复合受力下,混凝土抗压强度的次序为:() A .Fc1 < Fc2 < Fc3;B. Fc2 < Fc1 < Fc3;C. Fc2 < Fc1 = Fc3;D.Fc1 = Fc2 < Fc3; 3. 仅配筋不同的梁(1、少筋;2、适筋;3、超筋)的相对受压区高度系数ξ() A. ξ3>ξ2>ξ 1 B. ξ3=ξ2>ξ 1 C. ξ2>ξ3>ξ 1 D. ξ3>ξ2=ξ 1 4. 受弯构件斜截面承载力计算中,通过限制最小截面尺寸的条件是用来防止()。 A.斜压破坏;B.斜拉破坏;C.剪压破坏;D.弯曲破坏; 5. ( )作为受弯构件正截面承载力计算的依据。 A.Ⅰa状态;B.Ⅱa状态;C.Ⅲa状态;D.第Ⅱ阶段; 6.下列哪种方法可以减少预应力直线钢筋由于锚具变形和钢筋内缩引起的预应力损失?( ) A.两次升温法;B.采用超张拉;C.增加台座长度;D.采用两端张拉; 7. 用ηei≥(或<=0.3h0作为大、小偏心受压的判别条件() A 是对称配筋时的初步判别; B 是对称配筋时的准确判别; C 是非对称配筋时的准确判别; D 是非对称配筋时的初步判别; 8. 梁的剪跨比减小时,受剪承载力() A 减小; B 增加; C 无影响; D 不一定; 9.配置箍筋的梁中,b、fc、h三因素哪个对提高抗剪承载力最有效?() A h; B fc; C b; D h、b; 10.矩形截面非对称配筋的小偏拉构件() A 没有受压区,A's不屈服; B 没有受压区,A's受拉屈服; C 有受压区,A's受压屈服; D 有受压区,A's不屈服;

钢筋混凝土偏心受压构件正截面受压性能实验

钢筋混凝土偏心受压构件正截面受压性能实验 3.1 实验目的 1.掌握制定结构构件试验方案的原则,偏心受压构件正截面受压性能试验的加荷方案和测试方案的设计方法。 2.通过偏心受压构件正截面受压性能试验,了解受压构件发生偏心受压破坏时承载力大小,侧向挠曲变化及裂缝出现和发展过程、破坏特征。 3.掌握偏心受压构件正截面承载力的测定方法,验证偏压构件正截面承载力计算方法。 4.了解偏压构件正位或卧位试验的试件安装、加载装置和加载方法,以及常用结构实验仪器的使用方法。 5.初步掌握结构实验测量数据的整理和分析,实验分析报告的撰写。 3.2 试件及测点布置 3.3 实验设备及材料 1.静力试验台座、反力架、支座及支墩 2.高压油泵全套设备或手动式液压千斤顶 3.荷重传感器

3.4 实验步骤 (一)试验准备 1. 试件的考察,记录相关数据。 2. 混凝土和钢筋力学性能试验。 3. 试件两侧用稀石灰刷白试件,用铅笔画50mm×50mm 的方格线(以便观测裂缝),粘贴应变片或百分表应变装置。 (二)试验加载 1. 由教师预先安装或在教师指导下由学生安装试验柱,布置安装试验仪表,要求试验柱垂直、稳定、荷载着力点位置正确、接触良好,并作好试验柱的安全保护工作。 2. 对试验柱进行预加载,利用力传感器进行控制,加荷值可取破坏荷载的10%,分三级加载,每级稳定时间为1 分钟,然后卸载,加载过程中检查试验仪表是否正常。 3. 调整仪表并记录仪表初读数。 4. 按估算极限荷载值的10%左右对试验柱分级加载(第一级应考虑自重),相邻两次加载的时间间隔为2~3 分钟。在每级加载后的间歇时间内,认真观察试验柱上是否出现裂缝,加载后持续2 分钟后记录电阻应变仪、百分表和手持式应变仪读数。 5. 当达到试验柱极限荷载的90%时,改为按估算极限荷载的5%进行加载,直至试验柱达到极限承载状态,记录试验柱承载力实测值。 6. 当试验柱出现明显较大的裂缝时,撤去百分表,加载到试验柱完全破坏,记录混凝土应变最大值和荷载最大值。 7. 卸载,记录试验柱破坏时裂缝的分布情况。 (三)承载力极限状态确定方法 对柱试件进行偏压承载力试验时,在加载或持载过程中出现下列标记即可认为该结构图 柱偏心受压试验示意图

