当前位置:文档之家› 沉积物总氮、总磷联合测定分析方法

沉积物总氮、总磷联合测定分析方法

水质中总磷的测定采用钼氨酸分光光度法

水质中总磷的测定采用钼氨酸分光光度法 一、实验原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 二、实验仪器 可见分光光度计,消解装置,比色管。 三、药品配制 1. 1:1硫酸(H 2SO 4)溶液 2. 100g/L 抗坏血酸(C 6H 8O 6)溶液:称取10g 抗坏血酸溶于水中,稀释至100mL 。 贮存于棕色瓶中。 3.钼酸盐溶液:称取13g 钼酸铵[(NH4)6Mo 7O 24·4H 2O]于100mL 水中。溶解0.35g 酒石酸锑钾[KSbC 4H 4O 7·2 1 H 2O]于100mL 水中。在不断搅拌下把钼酸铵溶液 徐徐加到300mL 1:1硫酸中,加酒石酸锑钾溶液并且混合均匀。此溶液贮存于棕色试剂瓶中。 4.磷标准贮备溶液:称取0.2197±0.001g 于110℃干燥2h 在干燥器中放冷的磷 酸二氢钾(KH 2PO 4),用水溶解后转移至1000mL 容量瓶中,加入大约800mL 水、加5mL 1:1硫酸用水稀释至标线并混匀。1.00mL 此标准溶液含50.0μg 磷。 5.磷标准使用溶液:将10.0mL 的磷标准贮备溶液转移至250mL 容量瓶中,用 水稀释至标线并混匀。1.00mL 此标准溶液含2.0μg 磷。

6.50g/L 过硫酸钾(K 2S 2O 8)溶液:称取5g 过硫酸钾溶于水,稀释至100mL 。 7.6 mol/L 氢氧化钠(NaOH )溶液:称取24g 氢氧化钠溶于水中,稀释至100mL 。 调样品pH 用。 8.6 mol/L 氢氧化钠(NaOH )溶液:称取24g 氢氧化钠溶于水中,稀释至100mL 。 9. l mol/L 2 1 H 2SO 4溶液:将27mL 硫酸,加入到973mL 水中。 10. 10g/L 酚酞指示剂:称取0.5g 酚酞溶于50mL 95%乙醇中。 注:未说明的实验试剂均为标准分析纯或者实验纯药品。 四、实验步骤 1.取待测样品,摇匀。将待测样品和空白样品消解,冷却。 绘制磷标准曲线。将处理后的试样(待测试样和空白试样),加入抑制剂和显色剂,显色。显色后放置一段时间,测吸光度。 2.洗涤并标记实验仪器: 药品标记:药品名称、药品浓度、配制时间、配制人员; 比色管、具塞刻度管(或锥形瓶)标记:ZL-BX-0、ZL-BX-1、ZL-BX-2、ZL-BX-3、ZL-BX-4、ZL-BX-5、ZL-BX-6、ZL-CK-1、ZL-CK-2、ZL-CK-3、ZL-YP-1、ZL-YP-2、ZL-YP-3。(字母意义:ZL-总磷、BX-标线、CK-空白、YP-样品)。 3.将样品摇匀后,取样品25mL 于具塞刻度管(或者锥形瓶)中,准备消解。 a .过硫酸钾消解:向试样中加4mL 50g/L 过硫酸钾,将具塞刻度管的盖塞紧后,用一小块布和线将玻璃塞扎紧(或用其他方法固定),放在大烧杯中置于高压蒸汽消毒器中加热,待压力达

