当前位置:文档之家› 地下水动力学概念总结分解

地下水动力学概念总结分解

地下水动力学概念总结分解
地下水动力学概念总结分解

地下水动力学概念总结

---- King Of Black Spider

地下水动力学:Groundwater dynamics研究地下水在孔隙岩石、裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学,它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量上和质量进行定量评价和合理开发利用,以及兴利除害的理论基础。主要研究重力水的运动规律。

渗流:Seepage flow是一种代替真实地下水流的、充满整个岩石截面的假想水流,其性质(密度、粘滞性等)与真实地下水相同,充满整个含水层空间(包括空隙空间和岩石颗粒所占据的空间),流动时所受的阻力等于真实地下水流所受的阻力,通过任一断面及任一点的压力或水头均与实际水流相同。

越流:Leakage 当承压含水层与相邻含水层存在水头差时,地下水便会从水头高的含水层流向水头低的含水层的现象。对于指定含水层来说,水流可能流入也可能流出该含水层。

贮水系数:storativity又称释水系数或储水系数,指面积为一个单位、厚度为含水层全厚度M的含水层柱体中,当水头改变一个单位时弹性释放或贮存的水量,无量纲。μ* = μs M。

既适用于承压含水层,也适用于潜水含水层。

导水系数:Transmisivity 是描述含水层出水能力的参数;水力坡度等于1时,通过整个含水层厚度上的单宽流量;亦即含水层的渗透系数与含水层厚度之积,它是定义在一维或二维流中的水文地质参数。T=KM单位:m2/d。非均质介质:如果在渗流场中,所有点不都具有相同的渗透系数,则称该岩层是非均质的。

各向异性介质:渗流场中某一点的渗透系数取决于方向,渗透系数随渗流方向不同而不同。

达西定律:Darcy’s Law 是描述以粘滞力为主、雷诺数Re< 1~10的层流状态下的地下水渗流基本定律,指出渗流速度V与水力梯度J成线性关系,V=KJ,或Q=KAJ,为水力梯度等于1时的渗流速度。又称线性渗透定律。它反映了渗流场中的能量守恒与转换定律。

稳定流:steady flow在一定的观测时间内水头、渗流速度等渗透要素不随时间变化的地下水运动。

非稳定流:unsteady flow 水头、渗透速度等任一渗透要素随时间变化的地下水运动。

层流:laminar flow水流流束彼此不相混杂、运动迹线呈近似平行的流动。

紊流:turbulent flow 水流流束相互混杂、运动迹线呈不规则的流动。

边界条件:Boundary conditions渗透区边界所处的条件,用以表示水头H(或渗流量q)在渗流区边界上所应满足的条件,也就是渗流区内水流与其周围环境相互制约的关系。

初始条件:Initial conditions 某一选定的初始时刻(t=0)渗流区内水头H的分布情况。

数值解:Numerical solution 用数值方法求得的数值解,是一种近似解。

解析解:Analytic solution 精确解,用解析方法求解数学问题所得到的解析表达式。

多孔介质:porous medium 指地下水动力学中具有孔隙的岩石,能够赋存流体且流体可在其中运动,包括孔隙和裂隙岩层,也包括一些岩溶化比较均匀的岩层。

孔隙介质:pore medium 含有孔隙水的岩层;赋存流体且流体可在其中运动的孔隙岩层。

裂隙介质:fissure medium含有裂隙水的岩层;赋存流体且流体可在其中运动的裂隙岩层。

岩溶介质:karst medium 含有岩溶水的岩溶化岩层;赋存流体且流体可在其中运动的岩溶化岩层。

骨架:Matrix 多孔介质中固体部分(固相)。

孔隙度:Porosity 多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数。

有效孔隙:Effective pores多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。

有效孔隙度:Effective Porosity 多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数。

死端孔隙:Dead-end pores 多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。

压缩系数:

多孔介质压缩系

数Coefficient of compressibility表示多孔介质在压强变化时的压缩性的指标,用α 表示;多孔介质固体颗粒压缩系数αs和孔隙压缩系数αp的关系为α=(1-n) αs+nαp≈nαp。

