当前位置:文档之家› 显微红外光学成像系统的设计_郭世苗

显微红外光学成像系统的设计_郭世苗

显微红外光学成像系统的设计_郭世苗
显微红外光学成像系统的设计_郭世苗

显微红外光学成像系统的设计

郭世苗,魏 臻,吴建东

(天津理工大学 电子信息工程学院,天津 300384)

引言

电子设备一旦出现故障,只有进行有效的元件级维修,才能使其正常运行。随着电子技术的迅速发展,被测试系统规模的不断扩大,大规模和超大规模集成电路的广泛使用,电路板上的元器件越来越密集;并且由于电路复杂,使电路板上集成芯片(IC)级故障的实时检测越来越困难。红外热像作为新兴的非接触式测试技术,用于电路板热故障实时检测时,不会因检测不慎而使元件受损,是一种有效的检测手段。同时,对电路板的可测性设计和测试连接设备均无需提出额外要求,能在一次测试中提取电路板上所有元器件的热像,并可进行多重故障诊断[1]。

红外显微系统是利用被测物体发出的红外射线对微小物体,如大规模集成电路板进行热成像,通过对所提取热像的分析,达到检测被观察物体工作状况的目的。红外显微镜作为一种先进的测试仪器,已被广泛的应用于各种领域。目前,红外显微镜仅在部分发达国家生产,且价格昂贵。国内的红外显微检测系统起步较晚,尚无生产红外显微镜的厂家,拥有进口红外显微镜的单位也很少。

1 红外热成像技术

背景 红外热成像技术是现代影像学的一支新军。该技术与 X射线、B超、CT、核磁共振等显像技术的成像原理不同,它不主动发射任何射线,只是被动地接收热源的红外辐射,形成热源的热影像,是热源的表面温度分布图像。

红外热成像技术的主要特点是能采样分布很广的温度值,经过分析处理,最后用伪彩色的形式在显示器上显示出被测物体表面的温度分布图像。通过对该图像的分析,可直观地得到被测物的形状、大小、热分布及热稳定等特性。

电路板在通电时,各元器件相对于室温有一个比较稳定的温度,因此,通过红外测温传感器对电路板上各元器件的分布温度进行有效的非接触测量,并将其数据输入计算机。然后,借助于处理软件把这些元器件上的温度信息转换成伪彩色图像信息,通过显示器提供给观察者。同时,建立同一电路板工作时的标准热模式,并对电路板芯片若干故障现象进行试验。通过对实验结果的比较分析,确定传感器测量值对各诊断元件的隶属度函数,并根据隶属度来确定故障元件。

标准化的制定 实际应用时,红外在线监测结果将受到设备运行情况和测试条件的影响而呈现不同的结果,所以,必须把多个在任意条件下得到的结果进行标准化处理,进行一定程度的统一,只有这样,才有可能做到结果的唯一化。

故障的判断 为了克服目前电路板故障红外诊断中对故障判定的人为性和经验性的影响,应深入开展红外诊断中的模式识别等逻辑诊断方法的研究,以便实现故障判别的人工智能化。虽然目前已经有人研制了一些检测用软件,但是这些软件设计基础还仅仅是己知设备故障的典型红外图谱,而且其数据文件尚未进行标准化处理,其智能化程度还很低。对于热源辨识、辐射率校准、环境温度校准、热像配准和温度信息等因素的处理还不是很理想。因此,这方面的研究工作还应进一步深入开展[2]。

2 红外热像仪

随着半导体技术的迅速发展,被测试系统规模的不断扩大,大规模和超大规模集成电路被广泛安装在印刷电路板(PCB)上。由于电路板上元器件密集,电路原理复杂,使得对数模混合电路板上集成

摘要 红外热成像技术是现代影像学中的一门新兴技术。它与x射线、B超、CT、核磁共振等显像技术的成像原理不同,它不主动发射任何射线,只是被动接受热源所发射出的红外线,经过处理后得到热源的影像。该技术的最大特点是不用接触待测物体。因此,对于一些高危行业,如核工业中元器件的检测将变得非常容易。

本文所叙述的就是利用红外热像技术与显微技术的结合,制作一种红外显微镜。红外显微镜可以将出现故障的大规模集成电路板中数以万计的微小元器件的影像传输到计算机中,经过计算机的分析,可以很容易地分析出具体故障所在。因此,大范围电子元器件故障的快速检测将变得简单、快捷。

关键词 红外热像;显微技术;红外显微镜

28

芯片(IC)级的故障诊断越来越困难。利用红外热像仪拍摄到的热图像可以方便地实现电路元件的故障检测。

红外热像仪是通过检测物体的红外辐射能量(指波长介于约1微米到1 毫米之间的那部分能量),对物体表面温度进行非接触式测量的仪器。红外摄像头通常采集被测物体在3 到5 微米或8 到10 微米波段内的红外辐射,经过热像仪内部电路的处理将能量信号转换为电信号,经A/ D 转换后送到处理器内进行处理和储存。处理器将这些电信号换算为温度值,并把被测物体表面的温度分布图显示在屏幕上,用不同的颜色代表不同的温度值[3]。

红外热像仪在监测电子设备外部故障方面有着不可比拟的优势,它通过设备运行中的真实温度分布状态,以不停电、不接触电路板、直观、准确的优点成为电子设备检测的一种行之有效的检测手段。3 显微红外光学成像系统的设计

(1)红外显微镜

根据莫尔定律,半导体集成电路芯片上的晶体管数量每隔18个月将会增加一倍,这对我们在日常生活中使用电子线路的大多数人来说,无疑是一个很好的消息。但是,对众多微型器件公司来说,它意味着“干草堆”变得越来越大,而“针子”变得越来越来小(意思就是在芯片上寻找故障会缺陷更难,犹如大海捞针)[4]。尤其是IC芯片,在新型电子装备中应用越来越广泛,但测试愈来愈困难,IC的高集成度和密集封装使得传统的测试仪器和测试方法已很难胜任,主要是由于测试相当复杂且难于接近测点。

而大量的微电子机械系统(MEMS)器件也需要热分析和热设计,并关注使用过程中的热性能,所以,热测试是必不可少的工作。对于MEMS器件的温度和热特性测量,要求空间分辨率达到微米的数量级[5],这是一般红外成像系统所不能实现的。因为通用的红外热成像的镜头是望远镜头或广角镜头,不能对微细物体成像。因此,在实际检测中,需要前置一个红外放大光学系统,再配合红外热像仪方能进行有效的观察。

