当前位置:文档之家› Chapter-11:ANSYS 8.1热力学分析

Chapter-11:ANSYS 8.1热力学分析

Chapter-11:ANSYS 8.1热力学分析
Chapter-11:ANSYS 8.1热力学分析

瞬态动力学分析

第16章瞬态动力学分析 第1节基本知识 瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。 用于瞬态动力分析的运动方程为: []{}[]{}[]{}() {}t F M= u + + C K u u 其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。 所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。 瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。分析结果写入jobname.RST文件中。可以用POST1和POST26观察分析结果。 ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。

在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式: Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。 Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。 图16-1 载荷增加方式 渐变与突变 依据载荷变化方式可以将整个时间历程划分成多个载荷步(LoadStep ),每个载荷步代表载荷发生一次突变或一次渐变阶段。在每个载荷步时间内,载荷增量又可以划分多个子步(Substep ),在子步载荷增量的条件下程序进行迭代计算即Iteriation ,经过多个子步的求解实现一个载荷步的求解,进而求出多个载荷步的求解实现整个载荷时间历程的求解。 利用ANSYS 进行瞬态动力学分析时可以在实体模型或有限元模型上施加下列载荷:约束(Displacement )、集中力(Force )、力矩(Moment )、面载荷(Pressure )、体载荷(Temperature 、Fluence )、惯性力(Gravity ,Spinning ,ect.)。 在ANSYS 中,进行多载荷步加载的基本方法常用有三种:(1)连续多载荷步加载法。 (2)定义载荷步文件批加载法。(3)定义表载荷加载法。 第2节 瞬态动力学分析实例 案例1——自由度弹簧质量系统瞬态分析 LOAD (a) Ramped (b ) Stepped

ANSYS新手入门学习心得

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

ANSYS学习心得

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

ANSYS动力学分析报告

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振

型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤 模态分析过程由4个主要步骤组成,即建模、加载和求解、扩展模态,以及查看结果和后处理。 (1)建模。指定项目名和分析标题,然后用前处理器PREP7定义单元类型、单元实常数、材料性质及几何模型。必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料性质可以是线性或非线性、各向同性或正交各向异性,以及恒定或与温

ansys心得

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

瞬态动力学分析

瞬态动力学分析 瞬态动力学分析(也称时间历程分析)是用于确定承受任意的随时间变化载荷的结构的动力学响应的一种方法。 本章将通过实例讲述瞬态动力学分析的基本步骤和具体方法。 瞬态动力学概论 弹簧阻尼系统的自由振动分析 任务驱动&项目案例

Note

Note

对话框,输入“ Note 图10-2 定义工作标题 )定义单元类型。选择主菜单中的Main Menu > Preprocessor > Element Type > Add/Edit/Delete 图10-3 Element Types对话框图10-4 Library of Element Types对话框 (3)定义单元选项。在如图所示的对话框中单击Options按钮,弹出COMBIN40 element type options对话框,如图10-5所示,在Element degree(s) of freedom K3下拉列表框中选择UX选项,在 Mass location K6下拉列表框中选择Mass at node J选项,如图10-5所示,单击OK按钮,回到如图10-3 所示的对话框。单击Close按钮关闭该对话框。 图10-5 COMBIN40 element type options对话框 )定义第一种实常数。选择主菜单中的Main Menu > Preprocessor > Real Constants > Add/Edit/ ·276·

Element Type for Real Note 图10-6 Real Constants对话框Element Type for Real Constants 10-7所示的对话框中选择Type 1 COMBIN40选项,单击OK按钮,弹出Real Constant Set Number1,for COMBIN40对话框,在Spring constant K1文本框中输入“10000”,在Mass M ”,在Limiting sliding force FSLIDE“1.875”,在Spring const(par to slide) K2 文本框中输入“30”,如图10-8所示,单击按钮。接着单击Real Constants对话框中的 关闭该对话框,退出实常数定义。 )创建节点。选择主菜单中的Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Create Nodes in Active Coordinate System NODE Node number文本框中输入 图10-8 Real Constant Set Number1, 图10-9 生成第一个节点 for COMBIN40对话框 在Create Nodes in Active Coordinate System对话框的NODE Node number文本框中输入“2”,在 X,Y,Z Location in active CS文本框中输入“1、0、0”,单击OK按钮,屏幕显示如图10-10所示。 (6)打开节点编号显示控制。选择实用菜单中的 Plot Numbering Controls对话框,选中NODE Node numbers 所示,单击OK按钮。