水质总磷总氮在线自动监测技术的研究

水质总磷总氮在线自动监测技术的研究 目前我国面临水污染日益严重和水环境恶化趋势, 为了有效开展水污染控制和提高科学管理决策水平, 水和废水在线监测技术的研究及应用势在必行。氮、磷营养物质的富集容易造成水体富营养化, 引起藻类及其他浮游生物的迅速繁殖, 使水体溶解氧含量 下降, 最终造成藻类、浮游生物、水生生物衰亡甚至绝迹, 因此总磷( TP) 、总氮( TN) 一直是水质常规监测的重要指标[1]。我国的《地表水环境质量标准》( GB3838- 2002) 规定了湖库、河流的总磷和总氮水质标准与监测方法, 同时还在《污水综合排放标准》( GB8978-1996) 中规定了工业废水、污水处理厂排放废水、生活废水等污染源的排放标准与监测方法[2]。但是传统的总磷、总氮监测采用手工采样和实验室人工检测的方法, 测量周期比较长, 手工操作复杂, 不能达到实时监测的目标[3- 4]。因此, 本文在研究现有的国内外总磷总氮监测技术基础上, 自行设计和研发一套总磷、总氮在线自动监测系统, 实现了水质总磷总氮的快速、安全和稳定的在线监测, 对提高水质监测的监测水平以及减少引进国外价格昂贵的监测仪器等极具重要意义。 1 实验部分 1.1 仪器与试剂 1.1.1 仪器 TN- TP 在线监测仪器( 自行研制样机) ; 分析电子天平( FA2104N, 上海民桥精密科学仪器有限公司) ;电热恒温水浴锅( HZ- 9211K, 上海精宏实验设备有限 公司) ; 自动双重纯水蒸馏器( BSZ- 2, 上海博通) ; 不锈钢手提式压力蒸气灭菌锅( YXQ.SGD46, 广州市华南医疗器械有限公司分厂) ; PH 计( PHS- 3C, 上海蕾磁厂) 。1.1.2 试剂 过硫酸钾溶液( 15mg/mL, AR 级, 国药集团化学 试剂有限公司) ; 四水合钼酸铵( AR 级, 广州化学试 剂厂) ; 酒石酸锑钾( AR 级, 汕头市光华化学厂) ; 氢 氧化钠溶液( 15mg/mL, AR 级, 广州化学试剂厂) ; 硫 酸溶液( 1: 3V/V, AR 级, 广州化学试剂厂) ; 盐酸溶液 ( 1: 16V/V, AR 级, 广州化学试剂厂) ; 抗坏血酸溶液 ( 24mg/mL, AR 级, 广州化学试剂厂) ; 磷标准溶液 ( 500mg/L, 国家环境保护总局标准样品研究所) ; 氮标 准溶液( 500mg/L, 国家环境保护总局标准样品研究所) 。 无氨水: 在1000mL 蒸馏水中加入0.1mL 硫酸 ( ρ=1.84g/mL) , 全玻璃蒸馏器中重蒸馏并弃去前 50mL 馏出液, 将馏出液收集在带有玻璃塞的玻璃瓶中。 钼酸盐溶液: 取12g 钼酸铵溶于700mL 水中, 另 取0.48g 酒石酸锑钾溶于100mL 水中, 将这两种溶液 在不断搅拌下先后缓缓倒入160mL 浓硫酸中, 并混 合均匀。此溶液可稳定约2 个月。 1.2 实验方法 1.2.1 总氮分析方法 在线监测方法: 在水样中加入K2S2O8 溶液和 NaOH 溶液, 在85 ℃下紫外线照射, 水样中含氮化 合物被分解成NO3 - 。被消解的水样冷却至一定温度

总磷检测分析方法

总磷 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L)可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1.方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如下图所示 消解 2.样品的采集和保存 总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进

行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1— 1.5kg/cm2)。 (2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4)50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤 (1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至 25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫 酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2 (相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,

总磷的测定——钼酸铵分光光度法

总磷的测定——钼酸铵分光光度法 (GB 11893—89) 一、目的和要求 1.1 掌握总磷的测定方法与原理。 1.2 了解水体中过量的磷对水环境的影响。 二、原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 本标准规定了用过硫酸钾(或硝酸—高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度法测定总磷的方法。 总磷包括溶解的、颗粒的、有机的和无机磷。 本标准适用于地面水、污水和工业废水。 取25mL水样,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。 在酸性条件下,砷、铬、硫干扰测定。 三、试剂 3.1 硫酸,密度为1.84g/mL。 3.2 硝酸,密度为1.4g/mL。 3.3 高氯酸,优级纯,密度为1.68g/mL。 3.4 硫酸(V/V),1+1。 3.5 硫酸,约0.5mol/L,将27mL硫酸(3.1)加入到973mL水中。 3.6 氢氧化钠溶液,1mol/L,将40g氢氧化钠溶于水并稀释至1000mL。 3.7 氢氧化钠溶液,6mol/L,将240g氢氧化钠溶于水并稀释至1000mL。 3.8 过硫酸钾溶液,50g/L,将5g过硫酸钾(K2S2O8)溶于水,并稀释至100mL。 3.9 抗坏血酸溶液,100g/L,将10g抗坏血酸溶于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周,如不变色可长时间使用。 3.10 钼酸盐溶液:将13g钼酸铵[(NH4)6MO7O24·4H2O]溶于100mL水中,将0.35g酒石酸锑钾[KSbC4HO7·0.5H2O]溶于100mL水中。在不断搅拌下分别把上述钼酸铵溶液、酒石酸梯钾溶液徐徐加到300mL硫酸(3.4)中,混合均匀。此溶液贮存于棕色瓶中,在冷处可保存三个月。 3.11 浊度—色度补偿液,混合二体积硫酸(3.4)和一体积抗坏血酸(3.9)。使用当天配制。 3.12 磷标准贮备溶液,称取0.2197g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移到1000mL容量瓶中,加入大约800mL水,加5mL硫酸(3.4), μ磷。本溶液在玻璃瓶中可贮存然后用水稀释至标线,混匀。1.00mL此标准溶液含50.0g 至少六个月。 3.13 磷标准使用溶液,将10.00mL磷标准贮备溶液(3.12)转移至250mL容量瓶中,用水 μ磷。使用当天配制。 稀释至标线并混匀。1.00mL此标准溶液含2.0g 3.14 酚酞溶液,10g/L,将0.5g酚酞溶于50mL95%的乙醇中。