混凝土结构设计原理习题之四五含复习资料钢筋混凝土受压受拉构件承载力计算试题

混凝土结构设计原理习题集之四 6 钢筋混凝土受压构件承载力计算 一、填空题: 1.偏心受压构件的受拉破坏特征是______________________________________ , 通常称之 为_____ ;偏心受压构件的受压破坏特征是 _________________________________ , 通常称之为_______ 。 2.矩形截面受压构件截面,当l/h__ 时,属于短柱范畴,可不考虑纵向弯曲的影0响,即 取___ ;当l/h___ 时为细长柱,纵向弯曲问题应专门研究。0 3.矩形截面大偏心受压构件,若计算所得的ξ≤ξ,可保证构件破坏时 ____ ;b x=ξh≥2a′可保证构件破坏时_______ 。s0b 4.对于偏心受压构件的某一特定截面(材料、截面尺寸及配筋率已定),当两种荷载组合同为大偏心受压时,若内力组合中弯矩M值相同,则轴向N越__ 就越危险;当两种荷载组合同为小偏心受压时,若内力组合中轴向力N 值相同,则弯矩M 越__ 就越危险。 5.由于轴向压力的作用,延缓了__ 得出现和开展,使混凝土的__ 高度增 加,斜截面受剪承载力有所___ ,当压力超过一定数值后,反而会使斜截面受剪承载力__ 。 6.偏心受压构件可能由于柱子长细比较大,在与弯矩作用平面相垂直的平面内发生 _____ 而破坏。在这个平面内没有弯矩作用,因此应按______ 受压构件进行承载 力复核,计算时须考虑______ 的影响。 7.矩形截面柱的截面尺寸不宜小于mm,为了避免柱的长细比过大,承载力降低过多,常取l/b≤,l/d≤(b为矩形截面的短边,d为圆形截面直径,l000为柱的计算长度)。 8.《规范》规定,受压构件的全部纵向钢筋的配筋率不得小于___ _ ,且不应超过 ___ 。 9.钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:_______ 和 _________ ;对于短柱和长柱属于______ ;细长柱属于______ 。 二、选择题: <2a′时,受拉钢筋截面面积A1.在矩形截面大偏心受压构件正截面强度计算中,当x的ss求法是() A.对受压钢筋的形心取矩求得,即按x=2a′求得。s B.要进行两种计算:一是按上述A的方法求出A,另一是按A′=0,x为未知,而求出s s A,然后取这两个A值中的较大值。ss C.同

同济大学土木工程优秀混凝土试验报告

混凝土结构基本原理实验报告书 学号: 姓名: 任课老师: 实验老师:林峰 实验组别: A6

梁斜拉QC1实验报告 一、试验原始资料的整理 1、试验对象的考察与检查 件尺寸(矩形截面):b×h×l=119×202×1800mm; 构件净跨度:1500mm; 混凝土强度等级:C20; 纵向受拉钢筋的种类:HRB335; 箍筋的种类:HPB300; 纵向钢筋混凝土保护层厚度:15mm; 试件表面刷白,绘制50mm*50mm的网格。 2、材料的力学性能试验结果 混凝土抗压强度试验数据 试验内容:混凝土立方体试块抗压强度 试件编号 试件尺寸 (mm)试件破坏荷载 (kN) 试件承压面积 (mm2) 强度评定 (MPa) 1100×99×100184990018.586 2100×99×100194990019.596 3100×99×100188990018.990 平均19.057试验内容:混凝土棱柱体试块轴心抗压强度 试件编号 试件尺寸 (mm)试件破坏荷载 (kN) 试件承压面积 (mm2) 强度评定 (MPa) 199×100×298124990012.525 299×100×298132990013.333 399×100×313108990010.909 平均12.256 =18.1MPa= 11.6MPa 钢筋拉伸试验数据