为了达到这个目的,红外显微系统便应运而生了。

红外显微镜主要由显微镜和红外镜头组成。物体发射的光线先由显微镜接收并使其放大,形成物体放大像,再由红外镜头来过滤掉其它光束 ,只留下红外光,如图1所示。但是,目前国内用户使用的红外显微镜均为进口,价格昂贵,限制了它的推广使用。

图2所示的是普通的红外镜头,本实验所采用的短焦距的广角镜头。

图1 红外显微镜

Fig.1 Infraredmicroscop

图2 红外镜头

Fig.2 Infraredlens

(2)显微红外光学成像系统的设计与实验

任何高于绝对温度零度的物体都是红外辐射源,温度不同的物体,所发射出来的红外辐射也就不同。这就是显微红外光学成像系统所要应用的原理。系统的结构框图如图3所示。

首先,将红外镜头固定在透镜支架上,如图4所示。再用普通的白纸,剪一个很小的三角形图案,将三角形贴在一个黑色的背景上,并将这个黑色背景放在红外镜头前。此时,由于黑色背景和小三角形都是长时间储存在室温环境下的,因此二者的温度是相同的。其次,用一台灯近距离照射已经贴有小三角形的黑色背景。此时,黑色背景和三角形

29

30

都会因为照射而使其本身的温度上升。由于黑色比白

色更容易吸收热量,因此,黑色背景相对于白色的小三角形而言,温度升高的更快,这样他们之间就产生了温度差。利用红外热像仪可以很方便地拍摄到其温度分布。然后,调节红外镜头和黑色背景之间的相对位置,使之成一个放大倒立的实像(中间白色的就是小三角形白纸的像),如图5所示。最后,利用通用的红外热像仪,使用其近摄功能,对该实像进行二次成像,从而在热像仪的显示屏上得到一个放大的影像,如图6所示(黑色背景吸热比较快,即是图中粉色圆环部分)。通过调节红外镜头和热像仪的组合参数,即改变红外显微镜的等效模型的参数配比,可以得到不同的光学放大倍数。

通过以上步骤,利用红外广角镜头和通用红外热像仪组合的红外光学系统,实现了红外显微摄影的目

的,有效地提高了通用红外热像仪的利用率。 4 结论

本研究通过分析显微红外光学成像系统的成像原理,利用物体发射的红外线,先经单红外镜头接收,并使其放大,形成物体的放大实像;再由红外热像仪接收,经过红外热像仪内部电路的处理将能量信号转换为电信号,进行处理和储存;计算机将这些电信号换算为温度值并把被测物体表面的温度分布图显示在屏幕上,用不同的颜色代表不同的温度值,从而达到了用通用红外热像仪实现显微摄影的目的。

通过前面的介绍,可以很清楚的看到,显微红外光学成像系统在现代科技,尤其是在集成电路板故障实时检测方面的巨大作用。并且该系统构造简单,

 图4 红外镜头 Fig. 4 Infraredl

en图3 显微红外光学成像系统流程示意图

Fig. 3 Micro-infraredoptical imagingsystemflowdiagram

 图6 影像 Fig.6 Image

 图5 实像 Fig.5 Real image

31

Guo Shi-miao,Wei Zhen,Wu Jian-dong,

(School of Electronic Information andCommunications Engineering, Tianjin University of Technology,

 Tianjin 300191,China)

Abstract The technology of IR andthermal image is an emerging technology in modern imagingtechnology.The principle of the technology of IRandthermal image is not the same as x-ray, B-chao, CT, magnetic resonance imaging technology. It does not take the initiative to launchany ray, only apassive acceptance of heat emittedby the infra-red, processedin order to drawheat out of the image. The most major characteristic is not contact totreat the examination object. Therefore, regarding some high-risk professions, for instance in the nuclear industry the primary device examinationbecame extremely easy.

This article, is uses this technology andthe micro technology, manufactures one kindof infraredmicroscope. The infraredmicroscope may appear thebreakdown in the large scale integratedcircuit boardthe thousands small primary device phantomto transmit in the computer.After the computeranalysis, may the very easy analysis concrete breakdown in. Therefore, the wide range electron primary device breakdown fast examination changedeasy extremely.

KeyWords Infraredthermal imagery, Micro technology, Infraredmicroscope

易于实现。通过该系统,可以方便地在众多的元器件中找到发生故障的器件,为电路板故障的实时诊断和故障的快速排除提供了一种新的检测手段。5 展望

红外显微技术作为21世纪新兴的高科技技术,已经渐渐被人们所重视起来。未来社会,电路板的集成度将会越来越高,元器件的体积也会变得越来越小,因此,对于红外显微技术的需求将会更加强烈。反之,红外显微技术的长足发展,必将会有效的推动电子电路技术的更好更快地发展,并成为电子技术创新发展中不可或缺的一部分。

国外已经成功的生产出了红外显微镜,由于其价格高昂,而且性能还不是非常完善,因此使用的普遍性还不是很高。这对于我们来说正是个机遇。如果我们能把红外显微镜国产化,必将能大大的降低它的成本,这样就可以轻松的占领红外显微镜的国际

市场,同时也可以奠定中国在光学红外显微技术的一

席之地。红外显微镜的研究和制造,对未来我国红外光学系统的研究和发展都将产生深远的意义。

参考文献

[1] 王跃钢. 红外热成像诊断电路板的动态激励方法。[2] 陈水桥,陈洪山,张训生. 红外热成像法研究电路板热

分布特性。

[3] 万九卿,李行善. 印制电路板的红外热像诊断技术. 电子

测量与仪器学报.2003年6月。

[4] L.G.Allred,“A systemfor fault diagnosis in electronic circuits

using thermal imaging”,IEEE AUTOTESTCON’92,pp.455 - 458,1992.

[5] H.F. Spence,“An artificial neural network printed circuit

board diagnostic systembasedon infraredenergy emissions”,IEEE AUTOTESTCON’91,pp.41 - 45,1991.