★海水和海洋沉积物中总N的测定

海水和海洋沉积物中总N 的测定 Ξ 王正方 扈传昱 吕海燕 (国家海洋局第二海洋研究所,杭州,310012) 摘 要 系统介绍海水和海洋沉积物中总氮的测定方法。作者选用过硫酸钾为氧化剂将有关形式的氮转化成硝酸盐,将其还原成亚硝酸盐,连同原有的亚硝酸盐一起测定,获得海水和海洋沉积物中总氮。该方法操作简单安全,精密度为4.7%,回收率为95%~104%,适于船上操作。关键词 海水;海洋沉积物;总氮;分析方法中图法分类号 P734 海水中最重要的无机氮有氨氮,亚硝酸盐氮和硝酸盐氮。除无机氮外还有多种溶解的和 颗粒态的有机氮化物。通过对氮化物含量的测定可以了解水域被污染状况[2],肥源情况以及有机物的分解趋势。以前的研究均以无机氮的测定见多[1,3,4],而对于海水和海洋沉积物中总氮测定的研究却不是十分系统。本文详细介绍了海水和沉积物中总氮的测定方法,此法操作简单安全,精密度高,适于船上操作。已作为第二次全国海洋污染基线调查的推荐方法。 1 材料与方法 1.1仪器 (1)反应瓶:50m L 有聚丙烯或聚四氟乙烯螺旋盖的玻璃瓶 (2)普通厨用压力锅(3)50m L 容量瓶若干(4)振荡器1.2试剂及配制 (1)无氨蒸馏水或纯水。 (2)NaCl 溶液:31gNaCl (优级纯)溶于1000m L 无氨蒸馏水中。 (3)0.12m ol/L NaOH 溶液:4.8g 分析纯NaOH 溶于1L 无氨蒸馏水中,煮沸10min 后冷却稀 释至原体积。 (4)K 2S 2O 8氧化剂:称取10g 重结晶的K 2S 2O 8溶于1L0.12m ol/L 的NaOH 溶液中,保存于具塞棕色试剂瓶中。置于冰箱可至少稳定7d 。 K 2S 2O 8的提纯:在70~80℃的温度下溶解20gK 2S 2O 8于100m L 重蒸馏水中,将溶液冷却至接近零摄氏度,过滤。由于K 2S 2O 8在零度时的溶解度仅为1.75g/100m L ,因此试剂的损失很 增刊 1999年10月 青岛海洋大学学报 JOURNA L OF OCE AN UNIVERSITY OF QING DAO Supplement  Oct.1999  Ξ收稿日期:1999204208;修订日期:1999207212 王正方,男,1941年出生,研究员。

24、水质总磷总氮分析方法

水质总氮 方法原理: 在60度以上的水溶液中,过硫酸钾可分解为硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解产生氢离子,加入氢氧化钠可促进分解过程趋于完全。 分解出的原子态氧在120-124度条件下,可使水样中的含氮化合物的氮元素转化为硝酸盐,硝酸根通过镉柱还原成亚硝酸根,用磺胺重氮化,N-1萘基乙二胺二盐酸盐比色法在520-550nm之间测定 干扰 测定中主要的干扰物为碘离子与溴离子,碘离子浓度相当于总氮的2.2倍以上、溴离子浓度相当于总氮浓度的3.5倍以上有干扰。 样品采集 取1000ml水样,加入0.5ml浓硫酸,此时样品中氢离子的量为0.0184mol/L。 消化 1.吸取10ml试样于比色管中。 2.当试样不含悬浮物时,按照下述步骤进行 3. 1 加入5ml碱性过硫酸钾(40g过硫酸钾与15g氢氧化钠溶于蒸馏水中,稀释 到1000ml),塞紧磨口塞子,固定,以防弹出; 3. 2 将比色管放入医用蒸汽灭菌锅中,加热,使压力表指针到1.2-1.4Kg/cm,此 时,温度达120-124度,计时,保持半小时; 3. 3 冷却、开阀放气,移去外盖,取出比色管冷却至常温; 3. 4 加盐酸中和样品,添加量的计算法则是: 5ml碱性过硫酸钾溶液中过硫酸钾的物质量为:40/270*5/1000=1/1350mol ,其产生的氢离子为2/1350mol; 样品中的氢离子约为10/1000*0.0184=0.000184mol 5ml碱性过硫酸钾溶液中氢氧化钠的物质量为:15/40*5/1000=15/8000mol 此时,样品剩余的氢氧根离子为:0.000211mol。 因此需要加入1mol/L的盐酸0.21ml。 3. 5 把中和后的样品用蒸馏水定容到25ml,用镉柱还原法测定。若试样消煮后 有悬浮物,取上清液测定。 4. 结果计算:用实测含量乘以2.5;注意:同时做空白。