钢筋Φ4Φ6Φ8Φ10Φ12Φ14Φ18Φ22 (M Pa)316.94 6 302.2449 222.4077 466.1718 398.4823 422.1161 408.3805 492.927 (M Pa)372.21 2 474.8413 170.7887 677.7483 557.2487 656.7253 614.0465 676.213 3、试验计划与方案及实施过程中的一切变动情况记录 3.1梁受弯性能概述 根据梁正截面受弯破坏过程及破坏形态,可将梁分为适筋梁、超筋梁和少筋梁三种类型。下面以纯弯段内只配置纵向受拉钢筋的截面为例,说明这三种破坏模式[7]。 a)适筋梁的受弯破坏过程 b)超筋梁的受弯破坏过程 c)少筋梁的受弯破坏过程 3.2试验目的和要求 a)参加并完成规定的实验项目内容,理解和掌握钢筋混凝土适筋梁受弯实验的实验方 法和实验结果,通过实践掌握试件的设计、实验结果整理的方法。 b)写出实验报告。在此过程中,加深对混凝土适筋梁受弯性能的理解。 3.3试件设计和制作 (1)试件设计的依据 根据剪跨比 和弯剪区箍筋配筋量的调整,可将试件设计为剪压、斜压和斜拉破坏。 进行试件设计时,应保证梁受弯极限荷载的预估值比剪极限荷载预估值大。 (2)试件的主要参数 件尺寸(矩形截面):b×h×l=120×200×1800mm; 构件净跨度:1500mm; 混凝土强度等级:C20; 纵向受拉钢筋的种类:HRB335; 箍筋的种类:HPB300; 纵向钢筋混凝土保护层厚度:15mm; 试件的配筋情况见表3.3.1和图3.3.1; 试件 编号试件特征配筋情况 加载位置 b(mm) 预估受剪 极限荷载 预估受弯 极限荷载

钢筋混凝土结构设计原理第六章偏心受压构件承载力

第六章 偏心受压构件承载力 计 算 题 1.(矩形截面大偏压) 已知荷载设计值作用下的纵向压力KN N 600=,弯矩KN M 180=·m,柱截面尺寸mm mm h b 600300?=?,mm a a s s 40'==,混凝土强度等级为C30,f c =14.3N/mm 2,钢筋用HRB335级,f y =f ’y =300N/mm 2,550.0=b ξ,柱的计算长度m l 0.30=,已知受压钢筋2'402mm A s =(),求:受拉钢筋截面面积A s 。 2.(矩形不对称配筋大偏压) 已知一偏心受压柱的轴向力设计值N = 400KN,弯矩M = 180KN·m,截面尺寸m mm h b 500300?=?,mm a a s s 40'==,计算长度l 0 = 6.5m, 混凝土等级为C30,f c =14.3N/mm 2,钢筋为HRB335,, 2'/300mm N f f y y ==,采用不对称配筋,求钢筋截面面积。 3. (矩形不对称配筋大偏压) 已知偏心受压柱的截面尺寸为mm mm h b 400300?=?,混凝土为C25级,f c =11.9N/mm 2 , 纵筋为HRB335级钢,2'/300mm N f f y y ==,轴向力N ,在截面长边方向的偏心距mm e o 200=。距轴向力较近的一侧配置4 16纵向钢筋2804'mm A S =,另一侧配置220纵向钢筋2628mm A S =,,35'mm a a s s ==柱的计算长度l 0 = 5m 。求柱的承载力N 。 4.(矩形不对称小偏心受压的情况) 某一矩形截面偏心受压柱的截面尺寸,500300mm mm h b ?=?计算长度,40,6'0mm a a m l s s ===混凝土强度等级为C30,f c =14.3N/mm 2,0.11=α,用HRB335级钢筋,f y =f y ’=300N/mm 2,轴心压力设计值N = 1512KN,弯矩设计值M = 121.4KN ·m,试求所需钢筋截面面积。 5.(矩形对称配筋大偏压) 已知一矩形截面偏心受压柱的截面尺寸,400300mm mm h b ?=?柱的计算长度mm a a m l s s 35,0.3'0=== ,混凝土强度等级为C35,f c = 16.7N/mm 2,用HRB400级钢筋

大偏心受压总结

不对称配筋('s s A A ≠)大偏心受压计算总结 计算简图 解决的两类问题:截面设计和截面复核 (一) 截面设计(配筋计算): 1、已知轴力设计值N 和弯矩设计值M ,材料强度和截面尺寸,求s A 和's A 解题思路:未知数有s A 、's A 和x (隐藏未知数)三个,方程无唯一解,按照总钢量' s s A A +最小,即b ξ ξ=时计算。 计算步骤: (1) 判断大小偏心: i a M e e N = +,2m M C M η=(M 2为 M 2 和M 1的较 大值), 12 0.70.3 m M C M =+,00.3i e h >时就先按大偏心受压进行计算。 当/6c l h <时就不考虑弯矩增大系数η影响,即η=1; 当/6c l h >时,2 01 1( )1300/c c i l e h h η?=+ , 0.5c c f bh N ?= (2) 确定e 值:2i h e e a =+- 1' 10()() 2 c y s y s c y s o N f bx f A f A x N e f bx h f A h a αα''=+-''=- + -