固体颗粒压缩系

表示多孔介质中固体颗粒本身的压缩性的指标,用αs表示。αs<<αp。

孔隙压缩系数Compressibility of the pores of a porous medium表示多孔介质中孔隙的压缩性的指标,用αp表示。贮水率:Specific storativity指当水头下降(或上升)一个单位时,由于含水层内骨架的压缩(或膨胀)和水的膨胀(或压缩)而从单位体积含水层柱体中弹性释放(或贮存)的水量,量纲1/L。μs = ρg (α+nβ)。

重力疏干:gravity drainage /yield 在无压含水层中抽水或排水时,空隙中的水在重力作用下排出而使部分含水层

疏干的现象。 延迟给水:delayed drainage (滞后给水)在潜水含水层中抽水时潜水位下降后其上部新形成的包气带重力水缓

慢逐渐排出的现象。 渗流场:Flow domain 假想水流所占据的空间区。 典型单元体:REV/ Representative Elementary V olume 又称代表性单元体,是渗流场中其物理量的平均值能够近似

代替整个渗流场的特征值的代表性单元体积。 过水断面:Cross-sectional area 渗流场中垂直于渗流方向的任意一个岩石截面,包括空隙面积和固体颗粒所占据的

面积。渗流平行流动时为平面。弯曲流动时为曲面。 渗流量:Seepage discharge 流量,单位时间内通过过水断面的水体积,同Q 表示,单位m 3/d 。 渗流速度:Specific discharge/seepage velocity 又称渗透速度、比流量,是渗流在过水断面上的平均流速。它不代

表任何真实水流的速度,只是一种假想速度。记为v ,单位m/d 。 实际平均流速:Mean actual velocity 多孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面

的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T 。记为u 。 测压管水头:Piezometric head 位置水头与压力水头之和。 压力水头:pressure head 含水层中某点的压力水头(h )指以水柱高度表示的该点水的压强,量纲为L ,即:h =P/

γ,式中 P 为该点水的压强;γ为水的容重。 速度水头:velocity head 在含水层中的某点水所具有的动能转变为势能时所达到的高度,量纲为L ,即h =v 2/2g ,

式中v 为地下水在该点流动的速度;g 为重力加速度。 总水头:Total head 测压管水头和流速水头之和。 等水头面:渗流场内水头值相同的各点所连成的一个面,它可以是平面,也可为曲面,等水头面上任意一条线上

的水头都是相等的。 等水头线:Groundwater contour 渗流场内等水头面与某一平面的交线,不同数值的等水头线不会相交。 水力坡度:Hydraulic gradient 在渗流场中,大小等于梯度值,方向沿着等水头面的法线,并指向水头降低方向的

矢量。 渗流运动要素:Seepage elements 表征渗流运动特征的物理量,主要有渗流量Q 、渗流速度V 、压强P 、水头H 一维流:one-dimensional flow 也称单向运动,指渗流场中水头、流速等渗流要素仅随一个坐标变化的水流,其速

度向量仅有一个分量、流线呈平行的水流。 二维流:two-dimensional flow 也称平面运动,地下水的渗透流速沿空间二个坐标轴方向都有分速度、仅仅一个坐

标轴方向的分速度为零的渗流;水头、流速等渗流要素随两个坐标变化的水流,其速度向量可分为两个分量,流线与某一固定平面呈平行的水流。 三维流:three-dimensional flow 也称空间运动,地下水的渗透流速沿空间三个坐标轴的分量均不等于零的渗流;

水头、流速等渗流要素随空间三个坐标而变化的水流。 单宽流量:Discharge per unit width 渗流场中单位宽度的渗流量,等于总流量Q 与宽度B 之比,q=Q/B 。 渗透系数:Coefficient of permeability, hydraulic conductivity 也称水力传导系数,是表征岩层透水性的参数,影响

渗透系数大小的主要是岩石的性质以及渗透液体的物理性质,记为K 。是水力坡度等于1时的渗透速度。单位:m/d 或cm/s 。 渗透率:Intrinsic permeability 表征岩层渗透性能的参数;渗透率只取决于岩石的性质,而与液体的性质无关,记