水质总磷的测定(钼酸铵分光光度法)

水质总磷的测定 ——钼酸铵分光光度法 1.目的 磷是水富营养化的关键元素。为了保护水质,控制危害,在水环境检测中总磷已经列入监测项目。 总磷包括水溶解的、悬浮的、有机磷的和无机磷,因此将未过滤的水样消解。 将水中各形态磷转化成可溶态的无机磷酸盐的消解方法很多。本实验选用过硫酸钾消解。 2.原理 在中性条件下,过硫酸钾溶液在高压锅内经过120℃以上加热,产生如下反应: K2S2O8 + H2O 2 KHSO4 + [O] 从而将水中有机磷、无机磷、悬浮物内的磷氧化成正磷酸。 在酸性介质中,正磷酸与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物,在880和700nm波长下均有最大吸收度。 3. 试剂 3.1 过硫酸钾,50g/L溶液将5g 过硫酸钾(K2S2O8 A.R)溶于水并稀释至100mL。 3.2 抗坏血酸,100 g/L溶液溶解10g抗坏血酸(C.P)于水中,并稀释至100 mL此溶液储存于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。 3.3 钼酸盐溶液溶解13g钼酸铵[(NH4)6MoO24·4H2O]100mL水中。溶解0.35g 酒石酸锑钾[KSbC4H4O7·1/2H2O]于100mL水中,在不断搅拌下把钼酸铵溶液缓缓加到300mL(1+1)硫酸中,然后再加酒石酸锑钾溶液混合均匀。此溶液储存在棕色瓶中,在冷处可保存二个月。 3.4 硫酸:硫酸(H2SO4 A.R),密度为1.84g/mL。 3.5 磷酸标准储存溶液:称取0.2197g于110℃干燥2小时在干燥器中放冷的磷酸二氢钾(KH2PO4,A.R)用水稀释后移至1000mL容量瓶中。加入大约800mL水,加5mL硫酸(3.4)用水稀释至标线,摇匀。浓度为50.0ug/mL,P。 3.6 磷标准使用液:将10.00mL的磷标准溶液(3.5)移至250mL容量瓶中,用水稀释至标线,混匀。浓度为2.0ug/mL,P。 4.仪器 4.1医用手提式蒸气灭菌器或家用压力锅(压力为1.1-1.4kg/cm2),锅内温度相当于120-124℃。 4.2 50mL具塞(磨口)刻度试管。 4.3 分光光度计。 5.分析步骤 5.1 取25.00mL样品于具塞刻度试管中(取样时应将样品摇匀,使有沉淀或悬浮

总磷的测定方法

总磷的测定方法 (2009-12-01 23:17:37) 转载 标签: 杂谈 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L )可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1. 方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷 酸盐和总溶解性磷,如下图所示 水 样 总 磷 用0.45μ滤膜 过滤的滤 可溶性正磷酸盐 可溶性总磷酸盐 正磷酸盐的测定,可采用钼锑抗光度法;氯化亚锡钼蓝法;离子色谱法。 1. 样品的采集和保存 消解 消解

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1—1.5kg/cm2)。(2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4) 50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤 (1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2(相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。

水质分析常用的分析方法

金标准水质检测项目相关检测方法分别如下: 1【pH值】水质pH值的测定玻璃电极法GB/T6920-1986 2【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年 3【臭和味】文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年 4【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 5【酸度】酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 6【碱度(总碱度、重碳酸盐和碳酸盐)】酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 7【色度】水质色度的测定GB/T11903-1989 8【浊度】水质浊度的测定GB/T13200-1991 9【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-1989 10【总可滤残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年 11【总残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年12【全盐量(溶解性固体)】水质全盐量的测定重量法HJ/T51-1999 13【总硬度(钙和镁总量)】水质钙和镁总量的测定EDTA滴定法 GB/T7477-1987 14【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-1989 15【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法 GB/T11914—1989 16【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—1987 17【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987 水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年 18【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法GB/T7480-1987 水质硝酸盐氮的测定紫外分光光度法HJ/T346-2007 19【亚硝酸盐氮】水质亚硝酸盐氮的测定分光光度法GB/T7493-1987 20【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》 GB/T11894-1989 22【总磷】水质总磷的测定钼酸铵分光光度法GB/T11893-1989 23【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 24【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 25【苯胺类】水质苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法GB/T11889-1989 26【游离氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989