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

ANSYS分析报告分析

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

ANSYS动力学瞬态分析完全法

完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。 §3.4 完全法瞬态动力学分析 首先,讲述完全法瞬态动力学分析过程,然后分别介绍模态叠加法和缩减法与完全法不相同的计算步骤。完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成: 1.建造模型 2.建立初始条件 3.设置求解控制 4.设置其他求解选项 5.施加载荷 6.存储当前载荷步的载荷设置 7.重复步骤3-6定义其他每个载荷步

8.备份数据库 9.开始瞬态分析 10.退出求解器 11.观察结果 § 型 在这一步中,首先要指定文件名和分析标题,然后用PREP7定义单元类型,单元实常数,材料性质及几何模型。这些工作在大多数分析中是相似的。<>详细地说明了如何进行这些工作。 对于完全法瞬态动力学分析,注意下面两点: ·可以用线性和非线性单元; ·必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量)。材料特性可以是线性的或非线性的、各向同性的或各向异性的、恒定的或和温度有关的。 划分合理的网格密度: ·网格密度应当密到足以确定感兴趣的最高阶振型; ·对应力或应变感兴趣的区域比只考察位移的区域的网格密度要细一些; ·如果要包含非线性特性,网格密度应当密到足以捕捉到非线性效应。例如,塑性分析要求在较大塑性变形梯度的区域有合理的积分点密度(即要求较密的网格); ·如果对波传播效果感兴趣(例如,一根棒的末端准确落地),网格密度应当密到足以解算出波动效应。基本准则是沿波的传播方向每一波长至少有20个单元。 § 在执行完全法瞬态动力学分析之前,用户需要正确理解建立初始条件和正确使用载荷步。 瞬态动力学分析顾名思义包含时间函数的载荷。为了定义这样的载荷,用户需要将载荷—时间关系曲线划分成合适的载荷步。载荷—时间曲线上的每个“拐角”对应一个载荷步,如图3.1所示。

ansys动力学分析全套讲解

第一章模态分析 §模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法 2.子空间(Subspace)法 Dynamics法

ANSYS瞬态分析实例

例题:一根钢梁支撑着集中质量并承受一个动态载荷(如图1所示)。钢梁长为L,支撑着一个集中质量M。这根梁承受着一个上升时间为t1的值为F1 的动态载荷F(t)。梁的质量可以忽略,确定产生最大位移响应时的时间t max 和响应y max。 图1 钢梁支撑集中质量的几何模型 材料特性:弹性模量为2e5MPa,质量为M=0.0215t,质量阻尼为8; 几何尺寸为:L=450mm,I=800.6mm4,h=18mm; 载荷为:F1=20N,t1=0.075s GUI操作方式: 1.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现一个对话框,单击“Add”,又出现一个对话框,在对话框左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择“2D elastic 3”,单击“Apply”,在对话框左面的列表栏中选择“Structural Mass”,在右边选择“3D mass 21”,单击“OK”,在单击“Options”,弹出对话框,设置K3为“2-D W/O rot iner”,单击“OK”,再单击“Close”。 2.设置实常数:Main Menu>Preprocessor>Real Constants> Add/Edit/Delete,出现对话框,单击“Add”,又弹出对话框,选择“Type1 BEAM3”,单击“OK”,