为k 。单位为cm 2或D 。 尺度效应:渗透系数与试验范围有关,随着试验范围的增大而增大的现象,K=K(x)。 非线性渗流定律:Non-linear seepage law 描述雷诺数大于1~10的流体的渗透流速与水力坡度之间非线性关系的方程,包括Forchheimer 公式J=av+bv 2, J=av+bv m , Chezy 公式v=KcJ 1/2。 渗流折射定律:1aw of seepage flow refraction 描述地下水流斜向穿过两种渗透性岩层的分界面时流线发生

折射的定律,指流线偏离分界面法线角度的正切与岩层渗透系数呈正比关系,即tg θ1/tg θ2=K 1/K 2。 渗透系数张量:Tensor of hydraulic conductivity 表示透水性各不相同的薄层相互交错组成的层状岩层渗透性能的

参数;平行层面的等效渗透系数K p 为等效导水系数T p 与岩层总厚度M 之比;垂直层面的等效渗透系数K v 为岩层总厚度M 与各层岩层厚度与渗透系数比值之和之比。因此K p >K v 。 流网:flownet 渗流场内由一组流线和一组等势线所组成的网格。对各向同性介质组成正交网。 流线:Streamline 渗流场内处处与渗流速度矢量相切的曲线。 流线方程:Streamline equation 描述流线的方程式,亦即v x dy —y y dx=0;dy dx y

x

υυ=。

流函数:Stream fuction 表示流线特征的函数值,为常数ψ,量纲为[L 2T -1],x y y x υψυψ=??-=??,。在平面运动中,两

流线间的单宽流量等于和这两条流线相应的流函数之差。 地下水状态方程:表示水的体积变化或密度变化与压强之间的关系式。

(1)体积变化:)(00p p e V V --=β,)](1[00p p V V --=β,式中V 0为初始压强P 0下水的体积,β为水的压缩系数。

(2)密度变化:)](1[00p p -+=βρρ,式中ρ0为初始压强P 0下水的密度。 渗流的连续方程:continuity equation of seepage flow 表示渗流场内单元体内液体质量的变化量等于流入与流出该

单元体的液体质量之差的微分方程式,它是研究地下水运动的基本方程。亦即:[]z y x n t z y x z y x

z y x ?????=???????????+??+??-ρρυρυρυ)()()( 渗流的基本微分方程:

承压水运动的基

本微分方程 根据地下水流连续方程和达西定律建立的描述承压水运动的微分方程式,表示单位时间内流

入、流出单位体积含水层的水量之差等于同一时间内单位体积含水层弹性释放(弹性贮存)的

水量,反映了承压含水层中地下水运动的质量守恒、能量守恒与转化关系。

t H z H K z y H K y x H K x s ??=??? ??????+???? ??????+??? ??????μ

有垂直方向补给强度w 时,方程式变为:

t H w z H T z y H T y x H T x ??=+??? ??????+???? ??????+??? ??????*μ

越流含水层承压水运动的基本微分方程 根据地下水流连续方程和达西定律建立的描述越流含水层中承压水运动的微分方程式,表示单

位时间内流入、流出单位体积含水层的水量之差与越流量的和等于同一时间内单位体积含水层

弹性释放(弹性贮存)的水量,反映了越流含水层中承压含水层中地下水运动的质量守恒、能

量守恒与转化关系。

t H m H H K m H H K y H T y x H T x ??=-+-+???? ??????+??? ??????*2122111μ

潜水运动的基本微分方程 根据地下水流连续方程和达西定律建立的描述潜水运动的微分方程式,表示单位时间内流入、

流出单位体积含水层的水量之差等于同一时间内单位体积含水层贮放或排出的水量,反映了潜

水含水层中地下水运动的质量守恒、能量守恒与转化关系。

t H z H K z y H K y x H K x s ??=??? ??????+???? ??????+??? ??????μ

对非均质含水层: t

H w y H Kh y x H Kh x ??=+???? ??????+??? ??????μ

半承压含水层:Semi-confined aquifer 上、下岩层并不是绝对隔水的,其中一个或两个可能是弱透水层,通过弱

透水层可能与相邻含水层发生水力联系的承压含水层。

越流含水层:Leakage aquifer 亦即半承压含水层。

越流:Leakage 当承压含水层与相邻含水层存在水头差时,地下水便会从水头高的含水层流向水头低的含水层的

现象。对于指定含水层来说,水流可能流入也可能流出该含水层。

越流系数:Coefficient of leakage 当含水层与供给越流的含水层间的水头差为一个长度单位时,通过主含水层和弱

透水层间单位面积界面上的水流量,相当于弱透水层的渗透系数与其厚度之比,亦即b’=K 1/m 1。表征弱透水层垂直方向上传输越流水量能力的参数;指弱透水层上下含水层之间水头差变化一个单位时通过单位面积弱透水层吨的水量。其值等于弱透水层的垂直渗透系数与其厚度的比值量纲为1/T 。