原位总磷总氮分析仪的原理及功能介绍

原位总磷总氮分析仪的原理及功能介绍原位总磷总氮分析仪采用原位潜入式设计,运用分光度法、光谱检测方法和技术; 可长期安装于浮标、浮台、小型柜式等船载走航式测量系统进行无人值守的原位在线监测。 分析仪采用多通道测试,可有效防止不同检测参数交叉感染,确保检测数据的精准、连续、稳定; 满足客户对水体总磷总氮的研究、径流检测、浮游植物生长研究以及环境变化监测等的需求。 此外,分析仪还自带断电数据保护功能,避免发生断电或数据传输异常时造成的数据丢失问题。 适用于环保、水文、化工、水产养殖、自来水厂、污水处理、实验室等领域。 功能优势 1.长时间自控,低维护量,低运行成本; 2.测量方法符合相关标准,与标准法比对一致性好,更有利于比对验收; 3.试剂消耗量小,维护周期长,可节省用户后期运行成本; 4.分析仪采用原位潜入式设计,可长期安装于浮磅系统,进行连续、稳定、精准的检测;

5.客户可选择总磷、总氮、营养盐参数(氨氮、硝酸盐氮、亚硝酸盐氮、磷酸盐)等任意3~4个项目搭载于同一台设备。 6.主要组件均采用进口品牌,确保其准确度、稳定性和可靠性; 7.比色管的特殊管路结构,可有效防止气泡的产品; 8.特殊光路处理,有效减少光损失。 9.具备完整通信功能,配套云平台,用户可远程对仪器进行参数设置、仪器操作等控制; 10.可同时检测总磷、总氮两个参数,在不影响检测效果的情况下,进一步节省检测成本; 11.总磷总氮同时消解,在降低功耗的同时,提高工作效率; 12.多种检测方法集成于一台仪器,适用于多种工作环境; 13.废液自动回收,不会造成二次污染; 14.仪器设有告警功能,当消解加热的过程中出现异常状况,系统会自动向客户发送报警信息。 工作原理 原位总磷总氮分析仪基于分光光度法的测量原理,用过硫酸钾将水样消解为硝酸盐和正磷酸盐; 然后以连续流方式、流路一体化检测,采用顺序注射法进样比色测量正磷酸盐,而硝酸盐则采用紫外光谱法进行测量。