The design of optical system of infrared microscope

红外系统光学系统

中波红外连续变焦光学系统 红外成像技术由于具有众多优势而应用于侦查、制导等军事领域。连续变焦光学系统是解决大视场搜索小视场分辨的最佳途径。因此对红外连续变焦光学系统的需求会日益增强。本文将介绍中波红外连续变焦光学系统的设计方法,并给出设计实例。设计采用中波红外凝视型焦平面320 μm×240μm像元制冷探测器,探测器像元为30μm×30μm。系统工作波段为3.7~4.8μm;焦距变化范围20~200 mm;F数为2.5;像高12 mm。 光学补偿型的工作方式是变倍组固定,通过聚焦组与补偿组的移动来实现系统焦距的变化,像面位置在变焦过程中有漂移,如图1所示。聚焦组与补偿组的移动是同方向等速度的,只需用机械把两镜组连在一起作线形移动即可,因此其机械结构简单、不需要凸轮。不过镜组必须移动到某些特殊的位置才能得到稳定清晰地像面。适用于变倍范围和数值孔径较小的系统。 机械补偿型的工作方式是聚焦组固定,变倍组与补偿组按不同的运动规律作较复杂移动以实现变化焦距,像面位置在变焦过程中保持稳定,如图2所示。机械补偿法可以实现焦距连续变化,但其机械结构复杂、凸轮加工难度大。不过随着机械加工工艺的提高,机械补偿法的优势越来越明显。故选择机械补偿式的变焦系统。 共口径双通道红外扫描成像光学系统 该系统包括前端共用的双反射系统、分束镜、准直镜组、扫描镜和成像镜组。光波经过双反射系统在主镜之后被分束镜分成中波红外通道(3μm~5μm)和长波红外通道(10μm~12μm),经准直镜组及成像镜组会聚探测器上,实现中波红外系统与长波红外系统共口径同步成像。

长波红外光学系统设计 ①共用结构两反系统 对于两反系统,主镜相对口径的选择主要和两反系统的相对口径有关。若两反系统焦距较长,主镜相对口径可以取小一些,即焦距长一些,容易加工。若两反系统焦距较短,主镜的焦距也就越短,在口径一定的情况下,主镜焦距越短,主镜的相对口径就越大,从缩短镜筒长度来说,当然主镜相对口径越大越有利,但加工难度增加,加工难度同相对口径的立方成正比,所以两反系统的相对口径不能取得太小。 图3 双反射光学系统 考虑到系统结构尺寸应尽量小,在保证主镜焦比合理、焦点伸出量也一定的情况下,遮拦比与次镜的放大率成反比,如果两反系统的F数取值过小,必然导致次镜对主镜的放大率较小,最终导致遮拦比过大,中心遮光损失太大,尤其是对于红外系统,接收的能量本来就很紧张。综合考虑,取两反系统相对口径为1:4主镜相对口径1:0.9。 ②长波红外准直镜组 准直镜组与前面共用的两反系统组成一个望远系统,本系统采用普通的三片式结构可以满足要求。对于长波红外可选的玻璃材料较为有限,本系统中只采用了一种玻璃——锗。

红外线防盗报警器电路原理图

红外线防盗报警器电路原理图 该红外线防盗报警器的特点是,当有人经过防盗物的主要通道、靠近防盗物或破门而入时,即能发出较洪亮的报警声,并延长一段时间才会停止。如果盗贼仍然在此位置左右移动,则报警声仍然持续发出。工作原理 红外线防盗报警器电路原理图如图1所示。红外线发射器由IC2(NE555)、R1、R2、C3等元件组成振荡频率为40kHz的多谐振荡器。VLS是红外线发射探头,其40kHz高频信号由它向外辐射,形成红外线光束。VDL是红外线接收探头,它与IC3 (CX20 106A)组成红外线接收、整形和放大电路,放大后的红外线信号变成电脉冲信号。IC4及其外围元器件组成报警执行电路,一旦其2脚为低电平,电路立即翻转,信号输出端3脚立即转为高电平输出,同时具有延时功能。平时,VDL接收到VDL辐射的红外光束。红外线接收专用前置放大集成电路(它的特点是灵敏度高、不用电感谐振线圈)IC3的信号输出端7脚为低电平,VT1呈截止状态,IC4的2脚为高电平,3脚为低电平输出,因此后续电路均不会工作,无报警声发出。当有人经过防盗物的主要通道、进人房门或靠近防盗物时,挡了一下红外光线,在挡住的瞬间,I

C3的7脚立即转为高电平,从而使VTl饱和导通,2脚立即为低电平,故IC4翻转,3脚为高电平,K得电吸合,接通模拟声报警专用集成电路IC5的电源,扬声器BL就发出响亮的警报声。与此同时,IC4进人延时阶段,约经过2nun(计算公式为t=1 .1RgC8)时间后,IC4置位,使3脚又转为低电平,报警声停止。如果这时红外线又被挡住,电路会再次工作。 元器件选择 IC1选用CW7806或LM7806集成电路;IC2,IC4均选用555时基集成电路; IC3选用CX20106或KA2184集成电路;IC5选用KD -9561四声模拟声集成电路。 VT1选用3DG12或9013型硅晶体管;VT2选用8050型NPN晶体管,要求电流放大系数β>10 00 VD1一VD4选用1 N4004 x 4整流桥堆,V D5选用2CP10型二极管。VL(红外线发射管)、V

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

利用ZEMAX进行长波红外消热差系统设计

利用ZEMAX进行长波红外消热差系统设计 2012/11/26 12:11:09 标签:ZEMAX红外消热差系统 南京光研软件系统有限公司张泽佳 通常,红外光学系统所处的使用环境都在常温常压下,未考虑温度变化等因素对光学系统成像质量的影响。然而对于特殊用途的红外光学系统而言,所处的环境温度会有很大的变化。当温度改变时,由于光学材料与结构材料的热不稳定性,当环境温度变化时,光学元件的曲率、厚度和间隔将发生变化,同时元件材料的折射率也发生改变,从而引起系统焦距变化,像面发生位移,导致系统性能急剧下降,图像质量恶化。因此,需要对该类系统进行消热差设计。 本文利用ZEMAX光学设计软件,设计了一个4片式长波红外折射消热差系统,全部使用球面。该系统在-40℃~60℃范围内,弥散斑均方根半径均小于像元大小,成像质量接近衍射极限,达到系统要求。 1 光学系统设计和结果 光学系统的消热差设计一般有以下几种方法: (1) 被动式机械补偿;(2) 被动式光学补偿;(3) 主动式机械补偿。通过对3 种方法的比较可知:光学被动式补偿方法使得光学系统结构更为简单,重量更轻。随着衍射光学元件(DOE)的出现,采用其与传统的折射系统混合进行消热差设计,衍射元件的光热膨胀系数始终为正,折射元件的光热膨胀系数有正有负,但是衍射元件的光热膨胀系数的绝对值比折射元件小很多,因此,可以通过正、负光焦度的热差效应来实现消热差设计。 ZEMAX作为业界领先的光学设计软件,内置了功能强大的光学系统初始结构寻找功能,本文中的设计依靠ZEMAX所提供的各项功能完成了系统的设计要求。 光学系统的设计参数如下:工作波段为8~4 μm,有效焦距60 mm,F为1.4,系统总长91 mm,后工作距9.56 mm,工作温度范围-40℃~60℃。采用4片球面透镜,材料分别为Ge、KBR、KRS5、AGCl,镜筒采用铝铸铝,热膨胀系数为 αH=23.6×10-6℃-1。该系统适用于像元尺寸为25 μm,像元数为384×288的现代非制冷型焦平面阵列探测器。 1.1 初始结构的寻找 本设计中依靠ZEMAX所提供的全局搜索功能来进行系统的初始结构选择。从而跳过了传统的系统初始结构计算和挑选过程,提供了光学系统初始结构选择的新思路和方法。