越流因数:Leakage factor (阻越流系数) leaky factor 为主含水层的导水系数与弱透水层的越流系数之比的方根,

亦即11

K Tm B =,B 值大时越流量小;

在越流系统中表征越流作用的综合参数,其与抽水含水层的导水系数和弱透水层的越流系数有关。 渗出面:Seepage face 在下游界面上潜水面以下、下游水面以上的地段。

越流:Leakage 在相邻含水层之间存在弱透水层和水头差时地下水从水头高的含水层(包括弱透水层)向水头低

的含水层流动的现象。

越流系统:Leakage system 由主含水层、弱含水层以及相邻供给水量的含水层所组成的含水系统。

定解条件:边界条件和初始条件的合称。 定解问题:给定了方程(或方程组)和响应定解条件的数学物理问题。 数学模型:Mathematical model 从物理模型出发,用简洁的数学语言,即一组数学关系式来刻画它的数学关系和

空间形式,从而反映所研究地质体的地质、水文地质条件和地下水运动的基本特征,达到复制或再现一个实际水流系统基本状态的目的的一种数学结构。 潜水回水:潜水水位壅高,在地表水与两岸潜水存在水力联系的情况下,河(库)水位的抬高引起潜水位相应抬高的现象。

河渠引渗回水:引渗回灌,利用河渠地表水的侧渗作用来补充地下水以达到灌溉农田的目的的过程。 浸润曲线:潜水降落曲线,depression curve 潜水面或承压水的测压水面与水流方向剖面的交线。对潜水又称

潜水浸润曲线。

浸润曲线方程:表示河渠间潜水位与河渠水位关系的地下水流方程。河渠间有入渗(取正)或蒸发(取负)时潜

水的浸润曲线方程为:

())(22122212x lx K W l x h h h h -+-+=

单宽流量公式:距离左河x 处任意断面上的潜水流的单宽流量公式为:

Wx Wl l h h K q x +--=212)(2221 完整井:completely penetrating well 贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水

的井。 非完整井:partially penetrating well 未揭穿整个含水层、只有井底和含水层的部分厚度上能进水或进水部分仅揭

穿部分含水层的井。

管井: Pipe well 直径通常小于0.5m 、深度比较大、采用钻机开凿的水井。

筒井: 直径通常大于0.5m 甚至数米、深度比较浅、通常用人工开挖的水井。

潜水井: Well in a phreatic aquifer 揭露潜水含水层的水井。

承压水井: Well in a confined aquifer 揭露承压含水层的水井。 水位降深:Drawdown 简称降深,抽水井及其周围某时刻的水头比初始水头的降低值,

亦即s(x,y,t)=H 0(x,y,0)- H(x,y,t)。 降落漏斗:cone of depression 抽水井周围总体上形成的漏斗状水头下降区;亦即由抽水(排水)而形成的漏斗状

的水头(水位)下降区。

拟稳定流: quasi-steady flow 流速不变而水头随时间变化的地下水不稳定运动。

有效井半径: Effective well radius 由井轴到井管外壁某一点的水平距离。在该点,按稳定流计算的理论降深正好

等于过滤器外壁的实际降深。

影响半径: Radius of influence 抽水井周围圆形岛的半径,该处降深为零;可看作是从抽水井起到实际上观测不出

(或可忽略)水位降深处的距离。

Dupuit 公式: Dupuit formula 表示地下水向完整井运动的水流方程。

承压水井的Dupuit 公式为

w w w r R KM Q h H s ln 20π=-=; 潜水井的Dupuit 公式为w w r R K Q h H ln 220π=-。

T hiem 公式: Thiem equation 表示抽水井不同距离r 1和r 2处的两个观测孔中降深s 1, s 2与流量Q 关系的方程式, 对承压水完整井为