北运河沉积物中主要脱氮功能微生物的群落特征

中国环境科学 2016,36(5):1520~1529 China Environmental Science 北运河沉积物中主要脱氮功能微生物的群落特征 鲍林林1,2,3,王晓燕1,4*,陈永娟1,张苓荣1 (1.首都师范大学资源环境与旅游学院,北京 100048;2.中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085;3.中国科学院大学,北京 100049;4.首都师范大学首都圈水环境研究中心,北京 100048) 摘要:应用分子生物学技术研究北运河沉积物中主要脱氮功能微生物,反硝化细菌和厌氧氨氧化细菌(Anammox)的群落特征,探讨了微生物群落的季节变化及其与环境因子的响应关系.结果表明,沉积物中反硝化细菌和Anammox的丰度和群落组成随季节变化差异显著.从夏季到冬季,反硝化细菌丰度逐渐增加,Anammox的丰度却逐渐降低;反硝化细菌的多样性均显著的高于Anammox的多样性,反硝化细菌是北运河沉积物中主要的脱氮微生物.从夏季到冬季,沉积物中氮和TOC含量均逐渐升高,温度是决定脱氮微生物群落特征季节变化的关键因子,TN与反硝化细菌的群落丰度显著正相关,C/N与Anammox的丰度显著正相关;反硝化细菌的群落结构主要受到硝氮和pH的影响,pH也是影响Anammox物种时空分布的主要因子.系统发育分析表明,两种脱氮微生物的主要类群均具有较高的耐污性和良好的脱氮效率,反硝化细菌主要从属于Pseudomonas和Halomonas, Anammox物种发育多样性较低,主要为浮霉菌门的Candidatus Brocadia. 关键词:北运河沉积物;反硝化细菌;厌氧氨氧化细菌;季节变化;环境因子;系统发育 中图分类号:X172 文献标识码:A 文章编号:1000-6923(2016)05-1520-10 Diversity, abundance and distribution of nirS-type denitrifiers and Anammox bacteria in sediments of Beiyun River. BAO Lin-lin1,2,3, WANG Xiao-yan1,4*, CHEN Yong-juan1, ZHANG Ling-rong1 (1.College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China;2.State Key Laboratory of Urban and R egional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;3.University of Chinese Academy of Sciences, Beijing 100049, China;4.Research Center of Aquatic Environment in the Capital Region, Capital Normal University, Beijing 100048, China). China Environmental Science, 2016,36(5):1520~1529 Abstract:Denitrification and anaerobic ammonia oxidation are two main processes for nitrogen removal in nitrogen cycle. The seasonal variation of community diversity and abundance, phylogenetic composition of nirS-type denitrifiers and Anammox (anaerobic ammonia oxidation) bacteria of sediments in Beiyun River were compared based on PCR (polymerase chain reaction), T-R FLP (terminal restriction fragment length polymorphism), clone and sequencing. The abundance of nirS-type denitrifiers increased from summer to winter while the abundance of Anammox bacteria decreased significantly. What’s more, the abundance of nirS-type denitrifiers was significantly higher than Anammox in fall and winter. Community composition of the two microbial groups varied seasonally and the community diversity of nirS-type denitrifiers was much higher than Anammox bacteria. Concentrations of nitrogens and organic carbon in the sediments increased significantly from summer to winter. Environmental temperature was significantly correlated with the seasonal changes of abundance and community distribution of the two microbial groups in sediments. Correlation analysis revealed that total nitrogen had a great effect on the abundance of nirS-type denitrifiers, while C/N was significantly correlated with abundance of Anammox bacteria. NO x? and pH were also the main environmental factors determining the community distribution of nirS-type denitrifiers and Anammox bacteria in sediments. Phylogenetic analysis revealed that most of the denitrifying microbes belonged to species with relatively high pollution-resistance and efficiency of nitrogen removal. Phylogenetic diversity of nirS-type denitrifiers was much higher than that of Anammox bacteria. nirS-type denitrifiers were grouped into genera Pseudomonas and Halomonas, while Anammox was mainly bacteria belonged to Candidatus Brocadia. Key words:Beiyun River sediment;nirS-type denitrifiers;Anammox;seasonal change;environmental factors;phylogeny 收稿日期:2015-10-08 基金项目:国家自然科学基金项目(41271495);国家重大水专项(2009ZX07209-001-02) * 责任作者, 教授, wangxy@https://www.doczj.com/doc/d411290784.html,

总磷总氮

实验题目:营养元素测定:总磷、总氮联合测定 姓名:学号: 班级:环工092班组别:指导教师:韦旭 1.实验概述 1.1实验目的及要求 通过实验,初步了解水体营养元素(氮、磷)联合测定的原理与方法,对湖塘水质监测规范和要求有较直观的认识。同时,认识到要在水质监测领域有创新,必须关注生物(生态)工程、化学工程等相关领域的理论和技术发展。 1.2实验原理 过硫酸钾水溶液在60℃以上时发生如下反应: K 2S 2 O 8 + 2H 2 O = 2KHSO 4 + O 2 + 2H+ 如果将K 2S 2 O 8 和NaOH按一定的比例混合作为氧化剂,则消解反应开始时溶 液呈碱性。K 2S 2 O 8 分解产生的氧(O 2 )将水样中不同形态的氮氧化成硝酸盐,同 时K 2S 2 O 8 分解产生的H+不断中和NaOH。当NaOH被H+完全中和后溶液逐渐变成中 性甚至酸性。在弱酸性溶液中,K 2S 2 O 8 分解产生的氧(O 2 ),又将各种形态的磷氧 化成正磷酸盐。因此,该方法的关键是要选择一个适度的K 2S 2 O 8 溶液。 1.3实验条件 (1)实验仪器 微波密封消解COD快速测定仪:汕头市环海工程总公司;精密pH计(pHS-3C):上海雷磁仪器厂;紫外分光光度计(UV – 1201):北京瑞利分析仪器公司;立式压力蒸气灭菌器(LS-C50L):江阴滨江医疗设备厂;50mL聚四氟乙烯密封消解罐,25mL、50mL比色管若干。 (2)实验试剂 a)无氨水:每升去离子水中加0.1mL硫酸在全玻璃蒸馏器中重蒸馏,弃去50ml初馏液,接取其余馏出液体于具塞磨口的玻璃瓶中,密塞保 存。 b)硝酸钾标准储备液(C=100.00 mg/L):硝酸钾在105~110℃烘箱中干燥3h,在干燥器中冷却后,称取0.7218g,溶于水中,移至1000mL 容量瓶中,用水稀释至标线在0~10℃暗处保存,或加入1~2mL三氯 甲烷保存,可稳定6个月。 c)碱性过硫酸钾溶液:称取40g过硫酸钾,分别加入6g氢氧化钠,溶于水中,稀释至1000mL,配制成6g/L NaOH的碱性过硫酸钾溶液存放 在聚乙烯瓶内。 d)磷标准储备液(C=50.00mg/L):称取0.2197±0.001g于110℃干燥 2h的磷酸二氢钾(KH 2PO 4 ),用水溶解后转移至1000mL容量瓶中,加 入大约800mL水,加5mL的(1+1)H 2SO 4 ,用水稀释至标线。 e)钼酸盐溶液:溶解13g钼酸铵[(NH 4) 6 Mo 7 O 24 ·4H 2 O]于100mL水中。在 不断搅拌下,将钼酸铵溶液徐徐加到300mL(1+1)H 2SO 4 中,加酒石