(3) 把b ξξ=代入方程组可得: 先由公式2求出2 100(10.5) () c b b s y N e f bh A f h a αξξ--'= ''-。 (4) 由公式1求出1c b o y s s y f b h f A N A f αξ''+-= 并配筋 (5) 检验2'x a >(0b x h ξ=) m in s s A A bh ρρ'+= 总>(查书242表17)且不大于5%; As m ax(0.45 ,0.2%)s t y A f bh f ρ= ≥ A s''0.2% s A bh ρ= ≥(一侧受压钢筋配筋率不小于0.2%) (6) 验算垂直于弯矩作用平面轴心受压承载力: 0.9()u c y s s N f A f A A N ?''??=++≥??,即满足要求。 2、已知N 、M 和's A ,求s A :(未知数是x 和s A ) (1) 判断大小偏心: i a M e e N = +,2m M C M η= (2) 先由公式2求得x 值,要解一个二次方程,引入两个系数s α和ξ 求解,并判断b ξ ξ≤且2'x a >都成立。 (3) 由公式1求得1c y s s y f bx f A N A f α''+-= (注意:当b ξξ>,表示's A 不足,则需要按照's A 未知重新计算;当2'x a < 则按照=2'x a 计算,即砼压力合力作用力和's A 合力重合,对此求矩, 102' 10(10.5)() c b y s y s c b b y s o N f b h f A f A N e f bh f A h a αξαξξ''=+-''=-+ -1' 10(() 2 c y s y s c y s o N f bx f A f A x N e f bx h f A h a αα''=+-''=- + -

钢筋混凝土柱偏心受压试验指导书

《土木工程结构试验》钢筋混凝土柱偏心受压 试验指导书 土木与建筑学院结构中心 二00九年三月

钢筋混凝土柱偏心受压试验指导书 一、试验目的 1.通过试验初步掌握钢筋混凝土偏心受压柱静载试验的程序和方法。 2.通过试验了解钢筋混凝土偏心受压柱的破坏过程及其特征。 3.通过试验理解纵向弯曲对钢筋混凝土偏心受压构件的影响。 4.培养结构试验与量测的动手能力和科学研究的分析能力。 二、试验设备及装置 试验设备包括压力试验机及单刀铰支座等附属设备、静态电阻应变仪、百分表及读数放大镜等。 试验柱置于压力机台座上,通过单刀铰支座加载,连接由压力机读取荷载读数,用应变片测试验柱中部截面应变,用百分表量测跨中侧向挠度,用读数放大镜量测裂缝宽度。试验装置如图1所示。 图1 试验装置示意图 三、试验步骤 1.在试验柱中部截面粘贴应变片。 2.由教师预先安装或在教师指导下由学生安装试验柱,按似定的偏心距调整试验柱上加载点的位置,布置百分表,连接应变片到应变仪。 3.记录试验梁编号、尺寸、配筋数量和有关数据及指标。 4.检查仪表,调整仪表初读数。 5.利用压力机控制进行分级加载(试验柱出现裂缝前,每级荷载可定为其估算破坏荷载的十分之一左右,试验梁出现裂缝后,每级荷载可定为估算破坏荷载的五分之一左右)。相邻两级加载的时间间隔,在试验柱出现裂缝前为2~3分钟,在试验柱出现裂缝后为5~10分钟。 6.参照估算的试验柱开裂荷载值,分级缓慢加载,加载间隙注意观察裂缝是否出现。发现第一条裂缝后记录前一级荷载下压力机荷载读数。在第一条裂缝出现后继续注意观察裂缝的出现和开展情况。 7.每级加载后,在间歇时间内测读并记录应变仪、百分表以及压力机荷载

同济大学混凝土试验大偏心受压柱试验报告

《混凝土结构基本原理》试验课程作业 L ENGINEERING 试验报告 试验课教师林峰 姓名 学号 手机号 任课教师顾祥林

《混凝土结构基本原理》试验课程作业 L ENGINEERING 大偏心受压柱试验报告 试验名称大偏心受压柱试验 试验课教师林峰 姓名 学号 手机号 任课教师

日期2014年11月18日

1. 试验目的 通过试验了解大偏心受压柱破坏的全过程,掌握测试混凝土受压构件基本性能的试验方法。同时巩固大偏心受压柱承载力的计算方法,并通过对理论值和试验值的比较加深对混凝土基本原理的理解。 2. 试件设计 2.1 材料和试件尺寸 混凝土:C20 钢筋:使用I级钢筋作为箍筋,II级钢筋作为纵筋 试件尺寸(矩形截面):b×h×l=120×120×870mm 详细尺寸见图1大偏心受压柱配筋图 2.2 试件设计 (1)试件设计的依据 为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作用位置,即偏心距e0,使试件的破坏状态为大偏心受压破坏。 (2)试件参数如表1 表1 试件参数表 试件尺寸(矩形截面)b×h×l=120×120×870mm 纵向钢筋(对称配筋)4 12 箍筋Φ6@100(2) 纵向钢筋混凝土保护层厚度15mm 配筋图图1 偏心距e0100mm