又弹出对话框,输入AREA为1,IZZ=800.6,HEIGHT=18,单击“OK”,在单击“Add”,选择Type 2 MASS21,单击“OK”,设置MASS为0.0215,单击“OK”,再单击“Close”。 3.定义材料属性:Main Menu>Preprocessor>Material Props>Material Modls,出现对话框,在“Material Models Available”下面的对话框中,双击打开“Structural>Linear>Elastic>Isotropic”,又出现一个对话框,输入弹性模量EX=2e5,泊松比PRXY=0,单击“OK”,单击“Materal>Exit”。 4.建立模型: 1)创建节点:依次单击Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS,在弹出对话框中,依次输入节点的编号1,节点坐标x=0,y =0,然后单击“Apply”,输入节点编号2,节点坐标x=450/2,y=0,然后单击“Apply”,输入节点编号3,节点坐标x=450,y=0。单击“OK”。2)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点1和2,2和3,单击“OK”。 3)指定单元实常数:Main Menu>Preprocessor>Modeling>Create>Elements> Elem Attributes,弹出对话框,设置TYPE为2,REAL为2,单击“OK”。4)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点2,单击“OK”。5.定义分析类型:Main Menu>Solution>Analysis Type>New Analysis,弹出对话框,选择Trasiernt,单击“OK”,又弹出对话框,选择Reduced,单击“OK”。6.设置分析选项:Main Menu>Solution>Analysis Type>Analysis Options,弹出对话框,单击“OK”。

ansys数据处理总结

!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!! !!!!!~~~~~~~~~ansys数据处理的相关命令流~~~~~~~~~~~!!!!! !(1)数据输入的相关命令 !利用*TREAD命令读取数据文件并填充TABLE表格 *TREAD, Par, Fname, Ext, --, NSKIP !以下利用*TREAD命令读取1维数据表格 !tdata.txt文本文件含有如下内容 STRAIN STRESS 00 0.0025 0.0046 0.0067 *DIM,Ttxy,table,4,1,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取2维数据表格 !要特别注意2维数据的行数 !tdata.txt文本文件含有如下内容 TIME X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 !希望输入地震波激励,X、Y、Z三个方向 *DIM,Ttxy,table,3,3,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取3维数据表格 !tdata.txt文本文件含有如下内容 TEMP X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 5000 0.030.20.30.4 0.050.40.60.8 0.070.60.90.9 !希望读取不同温度下,不同时刻的泊松比 *DIM,Ttxy,table,3,3,2,TIME,NUXP,TEMP *TREAD,Ttxy,tdata,txt,,1 !利用*SREAD命令读取字符文件 *SREAD, StrArray, Fname, Ext, --, nChar, nSkip, nRead 页: 1

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学的基本运动方程是: 其中: [M] =质量矩阵 [C] =阻尼矩阵 [K] =刚度矩阵 {}=节点加速度向量 {}=节点速度向量 {u} =节点位移向量 在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和 阻尼力([C]{})的静力学平衡方程。ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。两个连续时间点间的时间增量称为积分时间步长(integration time step)。 §3.2学习瞬态动力学的预备工作 瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。例如,可以做以下预备工作:

1.首先分析一个较简单模型。创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。 2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。在某些场合,动力学分析中是没必要包括非线性特性的。 3.掌握结构动力学特性。通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。同时,固有频率对计算正确的积分时间步长十分有用。 4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。<<高级技术分指南>>中将讲述子结构。 §3.3三种求解方法 瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。ANSYS/Professional产品中只允许用模态叠加法。在研究如何实现这些方法之前,让我们先探讨一下各种方法的优点和缺点。 §3.3.1完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。

瞬态动力学分析汇总

______________________________________________________________________________________________________________ 精品资料 第16章 瞬态动力学分析 第1节 基本知识 瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。 用于瞬态动力分析的运动方程为: []{}[]{}[]{}(){}t F u K u C u M =++ 其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。 所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS 分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。 瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS 在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。分析结果写入jobname.RST 文件中。可以用POST1和POST26观察分析结果。

ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。 在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式: Ramped:如图16-1(a)所示,载荷按照线性渐变方式变化。 Stepped:如图16-1(b)所示,载荷按照解体突变方式变化。

ANSYS动力学分析指南——模态分析

§1.1模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §1.2模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例 分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS 命令说明。 §1.3模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵,