总磷水质在线监测仪

产品名称:总磷水质在线监测仪 产品型号:TP-8000 系统概述: 水中聚磷酸盐和其他含磷化合物,在高温、高压的酸性条件下水解,生成磷酸根;对于其他难氧化的磷化合物,则被强氧化剂过硫酸钠氧化为磷酸根。在酸性介质中,正磷酸盐与钼酸铵、酒石酸锑钾反应,生成磷钼杂多酸化合物,这种化合物被抗坏血酸还原为蓝色的磷钼酸盐,光通过测量吸光度得到水样中总磷的含量。如果是测量磷酸盐,则无需进行氧化反应便可以直接测量水中的磷酸盐。 技术参数: 测试方法:磷钼酸铵比色法; 测试量程:0~2/5/10/30mg/L; 检测下限:0.1mg/L; 准确度:常规:<10%;<1mg/L:<±0.5mg/L; 重复性:常规:<5%;<1mg/L:<±0.1mg/L; 响应时间(90%):可根据水样自行调整,最少30min; 测试方式:定时、等间隔、手动; 试剂消耗:一次1mL; 维护方式:自维护,用户维护间隔>5个月; 自我监测:自我监测泄漏;仪器状态自我诊断; 模拟输出:4---20mA模拟输出; 继电器控制:2路24V 1A继电器高低点控制; 数据传输方式:RS232,RS485; 显示:8.0寸大屏LCD触摸屏,分辨率800×600; 数据存储:一年有效数据; 试剂更换:一个月更换一次; 工作温度:+0~50°C; 电源:220 ±10% VAC;50-60Hz; 功耗:约80W; 尺寸:主机500mm×780mm×320mm; 重量:约30Kg; 系统特点: 水样预处理装置采用免维护设计,可确保预处理装置维护周期超过半年时间。 化学消解时间可以调整,测定过程及结果满足相关国家标准。 全进口器件及创新的分析流路设计和试剂配方保证了极高的测量重现性,目前测量重现性可达到3%。 总磷水质在线监测仪全自动运行,无需人员值守,可实现自动调零、自动校准、自动测量、自动清洗、自动维护、自我保护、自动恢复等智能化功能。在线监测方式多样化,可实现人工随时测量、自动定时测量、自动周期性测量等测定方式。

海洋沉积物分析的主要方法

海洋沉积物分析的主要方法概述

地质分析测试工作是地质科学研究和地质调查工作的重要技术手段之一。其产生的数据是地质科学研究、矿产资源及地质环境评价的重要基础,是发展地质勘查事业和地质科学研究工作的重要技术支撑。现代地球科学研究领域地不断拓展对地质分析测试技术的需要日益增强,迫切要求地质分析测试技术不断地创新和发展,以适应现代地球科学研究日益增长的需求。 海洋地质样品的分析测试是海洋地质工作的重要组成部分,无论是资源勘查还是环境评价均离不开相关样品的分析测试。选择准确可靠的分析方法是保证分析测试质量的关键,也是进行质量监控的重要手段之一。 1.电子探针分析(EMPA) 电子探针(EPMA),全名为电子探针X射线显微分析仪,又名微区X射线谱分析仪可对试样进行微小区域成分分析。电子探针的大批量是利用经过加速和聚焦的极窄的电子束为探针,激发试样中某一微小区域,使其发出特征X射线,测定该X射线的波长和强度,即可对该微区的元素作定性或定量分析。 电子探针仪是X射线光谱学与电子光学技术相结合而产生的,1958年法国首先制造出商品仪器。从Castaing奠定电子探针分析技术的仪器、原理、实验和定量计算的基础以来,电子探针分析(EPMA)作为一种微束、微区分析技术在50~60年代蓬勃发展,至70年代中期已比较成熟;近年来,由于计算机、网络技术的迅猛发展,相关应用软件的开发与使用的加快,使得装备有高精度的波谱仪的新一代电子探针仪具有数字化特征、人工智能和自动化的分析程序、网络功能以及高分辨率图象的采集、分析及处理能力。 EPMA技术具有高空间分辨率(约1μm)、简便快速、精度高、分析元素范围广(4Be~92U)、不破坏样品等特点,使其很快就在地学等研究领域得到应用。电子探针分析(EPMA)主要用于矿物的主要元素分析,但也可用于熔融岩石(玻璃)样品的主要元素分析,但不用来分析微量元素。它的主要优点是具有优良的空间分辨率,可以用电子束直径为1—2um进行分析。这意味着可以分析极其小的样品面积。岩石样品的常规分析局限于天然的和合成的玻璃样品。在这种应用中,常用非聚焦的电子束,以减小玻璃非均匀性问题。硅酸盐玻璃的电子探针分析在实验岩石学中具有特殊的重要性,但是很少利用电子探针进行岩石粉末的熔融片的主要元素分析。下面简要介绍电子探针在系列矿物研究和蚀变矿物带研究中的