120200 80135135 5050 500 870 200 200 22 1 1 3 8@50 4 6@100 150200 50 120 6φ124φ12 3 8@50 4φ12 120 120 1-12-2 柱试件立面图3 8@50 3 8@50 4双向钢丝网2片 尺寸170x90 4双向钢丝网2片 尺寸170x90 8@50 8@50 6@100 图1 大偏心受压柱配筋图 (3)试件承载力估算 N c =α1f c bh 0ζ N c e=α1f c bh 02 ζ(1-0.5ζ) + f y ’ A s ’(h 0-a s ’) e=e 0+0.5h-a s 不妨令:A= 2 f 2 0c 1bh α, B=) (00c 1-e f h bh α, C=)(f -0y ' -''s s h A α 从而有:A AC 24B B -2-+=ξ 得出本次试验试件的极限承载力的预估值为:Ncu=87.71kN 详细计算过程见附录1 2.3 试件的制作 根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定, 成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 取样或拌制好的混凝土拌合物,至少用铁锨再来回拌合三次。 将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口。 采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度为20±2℃的不流动的氢氧化钙饱和溶液中养护。标准养护龄期为28d (从搅拌加水开始计时)。 3.材性试验

(完整版)同济大学《混凝土结构基本原理》试卷A含答案)

同济大学本科课程期末考试统一命题纸 A 卷 课 程:混凝土结构基本原理(重修) 班 级: 专 业:土木工程 学 号: 任课老师:林峰 姓 名: 出考试卷教师签名:林峰 教研室主任签名: 日前:2006年6月3日 二、计算题(40分,每题10分) 1.某钢筋混凝土梁的截面尺寸为b=250mm , h=600mm , 保护层厚25mm ,受压区已配有3φ22的纵筋,混凝土和钢筋材料的性能指标为fc=13N/mm 2, ft=1.2N/mm 2,fy=310N/mm 2,Es=1.97x105N/mm 2。承受的弯矩M =330kN *m ,求所需受拉钢筋As 。 注:s y b E f 0033.018 .0+ = ξ 2.如图所示的钢筋混凝土简支梁bxh=120mm x200mm , 保护层厚15mm ,承受两集中荷载作用,混凝土强度等级为C20(f c =9.6MPa , f t =1.1MPa ),梁内通长配置双肢箍筋Ф6@100(fy=210MPa ),不计梁自重, (1)画出该梁的剪力分布图; (2)如果梁中出现斜裂缝,请指出其可能的位置和裂缝形状; (3)当梁受斜截面抗剪强度控制时,极限荷载P=?。 注:0 0175.1h s A f bh f V sv yv t u ++= λ 3.某矩形截面偏心受压柱,bxh=500mm x800mm , mm A A s s 40' ==, l 0=12.5m , 混凝土C30, fc=14.3N/mm 2, 纵向钢筋HRB335,300' ==f y f f N/mm 2,Es=2x105N/mm 2, 承受设计轴向力Nc=1800kN , 设计弯矩M=1080kN *m , 采用不对称配筋,试求s A 及' s A 。 注:已知21.1=η 4.先张法预应力轴心受拉杆,截面尺寸200mm x200mm , 混凝土C40,已配置9ФHT 10预应力,张 拉控制应力2/1000mm N con =σ,无非预应力筋,第一批预应力损失2 /68mm N l =I σ,第二批预应力损伤2 /52mm N l =∏σ,试计算:(1)施工时混凝土的预应力c σ;(2)使用荷载加至多少 时使混凝土的法向压应力为零;(3)使用荷载加至多少时构件即将出现裂缝;(4)构件的极限承载能力是多少? 二、简答题(60分,每题5分) 1. 请画出单调荷载作用下有明显流幅钢筋的应力-应变曲线,对其做必要的解释,并画出适用于该应 力-应变曲线的二种理论模型。 2. 什么是钢筋的疲劳强度?它在我国具体是如何确定的? 3. 如何确定混凝土立方体抗压强度、轴心抗压强度和轴心抗拉强度? 4. 什么是混凝土的徐变?画出并简述混凝土棱柱体徐变试验得到的应变-时间曲线。徐变对混凝土结 构构件的性能有什么影响? 5. 简述光圆钢筋与混凝土粘结作用产生的机理。 6. 为什么在混凝土轴心受压短柱中,不宜采用屈服强度较高(比如Mpa f y 400'>)的钢筋? 7. 画出混凝土偏心受压构件的u cu M N -相关曲线并对其做必要的说明。 8. 混凝土有腹筋梁的斜截面破坏形式有几种?分别简述之。 9. 简述基于承载力的弯剪扭构件截面设计步骤。即已知截面尺寸(b, h, h 0),材料强度(f c , f t , f y , f yv ) 及作用在构件上的弯矩M ,剪力V 和扭矩T ,求纵筋和箍筋的用量。 10 请简述预应力受弯构件和预应力轴心受拉构件预应力度的概念。 11.请按①施工期间产生的裂缝和 ②使用期间随时间发展的裂缝 简述裂缝的成因与特点。 12.请以图示说明,什么是计算受弯构件变形时采用的最小刚度原则。 120 200