ANSYS瞬态动力学分析实例2

一根钢梁支撑着集中质量并承受一个动态载荷(如图1所示)。钢梁长为L,支撑着一个集中质量M。这根梁承受着一个上升时间为t1大值为F1的动态载荷F (t)。梁的质量可以忽略,确定产生最大位移响应时的时间t max和响应y max。同时要确定梁中的最大弯曲应力。 图1 钢梁支撑集中质量的几何模型 材料特性:弹性模量为2e5MPa,质量为M=0.0215t,质量阻尼为8; 几何尺寸为:L=450mm,I=800.6mm4,h=18mm; 载荷为:F1=20N,t1=0.075s 操作步骤: 1.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现一个对话框,单击“Add”,又出现一个对话框,在对话框左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择“2D elastic 3”,单击“Apply”,在对话框左面的列表栏中选择“Structural Mass”,在右边选择“3D mass 21”,单击“OK”,在单击“Options”,弹出对话框,设置K3为“2-D W/O rot iner”,单击“OK”,再单击“Close”。 2.设置实常数:Main Menu>Preprocessor>Real Constants> Add/Edit/Delete,出现对话框,单击“Add”,又弹出对话框,选择“Type1 BEAM3”,单击“OK”,

又弹出对话框,输入AREA为1,IZZ=800.6,HEIGHT=18,单击“OK”,在单击“Add”,选择Type 2 MASS21,单击“OK”,设置MASS为0.0215,单击“OK”,再单击“Close”。 3.定义材料属性:Main Menu>Preprocessor>Material Props>Material Modls,出现对话框,在“Material Models Available”下面的对话框中,双击打开“Structural>Linear>Elastic>Isotropic”,又出现一个对话框,输入弹性模量EX=2e5,泊松比PRXY=0,单击“OK”,单击“Materal>Exit”。 4.建立模型: 1)创建节点:依次单击Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS,在弹出对话框中,依次输入节点的编号1,节点坐标x=0,y =0,然后单击“Apply”,输入节点编号2,节点坐标x=450/2,y=0,然后单击“Apply”,输入节点编号3,节点坐标x=450,y=0。单击“OK”。2)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点1和2,2和3,单 击“OK”。 3)指定单元实常数:Main Menu>Preprocessor>Modeling>Create>Elements> Elem Attributes,弹出对话框,设置TYPE为2,REAL为2,单击“OK”。4)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点2,单击“OK”。 5 定义分析类型:Main Menu>Solution>Analysis Type>New Analysis,弹出对话框,选择Trasiernt,单击“OK”,又弹出对话框,选择Reduced,单击“OK”。 6) 设置分析选项:Main Menu>Solution>Analysis Type>Analysis Options,弹出对话框,单击“OK”。

ANSYS瞬态动力学分析步骤

ANSYS模态分析步骤 第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes 第2步:指定分析标题/工作名/工作路径,并设置分析范畴 1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory 2 设置分析范畴Main Menu>Preference,单击Structure,OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。第5步:划分网格 Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。当内存不足时,取消SmartSize 第6步:进入求解器并指定分析类型和选项 Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace 模态提取法,在No. of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。 第7步:施加边界条件 Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。 第8步:指定要扩展的模态数 Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No. of modes to expand 处输入第6步相应的数字,单击OK即可。 注意:在第6步NMODE No. of modes to expand输入扩展模态数后,第8步可省略。 第9步:进行求解计算 Main Menu>Solution>Solve>Current LS。浏览在/STAT命令对话框中出现的信息,然后使用File>Close 关闭该对话框,单击OK。在出现警告(不一定有)“A check of your model data produced 1 Warning。Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。 第10步:列出固有频率 Main Menu>General Postproc>Results Summary。 第11步:动画显示模态形状 查看某阶模态的变形,先读入求解结果。执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择“Def+undefe edge”或执行 2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。如果需要看其他阶模态,执行Main Menu>General Postproc>Read results>Next Set,重复执行上述步骤即可。 第12步:结束分析SA VE_DB; Main Menu>Finish

相关主题
文本预览
相关文档 最新文档