红外线防盗报警器

红外报警器分主动式和被动式两种。主动式红外线报警器,是报警器主动发出红外线,红外线碰到障碍物,就会反弹回来,被报警器的探头接收。如果探头监测到,红外线是静止不动的,也就是不断发出红线线又不断反弹的,那么报警器就不会报警。当有会动的物体触犯了这根看不见的红线的时候,探头就会检测到有异常,就会报警。 因此,红外防盗报警器通常被放在关键的位置发挥重要作用。但使用红外报警器的位置复杂,作为隐形的电子警察,为了让它安置后发挥的防盗效果更好,我们该如何在不用位置选择不同的种类? 红外防盗报警器主要采用红外热感应技术对指定区域进行布控,当有不速之客入侵时,区域内的热量便会立即发送变化,探测器发现这一变化后就会发出报警声,并主动向主人拨号报警。 而被动红外报警器一般应用于室内,例如企业,由于室内光线稳定、红外热量比较恒定,这种环境下被动红外报警器的探测效果会更好,企业根据自身环境

特点选择防盗报警器,这样才能将防盗系统发挥最大的作用。 相比被动红外防盗报警器,主动红外系统一般用在周界防范,选购时也需注意以下问题: 1、由于主动红外入侵报警器易受雾霾严重影响,因此,室外使用时应选择具有自动增益功能的设备;另外,所选设备的探测距离实际警戒距离留出20%以上的余量,能够减少因气候变化而引起的误报警。 2、在室外使用时,一定要选用双光束或3光束主动红外入侵报警器,以减少动物、落叶等引起的系统误报警。 3、在围墙、屋顶或空地上使用主动防盗报警器时,应选择具有避雷功能的设备。遇有折墙且距离又近时,可选用反射器件,以减少报警器的使用数量。 另外,作为人体检测的热释红外传感器,多是用双元件组成。 双元件的特点一是当人射的能量顺序地射到两个元件时,由于两只元件为串联,其输出比一只元件高一倍;另是由于两只元件为逆向相连接,对于相同且同

显微成像系统资料

品名型号数量供货单价备注 奥林巴斯生物成像系统显微镜CX31 1套30000元见配置清单奥林巴斯生物显微镜CX23 1套25000元见配置清单备注:以上为人民币含税报价单,含运费和包装培训费,壹年保修期。 生物显微镜CX31技术规格: 用途:可观察普通染色的切片观察。 1.工作条件 1.1 适于在气温为摄氏-40℃~+50℃的环境条件下运输和贮存,在电源220V ( 10%)/50Hz、气温摄氏-5℃~40℃和相对湿度85%的环境条件下运行。 1.2 配置符合中国有关标准要求的插头,或提供适当的转换插座。 2.主要技术指标 2.1 生物显微镜 *2.1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。 2.1.2 放大倍率:40-1000倍 *2.1.3 载物台:钢丝传动,无齿条结构,尺寸为188mm × 134mm,活动范围为 X轴向76mm × Y轴向50mm,双片标本夹 2.1.4 调焦机构:载物台垂直运动由滚柱(齿条—小齿轮)机构导向,采用粗 微同轴旋钮,粗调行程每一圈为36.8mm,总行程量为25mm,微调行程为每圈 0.2mm,具备粗调限位挡块和张力调整环 2.1.5 聚光镜:带有孔径光阑的阿贝聚光镜,N.A. 1.25,带有蓝色滤色片 *2.1.6 照明系统:内置6V30W卤素灯,内置透射光柯勒照明 *2.1.7 三目观察筒:视场数≥20,瞳距调节范围为48-75mm,铰链式 2.1.8 目镜:10X,带眼罩,视场数≥20带目镜测微尺 *2.1.9 物镜:平场消色差物镜4X(N.A.≥0.1)、10X(N.A.≥0.25)、40X(N.A.≥0.65)、 100X(N.A.≥1.25)

红外线防盗报警器课程设计报告

红外线防盗报警器课程设计报告 北华航天工业学院 课程设计报告(论文) 设计课题:红外线防盗报警器设计 专业班级: B10231 学生姓名: 指导教师: 设计时间: 2012年6月25日 北华航天工业学院电子工程系 红外线防盗报警器课程设计任务书姓名: 专业: 通信工程班级: B10231 指导教师: 职称: 课程设计题目: 红外线防盗报警器 已知技术参数和设计要求: , 该报警器能探测人体发出的红外线,当人进入报警器的监视区域内,即可发出报警声, 适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。 , 要求: , 1、灵敏、可靠、一经触发,即刻报警 , 2、对产品材料精益求精,延长使用寿命 , 3、根据实际应用环境,自己选择传感器,确定红外检测范围。所需仪器设备: 直流供电电源,信号发生器,双踪示波器,数字电压表,计算机等 成果验收形式: 面包板插接+实物演示+答辩

参考文献: 《电子技术基础模拟部分》(高教康华光) 《电子工艺与课程设计》(电子工业出版社毕亚军、崔瑞雪) 第17周: 周1---周2 :立题、论证方案设计~选择元器件安装调试 周4---周5 :插面包板调试电路时间 第18周: 安排 周1---周3 :焊接制成电路~完成设计 周4---周5 :验收答辩 指导教师: 张洁教研室主任: 崔瑞雪 2012年6 月 14 日 内容摘要 红外线防盗报警器目前市场上已有成型产品,且市场较为成熟。由于红外线是不可见光,因此用它进行红外探测监控,具有良好的隐蔽性,白天和黑夜均能使用,而且其抗干扰能力强。红外线传感器分主动式与被动式两种,主动式设计方案简单,但成本较高,从成本考虑,本课题通过介绍热释红外传感器RE200BP的工作原理,给出了一种被动型热释电红外报警器的结构原理及其应用电路。这种电路把红外线传感器应用于报警系统中,从而能够实现防盗报警能。 该报警器能探测人体发出的红外线,由红外线传感器、信号放大电路、电压比较器、和报警指示电路等组成。当人进入报警器的监视区域内,即可发出报警信号,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。利用热释电红外传感器设计了一种被动式红外报警电路,分析了该电路的功能和工作原理。 关键词被动式红外报警器;热释电传感器;菲涅尔透镜;防盗报警器 目录