6章大偏心受压总结总结

大对称配筋('s s A A ≠)大偏心受压计算总结 计算简图 解决的两类问题:截面设计和截面复核 (一) 截面设计(配筋计算): 1、已知轴力设计值N 和弯矩设计值M ,材料强度和截面尺寸,求s A 和's A 解题思路:未知数有s A 、's A 和x (隐藏未知数)三个,方程无唯一解,按照总钢量's s A A +最小,即b ξξ=时计算。 计算步骤: (1) 判断大小偏心: i a M e e N = +,2m M C M η=(M 2为M 2 和M 1的较大值),1 2 0.70.3 m M C M =+,00.3i e h >时就为大偏心受压。 当/6c l h <时就不考虑弯矩增大系数η影响,即η=1; 当/6c l h >时,2011()1300/c c i l e h h η?=+ , 0.5c c f bh N ?= (2) 确定e 值: 2 i h e e a =+- 1'10()() 2 c y s y s c y s o N f bx f A f A x Ne f bx h f A h a αα''=+-''=-+ -

(3) 把b ξξ=代入方程组可得: 先由公式2求出2 100(10.5) () c b b s y Ne f bh A f h a αξξ--'=''-。 (4) 由公式1求出1c b o y s s y f b h f A N A f αξ''+-=并配筋 (5) 检验2'x a >(0b x h ξ=) min s s A A bh ρρ' += 总>(查书242表17)且不大于5%; As max(0.45,0.2%)s t y A f bh f ρ= ≥ As'' 0.2%s A bh ρ= ≥(一侧受压钢筋配筋率不小于0.2%) (6) 验算垂直于弯矩作用平面轴心受压承载力: 0.9()u c y s s N f A f A A N ?''??=++≥??,即满足要求。 2、已知N 、M 和's A ,求s A :(未知数是x 和s A ) (1) 判断大小偏心: i a M e e N = +,2m M C M η= (2) 先由公式2求得x 值,要解一个二次方程,引入两个系数s α和ξ 求解,并判断b ξξ≤且2'x a >都成立。 (3) 由公式1求得1c y s s y f bx f A N A f α''+-= (注意:当b ξξ>,表示's A 不足,则需要按照's A 未知重新计算;当2'x a < 102'10(10.5)() c b y s y s c b b y s o N f b h f A f A Ne f bh f A h a αξαξξ''=+-''=-+ -1'10()() 2 c y s y s c y s o N f bx f A f A x Ne f bx h f A h a αα''=+-''=-+ -

大偏心受压柱汇总

同济大学 混凝土结构基本原理实验报告 (共页)9 姓名梁炜炼 号学1350240 专业建筑工程 学院土木工程学院

指导老师鲁亮 同济大学结构工程与防灾研究所 年月日20151228 页9共混凝土结构基本原理实验报告第1页 实验目的和内容.1 、试验目的1.1 通过试验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土大偏心受压构件基本性能的试验方法。 、试验内容1.2 对大偏心短柱施加轴向荷载直至破坏。观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。 试件介绍2.

)试件设计的依据1( l0/h≤5。通过为减少“二阶效应”的影响,将试件设计为短柱,即控制 使试件的破坏状态为大偏心受压e0=200mm,调整轴向力的作用位置,即偏心距破坏。 )试件的主要参数2( ①试件尺寸 22);中部(两端);200×200mm(截面尺寸:200×400mm ;试件长度:1300mm C25②混凝土强度等级: 页共混凝土结构基本原理实验报告9第2页 。));4B18(中部③纵向钢筋:8B18(两端 ;(中部);4Φ8@100④箍筋:8Φ8@50(两端) 25mm⑤纵向钢筋混凝土保护层厚度: ;⑥试件的配筋情况(如上图所示) e0=200mm⑦取偏心距 试件材料力学性能试验结果3. 钢筋力学性能试验结果