对水质分析中的总氮-总磷的联合测定

对水质分析中的总氮\总磷的联合测定 摘要随着社会的快速发展,现如今国内外关于水质中氮、磷测定方法的改进相关研究越来越多,但绝大多数只是单独针对氮或者磷的研究,而相关于总氮、总磷的连续测定的研究是少之又少,基本上只是一些消解方法的改进,而这些方法的弊端是达不到连续测定的目的,实际应用意义不大。本文通过对微波-H2O2的研究,探索了此方法与经典方法的可比性,及其在实际应用中的优越性,研究出了一种适合于城市生活污水中总氮、总磷快速联合测定的准确简便的新方法。 关键词快速测定;总氮;总磷;消解方法;测定 水体中总磷、总氮是衡量水质富营养化的重要指标。当水体中出现过量的含磷、含氮化合物时,水中微生物大量繁殖,消耗水中的溶解氧,从而引起水质恶化,影响水域的使用功能。常规测定方法是用过硫酸钾作为氧化剂,在高温高压条件下进行消解,操作繁琐。传统中的总氮(TN)和总磷(TP)的检测方法是碱性过硫酸钾氧化-紫外分光光度法。在我国的国际标准中规定水中总磷、总氮的测定方法,测定中都要经过过硫酸钾氧化,且分别测定两个项目耗时耗力,采用同一消解液消解污水水样,并连续测定水中的总氮和总磷。众多试验结果表明,只要选择适当的消解液浓度,即可经同一消解液消解后连续测定水中的总氮和总磷。即只要找到氧化剂的最佳浓度,即可使水中的氮和磷在同一氧化剂中依次完成氧化。反应原理:2K2S2O8+2OH-=4KHSO4+O2。采用该方法分析了标样和各种水样,结果表明,该方法准确、简便且可连续测定水中的总氮和总磷。 《水和废水监测分析方法》中测定总磷、总氮方法规定,空白、样品、绘制校准曲线的标准溶液都必须经过消解,同时整个过程从样品制备—消解—冷却至少需要5、6个小时以上,若把他们分别消解,对于一个人承担该两项分析工作是有一定的困难。今通过对该两项目的保存条件及消解方法进行了一系列比较试验,发现可以采取联合消解,同时实验结果证明可行,并取得了较好的效果。 标准方法中,总氮、总磷两项测定都需要数小时的高温高压消化步骤。由于消化的温度、时间、试剂均对消化有较大影响,过硫酸钾溶液不能久放,几乎每次测定都需要同时制作标准曲线。 1 标准曲线的绘制 1)分别用标准方法绘制总氮、总磷的标准曲线; 2)分别取用无氨水和新鲜去离子水配制的含硝酸盐氮10.00mg/L、磷5.00mg/L的混合标准使用溶液:(N:0.10mL、0.30mL、0.50mL、1.00mL、2.50mL、5.00mL;P:0.50mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL)依次于24个消解罐中,分别加无氨水和新鲜去离子水至l0mL,加碱性过硫酸钾溶液5mL,然后进行消解,同时进行测定,所得数据以浓度对吸光度值作图,结果见上图。

总磷检测分析方法

总磷检测分析方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

总磷 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过L)可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1.方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如下图所示 消解正磷酸盐的测定,可采用钼锑抗光度法;氯化亚锡钼蓝法;离子色谱法。 2.样品的采集和保存 总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理

采集的水样立即经μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1—cm2)。 (2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4)50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤 (1)吸取 ml混匀水样(必要时,酌情少取水样,并加水至25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达cm2 (相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。

相关主题
文本预览
相关文档 最新文档