单片机控制红外线防盗报警器电路设计

单片机控制红外线防盗报警器 一、硬件电路 电路原理图如图1所示。可将该电路分为以下三个部分。 用当今最流行的A T89C2051单片机控制,体积小,成本低;用红外线收发管进行检测,安装隐蔽,不易被发现;探测信号采用脉冲信号,节能且抗干扰;当有人试图闯入室内时,能自动进行声光报警。现将该报警器原理介绍如下,供广大单片机爱好者参考。 1、单片机系统。U1为A T89C2051单片机。C1,R0,R1和复位按钮RESET组成手动电平复位和上电自动复位电路;C2,C3以及晶振JT1组成时钟电路;C4,C5为+5V电源滤波电容。U2为CMOS6反相器CC4069,起驱动作用。VD1~VD6为红外发射管,其负极端接与P1口,P1口设置为输出状态,当P1口为“0”时,VD1~VD6发红外光。VD7~VD12为红外接收管,当接收到红外光时导通,+5V电源通过VD7~VD12加到反相器CC4069的输入端,经反相为低电平,这时P3.0~P3.5为低电平。发射管和接收管分别安装在门和窗口的适当位置,当有人闯入时遮挡了红外线,接收管截止,反相器输入端为低电平,这时U1的P3.0~P3.5为高电平。当在一定时间内检测到位于不同位置的光束被遮挡时,则由P3.7口输出报警信号(高低电平间隔1S的脉冲信号)。驱动声光报警电路,进行声光报警,直至按复位按钮RESET或电源开关S1。由于红外收发管之间没有遮挡时为正常,有遮挡时为异常,则当P1口输出00H时,P3口的正常状态数据为00H。 2、电源电路。220V交流市电经变压器T降压,桥式整流器D1整流,电解电容C7滤波,三端稳压器78L05稳压,最后得到整机要求的+5V稳定直流电源。 3、声光报警电路。555定时器U4,扬声器BY,普通红色发光二极管VD13等组成声光报警电路。其中555定时器接成了一个低频多谐振荡器,其控制电压输入端5脚与单片机A T89C2051的P3.7脚相连,受P3.7脚输出的高低电平间隔1S的脉冲信号控制。当P3.7为

红外光学系统

光学系统 1 概述 ●作用:就是接收辐射能量,并把它传送给探测器。 ●特点: 1.多采用反射式和折反式系统 光学玻璃的透光特性及机械性能,限制了透镜系统在红外光学系统中的应用。 2.性能评定是以与探测器匹配的灵敏度、信噪比为主 红外系统属光电子系统,接收器是光电器件,分辨率受到光电器件尺寸的限制,对光学系统的要求有 所降低。 3.视场小,孔径大 探测器接收面积较小、反射系统没有色差、系统对象质要求不高。 4.采用扫描器 当探测器阵列为线列时,为实现对空间目标的扫描成像,常采用扫描器。 5.波长的特殊性使得系统的重量重、成本高 常用红外波段的波长约为可见光的5~20倍,要得到高分辨率的系统,必须有大的孔径。 ●设计光学系统时应遵循的原则: 1.光学系统与目标、大气窗口、探测器之间的光谱匹配。 2.接收口径、相对孔径尽可能大,以保证系统有高的灵敏度。 3.系统应对噪声有较强的抑制能力。 4.系统的形式和组成应有利于发挥探测器的效能。 5.系统和组成元件力求简单,减少能量损失。 6.根据不同要求,选择合适的元件组成所需的系统。 2 光学系统的主要参数 2.1光阑、入瞳 ●在光学系统中起拦光作用的透镜和屏孔统称为光阑。

孔径光阑:决定最小入射光束截面积的光阑,如透镜的边框MN 和特加的圆孔光阑I 。 视场光阑:限制物空间的被成像范围,如光阑II 。 ● 入射光瞳:通过光学系统的光束的最大孔径角,描述目标辐射能量有多少为光学系统接收。 AB 是系统的孔径光阑。从F 点来看,AB 的大小相当于以孔径光阑为物,通过透镜L 在物空间所成的像A ,B ,,这个像的边缘对物点F 所作的张角,就是通过光学系统的光束的最大孔径角。光阑AB 的像A ,B ,就称为系统的入射光瞳。 2.2相对孔径、F/数 1、焦距 ● F ,点为像方焦点,F 点为物方焦点; ● 过F ,点且垂直于光轴的平面称为像方焦面; ● H ,为象方主点,H 为物方主点; ● 象方主点与像方焦点之间的距离称为后焦距f ,一般称焦距。 2、相对孔径 ● 入瞳直径0D 与焦距f 之比,即f D 0 。

光学显微镜的发展历史

杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 ' 1 f

'2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1 '120202β?=≤f y 显微镜的分辨率和有效放大率 光学仪器分辨率 瑞利判据:两个相邻的“点”光源所成的像是两个衍射斑,若两个等光强的非相干点像之间的间隔等于艾里圆的半径,即一个像斑的中心恰好落在另一个像斑的第一暗环处,则这两个点就是可分辨的点。当物面在无穷远时,以两点对光学系统的张角可表示两分辨点的距离,其值为:

红外线安全防盗报警系统的设计

红外线安全防盗报警系统的设计 摘要 随着国民经济的发展,社会安全保障的需要,电子报警这门综合技术正在不断地发展。与同时,红外技术已经成为先进科学技术的重要组成部分,由于红外线是不可见光,因此用它进行红外探测监控,具有良好的隐蔽性,白天和黑夜均能使用,而且其抗干扰能力强。防盗报警系统利用单片机控制技术,自动探测发生在布防监测区域内的侵入行为,产生报警信号,并提示发生报警的区域部位,显示可能采取对策的系统。一旦发生突发事件,就能通过声光报警信号在安保控制中心准确显示出事地点,使于迅速采取应急措施。本设计正是基于此,设计了主动式、被动式红外防盗报警系统。 关键词:红外探测单片机声光报警 引言 科技发展到今天,人们的生活中涌现出各种各样的科技产品,各种各样的电子产品更是花样百出、遍及人们生活中的每一部分。现在人们更是感觉到了科技给人们带来的巨大发展,科学技术作为第一生产力,在人类社会的发展中起了很大的推动作用,人类从原始向先进的发展都伴随着科学的发展,从原始的手工到现在的智能控制都是科技发展的结果,先进的科技能减轻人体劳动量、能更合理地利用时间完成任务,可以说科技的微小发展都会给人类带来很大的好处。当代生活中的人们越来越感觉到了社会的飞跃发展,科技的飞速发展给人们很多实惠、生活、学习、工作中都渗透着科技,都能明显地感受到它发展地威力。安全防范技术是以电子技术为主体的一门综合性技术。它的特点是灵敏度高、反映迅速、具有极高的准确性、可靠性、客观性及时间上的连续性。随着国民经济的发展,社会安全保障的需要,电子报警这门综合技术也在不断地发展。 有一个安定、和谐的家庭氛围和社会气息是人们的基本要求,在无人看守的家庭、银行、仓库、商店、重要财经部门等一些重要的部门实施自动监测报警的要求就变得更必要、更重要了,它会使家庭、银行等重要部门的财产免受损失。针对这一要求人们研制了一系列自动报警系统。如有门磁式、触摸式、红外线监测等自动报警系统,报警器为人们解决了不少问题.但是市场上的报警器大部分都是用于一些大公司财政机构。由于红外线是不见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用,此外,在电子防盗、人体探测等领域中,被动式热释电红外探测器也以其价格低廉、技术性能稳定等特点而受到广大用户和专业人士的欢迎。红外技术已经成为先进科学技术的重要组成部分,它在各领域都得到广泛的应用。由于它是不可见光,因此用它作防盗监控报警器,具有良好的隐蔽性,白天和黑夜均能使用,而且抗干扰能力强防盗报警系统是用物理方法或电子技术,自动探测发生在布防监测区域内的侵入行为,产生报警信号,并提示值班人员发生报警的区域部位,显示可能采取对策的系统。防盗报警系统是预防抢劫、盗窃等意外事件的重要设施。一旦发生突发事件,就能通过声光报警信号在安保控制中心准确显示出事地点,使于迅速采取应急措施。 设计方案 被动红外报警探测器

宽谱段红外消热差光学系统设计

第35卷第3期2014年5月应 用 光 学 Journal of Applied OpticsVol.35No.3 May  2014文章编号:1002-2082(2014)03-0510- 05收稿日期:2013-10-12; 修回日期: 2013-11-28基金项目:国家自然科学基金(61108044),吉林省自然科学基金(201215131 )作者简介:付跃刚(1972-),男,吉林人,教授,博士生导师,主要从事光学设计及检测技术方面的研究。E-mail:Fuyg @cust.edu.cn宽谱段红外消热差光学系统设计 付跃刚, 黄蕴涵,刘智颖(长春理工大学测控分析中心,吉林长春130022 )摘 要:宽谱段红外光学系统可以获取宽谱段的图像信息并增大目标信息获取程度。从红外光学系统的简洁性出发,对红外光学系统进行设计,系统仅由4片球面透镜组成,实现了4.4μm~ 8.8μm波段清晰成像,F#为2.68,达到了100%的冷光阑效应。采用被动消热差方式通过合理选择镜片材料及公式推导最终实现了各个波段内的消热差,镜筒材料为钛合金,透镜采用硒化锌(ZnSe),锗(Ge)及硫化锌(ZnS)材料,给出20lp/mm处系统在各个波段在-40℃~60℃的工作温度下的调制传递函数(MTF),以及各个波段下的光学系统畸变值。实验结果表明:设计的宽谱段红外光学系统结构简单,满足设计要求。关键词:宽谱段;红外;消热差;光学设计 中图分类号:TN202;TH703 文献标志码:A doi:10.5768/JAO201435.0306001 Design of multispectral infrared athermal optical sy stemFU Yue-gang,HUANG Yun-han,LIU Zhi-ying (Test,Control&Analysis Centre,Changchun University  of Science and Technology,Changchun 130022,China)Abstract:The infrared multi-band optical system can track the band information stretchingfrom mid-wave infrared to long-wave infrared,which can greatly improve the information ac-quisition capability.A infrared multi-band optical system composed of 4spherical lenses wasdesigned based on the compact principle.It could image clearly  at 4.4μm~8.8μm continuous-ly,the F#was 2.68which strictly matched with the cold light bar so that the cold light bareffect reached 100%.The system used the passive athermalization method to get rid of tem-perature compensation problem and finally realized athermalization for continuous bandsthrough selection of lens materials and formula derivation.The tube was made of titanium al-loy,the lens was made of ZnSe,Germanium and ZnS materials.The modulation transfer funtion(MTF)at 40℃to 60℃was given,as well as the distortion over every wavebands.The resultshows that the design of the system structure is relatively simple,which satisfies the require-ments of a standard infrared thermal imag er.Key  words:wide band;infrared;athermalization;optical design引言 红外光学系统在现代目标识别与探索领域具有不可替代的作用。跨越连续红外波段探测器的出现,扩大了对不同类型目标的探测能力,这样可 以在不同探测环境下使用同一光学系统对不同目标进行探测、识别。本文设计的宽谱段红外消热差光学系统在红外成像领域具有很大应用前景。 设计的中长波红外消热差光学系统采用法国

红外线防盗报警器课程设计

北华航天工业学院 课程设计报告(论文) 设计课题:红外线防盗报警器设计 专业班级:B10231 学生姓名: 指导教师: 设计时间:2012年6月25日

北华航天工业学院电子工程系 红外线防盗报警器课程设计任务书 姓名:专业:通信工程班级:B10231 指导教师:职称: 课程设计题目:红外线防盗报警器 已知技术参数和设计要求: ●该报警器能探测人体发出的红外线,当人进入报警器的监视区域内,即可 发出报警声,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。 ●要求: ●1、灵敏、可靠、一经触发,即刻报警 ●2、对产品材料精益求精,延长使用寿命 ●3、根据实际应用环境,自己选择传感器,确定红外检测范围。 所需仪器设备: 直流供电电源,信号发生器,双踪示波器,数字电压表,计算机等 成果验收形式: 面包板插接+实物演示+答辩 参考文献: 《电子技术基础模拟部分》(高教康华光) 《电子工艺与课程设计》(电子工业出版社毕亚军、崔瑞雪) 时间安排 第17周: 周1---周2 :立题、论证方案设计,选择元器件安装调试 周4---周5 :插面包板调试电路 第18周: 周1---周3 :焊接制成电路,完成设计 周4---周5 :验收答辩 指导教师:张洁教研室主任:崔瑞雪 2012年6 月14 日