)/kN)平均值(MPa%)/mm延伸率(面积极限强度屈服强度/kN屈服强度(MPa)平均值(MPa)极限抗拉强度(钢筋类型MPa钢筋直 481.46.055.48436.117477.9光圆钢12.574430.1474.35.96424.120 5.33 637.31118.02554.615.68640.3628.27螺纹钢573.0643.31118.19 16.72591.3 545.715.43400.411.3222光圆钢628.27547.3392.2 548.920384.110.8615.52 691.132.911734.74654.7691.3螺纹钢850.27646.7 691.5638.632.11634.76 570.220.63410.428.662150.278光圆钢570.9413.3 571.6416.228.732420.92 618.82395.2582.09533.3618.4153.94螺纹钢14533.6618.118 82.18533.995.15 625.822118.17464.4159.24254.47螺纹钢18624.8467.2 623.824119.59470.0158.74 595.0186.94410.8129.0725596.4314.16螺纹钢20414.9 597.8187.81419.026131.62混凝土试块强度试验结果 序号试块尺寸荷载(kN)强度(MPa)33.2746.91 150*150*15033.32749.1 32.83737.6)MPa平均值(33.1 4.试件验算 柱极限承载力2bhf????,,,01c)A(h?af?)?(f?BbhehC?不妨令:A?? ss0yc1002

大小偏心受压计算

矩形截面偏心受压构件正截面的承载力计算 一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算 (1)计算公式 由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式: s y s y c A f A f bx f N -+=''1α (7-23) ()'0''012a h A f x h bx f Ne s y c -+??? ? ? -=α (7-24) 式中: N —轴向力设计值; α1 —混凝土强度调整系数; e —轴向力作用点至受拉钢筋A S 合力点之间的距离; a h e e i -+ =2 η (7-25) a i e e e +=0 (7-26) η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算; e i —初始偏心距;

e 0 —轴向力对截面重心的偏心距,e 0 =M/N ; e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。 (2)适用条件 1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求 b x x ≤ (7-27) 式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。 2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足: ' 2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。 (二)小偏心受压构件正截面受压承载力计算

(1)计算公式 根据力的平衡条件及力矩平衡条件可得 s s s y c A A f bx f N σα-+=''1 (7-29) ??? ??'-+?? ? ? ?- =s s y c a h A f x h bx f Ne 0' '012α (7-30) () '0''1'2s s s s c a h A a x bx f Ne -+?? ? ??-=σα (7-31) 式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ; σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:

第七章钢筋混凝土偏心受力构件承载力计算

第七章钢筋混凝土偏心受力构件承载力计算本章的基本要求: 1、了解偏心受压构件的受力特性;掌握两类偏心受压构件的判别方法; 2、熟悉偏心受压构件的二阶效应及计算方法; 3、掌握两类偏心受压构件正截面承载力的计算方法; 4、了解双向偏心受压构件正截面承能力计算; 5、掌握偏心受拉构件的受力特性及正截面承载力计算; 6、掌握偏心受力构件斜截面受剪承载力计算。 偏心受力构件:偏心受力构件是指纵向力N作用线偏离构件轴线或同时作用轴力及弯矩的构件,包括偏心受压构件见图7-1(a)、(b)和偏心受拉构件见图7-1(c)、(d)。 图7-1 偏心受力构件受力形态 工程中大多数竖向构件(如单层工业厂房的排架柱,多层及高层房屋的钢筋混凝土墙、柱等)都是偏心受压构件;而承受节间荷载的桁架拉杆、矩形截面水池的池壁等,则属于偏心受拉构件。 钢筋混凝土偏心受压构件多采用矩形截面,截面尺寸较大的预制柱可采用工字形截面和箱形截面,公共建筑中的柱多采用圆形截面。偏心受拉构件多采用矩形截面。

图7-2 偏心受力构件的截面形式 §7-2 偏心受压构件正截面承载力计算 一、偏心受压构件正截面的破坏特征 (一)破坏类型 大量试验表明:构件截面中的符合平截面假定,偏压构件的最终破坏是由于混凝土压碎而造成的。其影响因素主要与偏心距的大小和所配钢筋数量有关。通常,钢筋混凝土偏心受压构件破坏分为2种情况 1、受拉破坏:当偏心距较大,且受拉钢筋配置得不太多时,发生的破坏属大偏压破坏。这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝土也能达到极限压应变,如图7—2a 所示。 2、受压破坏:当偏心距较小或很小时,或者虽然相对偏心距较大,但此时配置了很多的受拉钢筋时,发生的破坏属小偏压破坏。这种破坏特点是,靠近纵向力那一端的钢筋能达到屈服,混凝土被压碎,而远离纵向力那一端的钢筋不管是受拉还是受压,一般情况下达不到屈服。如图7—2b 、c 所 图7-3 受拉破坏和受压破坏时的截面应力