内容摘要 红外线防盗报警器目前市场上已有成型产品,且市场较为成熟。由于红外线是不可见光,因此用它进行红外探测监控,具有良好的隐蔽性,白天和黑夜均能使用,而且其抗干扰能力强。红外线传感器分主动式与被动式两种,主动式设计方案简单,但成本较高,从成本考虑,本课题通过介绍热释红外传感器RE200BP的工作原理,给出了一种被动型热释电红外报警器的结构原理及其应用电路。这种电路把红外线传感器应用于报警系统中,从而能够实现防盗报警能。 该报警器能探测人体发出的红外线,由红外线传感器、信号放大电路、电压比较器、和报警指示电路等组成。当人进入报警器的监视区域内,即可发出报警信号,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。利用热释电红外传感器设计了一种被动式红外报警电路,分析了该电路的功能和工作原理。 关键词被动式红外报警器;热释电传感器;菲涅尔透镜;防盗报警器

红外光学系统

第二章 红外光学系统 光学系统在红外系统中的作用十分类似于用于接收目标回波的雷达天线,就是接收辐射能量,并把它传送给探测器。可见光和红外本质上都是电磁波,只是谱段不同,用于可见光系统设计的工程光学的基本理论和设计方法,同样可用于红外光学系统的设计。本章2.1至2.4节对光学 首先对此作简要介绍。但是,红外光学系统基本结构、材料、薄膜以及涉及光学系统与探测器耦合的辅助光学系统,有其特殊的一面,应予阐述。 2.1 光学基本定律 2.1.1 光的波动性 光的波动理论认为,光源是一个辐射电磁波的波源,光的传播就是波动的传播。光在真空中传播的速度为3×108m/s ,在任何别的介质中的光速都要比真空中光速小。 光波是横波,其振动方向垂直于传播方向。机械简谐振动产生的横波的波动方程可表达为: )2cos(),(αωλ π+-?=t z A t z y 式中: ),(t z y 为t 时刻,空间位置为z 处的机械位移; A 为振幅,ν为振动频率,πνω2=为园频率,α为初始相位角。 具有同一振动相位的空间两个相邻点之间的距离可称为波长,例如两个相邻波峰或相邻波谷之间的距离。波长的倒数称为波数,其单位常取cm -1。在光谱学中使用波数比使用波长更方便。波动传播的速度即波峰或波谷传播速度,有: νλλ == T V 机械波是机械振动产生的,而电磁波则是电磁振荡产生的,反映为电场强度E 和磁感应强度B 的时空变化,其规律可用麦克斯韦方程表述。由于光对物质的作用主要是电场的作用,在光学中大多数情况下只研究电场强度E 的规律,E 矢

量即电矢量,也称为光矢量。 图2.2 偏振面为XY平面的偏振光 E矢量、B矢量和传播方向矢量相互垂直,构成右手螺旋。相对于传播轴,E矢量的分布不一定是均匀分布的,这种分布的不均匀性称为偏振。实际光源有数目众多且相互无关的发光分子,它们的电矢量虽然还是垂直于传播方向,其取向与大小都随时间作无规则的变化,但各取向上电矢量的时间平均值是相等的,这样的光称为自然光(图中a),只有单一取向的称为线偏振光,介于两者之间的是部分偏振光。 图2.3 自然光和偏振光 振动位相相同的各点在某一时刻所构成的曲面称为波面。波面可以是平面、球面或任何曲面。在各向同性的介质中,光能沿着波面的法线方向传播。在几何光学中,我们把光源发出的光抽象成无数条能传播能量的光线,光线也就是波面的法线。 光束由无数条光线组成,可以建立光束和波面的对应关系,如平行光束对应平面波,会聚或发散光束对应球面波。点光源发出的光束是发散的同心光束,经过实际光学系统后,由于像差的作用,将不再是同心光束,与之对应的光波则为非球面波。利用几何光学建立的光线、波面等概念,可将本质上十分复杂的光能传播与光学成像问题归结为简单的数学问题。

红外线防盗报警系统课程设计

《光电检测技术》题目:家居防盗报警器设计 专业:测控技术与仪器 班级: 姓名: 学号: 指导老师: 日期:

摘要 人们生活水平不断提高,对私有财产的保护意识在不断的增强,因而对防盗措施提出了新的要求。本设计就是为了满足预防抢劫、盗窃等意外事件的需要而设计的红外防盗报警系统。 本设计主要包括硬件和软件设计两个部分。硬件部分包括单片机控制电路、红外探头电路、驱动执行报警电路、LED控制电路等部分组成。处理器采用单片机STC89C51。整个系统是在系统软件控制下工作的。软件部分可以划分为以下几个模块:数据采集、键盘控制、报警和显示等子函数。 [关键词]:单片机、红外传感器、数据采集、报警电路。

1、设计任务与要求 (1)该设计主要包括硬件和软件设计两个部分。模块划分为数据采集、键盘控制、报警和显示等模块子函数。 (2)本红外线防盗报警系统由热释电红外传感器、智能报警器、单片机控制电路、LED控制电路及相关的控制管理软件组成。用户终端完成信息采集、处理、数据传送、功能设定、本地显示、本地报警等功能。终端由中央处理器、输入模块、输出模块、通信模块、功能设定模块等部分组成。 (3)系统可实现功能。为了探测移动人体,通常使用双元件型热释电红外传感器,在这种传感器内部,两个敏感元件反相连接,当人体静止时两元件极化程度相同,互相抵消。但人体移动时,两元件极化程度不同,净输出电压不为0 ,从而达到了探测移动人体的目的。因此可把报警系统设置在外出布防状态,使探测器工作。当有人闯入时,热释电红外传感器将探测到动作,设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路、比较电路送至门限开关,打开门限阀门送出TTL 电平至单片机,经单片机处理运算后驱动执行报警电路使警号发声。

红外线对射防盗报警器

红外线对射防盗报警器 一、任务与要求: 本设计(论文)课题来源及应达到的目的: 红外线具有隐蔽性,在露天防护的地方设计一束红外线可以方便地检测到是否有人出入。此类装置设计的要点:其一是能有效判断是否有人员进入;其二是尽可能大地增加防护范围。当然,系统工作的稳定性和可靠性也是追求的重要指标。至于报警可采用声光信号。 本设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): ★查阅防盗报警方面的相关资料,了解此方面的发展状况; ★掌握红外发送与接收技术; ★采用脉冲式发射以尽量增加作用范围; ★考虑抗干扰措施; ★采用合理的声光报警方案;

★设计、实现该系统; ★撰写设计报告。 二、分析 此类设计的要点在于红外线信号的发射与接收部分,由于目在市场上常用的红外线发射器件和接收器件都具有频率选择性,因此要想得到较好的传输距离和稳定的性能,必须将驱动红外线发射管工作的振荡电路频率调整在红外发射器件的工作频率附近,现大部分产品的频率为38KHz,我们在设计该电路时,也是让其555电路组成的振荡器工作在38KHz附近。至于接收电路,作为报警工作的话,没有像红外线通讯那样要精确地还原出发射端发射的每一个数据,因此相对来说,要求可以放宽一些,设计时可以通过低通滤波,加倍压整流等措施,将发射的红外线信号转变成用于控制的直流控制电压,可以理解为:当有红外线信号收到时输出一个高电平信号,如果有人阻断了红外线信号,输出一个低电平信号,后续电路通过这个低电平信号启动报警。 从实际的效果来看,报警信号必带有锁存功能,即当有人进入设防区域后报警信号就被锁住即使人离开,报警也将继续,直到人为的按动复位键才停止报警。 三、原理图

红外家庭防盗报警器设计

工业大学人文信息学院 传感器及自动检测 课程设计报告 题目 : 红外家庭防盗报警器设计 学生峰杰班 级 140931 系 别自动化 专 业 轨道交通信号与控制 学 号 18指导老师帅设计时间2016年12月26日——12月30日

目录 一、设计目的————————————1 二、设计要求————————————1 三、设计步骤————————————1 四、设计心得————————————8 五、程序编程————————————9 六、附录——————————————14 七、参考文献————————————15

一、设计目的 红外线作为一种不可见光,有很强的隐蔽性和性,因此在防盗、警戒等安保装置中得到了广泛的应用。红外报警器大多数采用国外的先进技术,其功能也非常先进。其功能包括被动式热释型红外报警器,也即是本文将研究的产品。还有红外监控无线报警器,超声波防盗报警器,红外线防盗报警器,高灵敏红外报警器,触摸式延时防盗报警器,触摸式防盗报警器,红外报警器,红外线声光报警器等。 通过设计进一步掌握传感器的原理与应用,熟悉传感器的测量电路的设计方法。达到根据设计要求,能借助参考书和网络查阅相关资料,独立完成设计任务。 培养学生分析问题和解决实际问题的能力。 二、设计要求 1、可实现非法入侵报警,警戒围2-10cm,报警反应时间小于1s; 2、放大电路的设计; 3、采用复合式防盗传感器,热释红外传感器和振动位移传感器并接使用,增加报警可靠性; 4、蜂鸣器报警,并能显示出出事地点; 5、采用双电源技术,主电源停电或被切断,被动电源自动工作。 三、设计步骤 1、设计模块 本设计包括硬件和软件设计两个部分。模块划分为数据采集、键盘控制、报警等子模块。电路结构可划分为:热释电红外传感器、报警器、单片机控制电路、LED控制电路及相关的控制管理软件组成。用户终端完成信息采集、处理、数 据传送、功能设定、本地报警等功能。 就此设计的核心模块来说,单片机就是设计的中心单元,所以此系统也是单片机应用系统的一种应用。单片机应用系统也是有硬件和软件组成。硬件包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。 从设计的要求来分析该设计须包含如下结构:热释电红外传感探头电路、报警电路、单片机、复位电路及相关的控制管理软件组成;它们之间的构成框图如图2-1总体设计框图所示:

对射式红外线防盗报警器的设计

第一章绪论 在一些电影、电视剧中我们常可以看到,有些博物馆等安全性要求比较高的场所,在安防电脑系统的屏幕上面,显示着一根根红线,如果有人进入不小心“触”到了这根红线,那么报警器就会发响。这就是红外线报警器。 1.1 课题研究的意义 红外线报警器分主动式和被动式两种[1]。主动式红外线报警器,是报警器主动发出红外线,红外线碰到障碍物,就会反弹回来,被报警器的探头接收。如果探头监测到,红外线是静止不动的,也就是不断发出红线线又不断反弹的,那么报警器就不会报警。当有会动的物体触犯了这根看不见的红线的时候,探头就会检测到有异常,就会报警。 被动式报警器少了一项功能,就是发射红外线。物理学上告诉我们,当物体的温度高于0K的时候,就会发出红外线,换句话说任何物体都能发出红外线[2]。而其后的原理,被动式报警器和主动式是一样的。红外线报警器对温度敏感,温度越高的物体辐射出的红外线越强,当感应到环境中存在高出背景强度的辐射时,就触发报警。 主动式红外探测器是由收、发装置两部分组成[3]。发射装置向装在几米甚至于几百米远的接收装置辐射一束红外线,当被遮断时,接收装置即发出报警信号,因此,它也是阻挡式报警器,或称对射式探测器。通常,发射装置由多谐振荡器、波形变换电路、红外发光管及光学透镜等组成。振荡器产生脉冲信号,经波形变换及放大后控制红外发光管产生红外脉冲光线,通过聚焦透镜将红外光变为较细的红外光束,射向接收端。 接收装置由光学透镜、红外光电管、放大整形电路、功率驱动器及执行机构等组成[4]。光电管将接收到的红外光信号转变为电信号,经整形放大后推动执行机构启动报警设备。主动式红外报警器有较远的传输距离,因红外线属于非可见光源,入侵者难以发觉与躲避,防御界线非常明确。主动式红外报警器是点型、线型探测装置,除了用作单机的点警戒和线警戒外,为了在更大范围有效地防范,也可以利用多机采取光墙或光网安装方式组成警戒封锁区或警戒封锁网,乃至组成立体警戒区。单光路由一个发射器和一个接收器组成。 双光路由两对发射器和接收器组成[5]。两对收、发装置分别相对,是为了消除交叉误射;多光路构成警戒面;反射单光路构成警戒区。

相关主题
文本预览
相关文档 最新文档