同济大学混凝土试验报告材料(超筋梁、梁斜拉破坏)

混凝土试验成果集 试验名称: 姓名: 学号: 试验老师: 任课老师: 手机号码:

1超筋梁受弯实验报告 (1) 1.1实验目的 (1) 1.2实验内容 (1) 1.3构件设计 (1) 1.3.1构件设计的依据 (1) 1.3.2试件的主要参数 (1) 1.3.3试件加载估算 (2) 1.4实验装置 (3) 1.5加载方式 (4) 1.5.1单调分级加载方式 (4) 1.5.2开裂荷载实测值确定方法 (4) 1.6测量内容 (5) 1.6.1混凝土平均应变 (5) 1.6.2钢筋纵向应变 (5) 1.6.3挠度 (5) 1.6.4裂缝 (6) 1.7实验结果整理 (6) 1.7.1荷载—挠度关系: (6) 1.7.2荷载—曲率关系: (7) 1.7.3荷载—纵筋应变关系: (8) 1.7.4裂缝发展情况描述及裂缝照片 (9) 1.8实验结论 (10) 1.9实验建议 (11) 2梁斜拉破坏试验报告 (12) 2.1实验目的 (12) 2.2实验内容 (12) 2.3试件的设计 (12) 2.3.1试件设计的依据 (12) 2.3.2试件的主要参数 (12) 2.3.3试件加载预估 (13) 2.4实验装置 (14) 2.5加载方式 (16) 2.6测量内容 (16) 2.6.1混凝土平均应变 (16) 2.6.2纵向钢筋应变 (16) 2.6.3挠度 (17) 2.7实验结果整理 (17) 2.7.1荷载—挠度关系: (17) 2.7.2荷载—曲率关系: (18) 2.7.3荷载—纵筋应变关系: (19) 2.7.4裂缝发展情况描述及裂缝照片 (20) 2.8试验结论 (21)

同济大学混凝土实验报告--少筋梁和偏压柱

混凝土结构基本原理 实验报告 (共页) 姓名: 学号: 专业: 学院: 指导老师: 同济大学结构工程与防灾研究所 2012年月日

一、实验目的和内容 1.1偏心受压柱 实验目的:通过试验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土小偏心受压构件基本性能的试验方法。 实验内容:对小偏心短柱施加轴向荷载直至破坏。观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。 1.2 少筋梁受弯 本实验通过试验研究认识钢筋混凝土少筋梁的破坏过程,掌握少筋梁受弯测试基本性能的试验方法。 (1)通过参加实验以及之后实验报告的整理,可以让我理解和掌握钢筋混凝土构件的试验方法和试验结果,通过实践掌握试件的设计、实验结果整理的方法。 (2)写出实验报告,在写报告的过程中加深对混凝土结构基本构件受力性能的理解(3)观察既有破坏构件,掌握裂缝观察与统计方法 二、试验方法 2.1 构件设计 2.1.1 受压柱 (1)试件设计的依据 为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作用位置,即偏心距e0,使试件的破坏状态为小偏心受压破坏。 (2)试件的主要参数 ①试件尺寸 截面尺寸:200×400mm2 (两端);200×200mm2 (中部); 试件长度:1300mm; ②混凝土强度等级:C25 ③纵向钢筋:8B18(两端);4B18(中部)。 ④箍筋:8Φ8@50(两端);4Φ8@100(中部); ⑤纵向钢筋混凝土保护层厚度;25mm ⑥试件的配筋情况(如下图所示): ⑦取偏心距e0=50mm

(3)试件承载力估算 按照《混凝土结构设计规范》给定的材料强度标准值及上述的计算公式,对于本次试验 构件的极限承载力的预估值为:Ncu= kN 2.1.2 少筋梁 (1)试件设计依据 根据梁的正截面受压区相对高度ξ和界限受压区相对高度ξb的比值判断的出受弯梁的类型:当ξ<ξb时为适筋梁或少筋梁,反之为超筋梁。受弯梁设计时采用的、分别为《混凝土结构设计规范》规定的钢筋受拉强度标准值和弹性模量。 由于是少筋梁,在设计配筋时还需要控制受拉钢筋的配筋率ρ,要求ρ不大于适筋构件的最小配筋率,其中: ξ ; ; (2)试件的主要参数 ①试件尺寸(矩形截面):; ②混凝土强度等级:C25;

相关主题
文本预览
相关文档 最新文档