12

2112ln 2r r KM Q s s H H π=-=-; 对潜水完整井为 12222ln 1r r K Q h h π=-。

注水井: Injection well / recharge well 补给井,进行人工补给地下水或利用含水层贮能的水井。

修正降深: 潜水含水层中井流降深的一种线性化方法,修正降深s’与实际降深s 之间的关系为

02

H s s s -='。 承压-无压井: 承压水井中大降深抽水过程井水位低于含水层顶板、井附近出现无压区时的水井。

承压-无压井公式:

w w r R

h M HM K Q ln )

2[22--=π

H antush-Jacob 公式: 描述越流含水层中地下水向承压水井稳定运动的方程, 亦即)(20B r K KM Q s π≈

叠加原理: Principal of superposition 如果H 1, H 2, …,H n 是关于水头H 的线性偏微分方程的特解,C 1, C 2, …,C n

为任意常数,则这些特解的线性组合i

n i i H C H ∑==1仍是原方程的解。

指在数个抽(注)水井同时工作的渗流场内任一点的总水头(水位)的变化值为各抽(注)水井单独工作引起的该点水头(水位)变化值的代数和。

均匀流: uniform flow 流速和水力坡度的大小或方向沿流程保持不变的水流;水力坡度与渗透系数为常数的地下水

流。

井损: well loss ?h 包括三部分,(1)水流通过过滤器时所产生的水头损失;(2)水流穿过过滤器时因水流方向偏

转所产生的水头损失,水流在滤水管内向上运动时因流量流速不断增加所引起的水头损失;(3)水流在井管内向上运动至水泵吸水口的沿程水头损失。

含水层损失: 地下水在含水层中向水井流动时产生的水头损失。

井损常数: Well loss constant 井损?h 与抽水静流量Q 的平方成正比的比例系数C, ?h=CQ 2。

泰斯影响半径:

2

/1*25.1???? ??=μr Tt R 导压系数:hydraulic diffusivity 压力传导系数,表征承压含水层水头变化传递速度的参数。其值为导水系数T 与

贮水系数μ*的比值,*μT

a =,量纲为L 2/T 。 配线法:type-curve method 标准曲线法,在双对数坐标中利用抽水试验实测曲线与理论曲线的匹配求解水文地质

参数的一种图解方法,可分为降深-时间距离配线法、降深-时间配线法和降深—距离配线法。 直线图解法:linear method 在半对数坐标中,利用抽水试验实测资料绘制的直线斜率和截距求解水文地质参数的

图解方法。

水位恢复法:利用抽水试验的恢复水位资料求解水文地质参数方法。

拐点法:inflected point method 利用半对数坐标上时间-降深曲线拐点出现的时间、降深和斜率计算有越流的含水

层的导水系、释水系数和越流系数的一种图解方法。

定降深流量公式:

(1)降深公式:),(r A s s w λ=,,其中),(r A λ为无越流补给承压含水层定降深井流的降深函数,

w r r r =无量纲径向距离,*2μλw r Tt

=无量纲时间。 (2)流量公式:Q=2πTs w G(λ),其中G(λ)为无越流补给承压含水层定降深井流的流量函数。

Hantush-Jacob 公式:为1955年建立的优越流补给的承压水完整井公式:

dy e y B r u W Tt r at r u B r u W T Q s u y B r y ?∞--====22

4*221),(,44),,(4μπ 第一越流系统:不考虑弱透水层的弹性释水,忽略补给含水层水头变化的越流系统。

第二越流系统:考虑弱透水层的弹性释水,不考虑补给含水层水头变化的越流系统。

第三越流系统:不考虑弱透水层的弹性释水,考虑补给含水层水头变化的越流系统。

Boulton 模型:潜水完整井考虑迟后疏干的公式:

dx x D r J shu u t x chu e x T Q

s u u ?∞

-??? ??????????????????-+-=ναηπ022222)1(1241

)(;**;*1疏干因素αμμμμημμμηηνT D =+=+=-=

抽水早期:),(4D r u W T Q s a π=, Tt r at r u a 44*22μ== 抽水中期:)(20D r K T Q s π= 抽水晚期:

),(4D r u W T Q s y π=,Tt r at r u y 4422

μ== Neuman 模型:这个不能考吧~~

∑?∞=∞+=102100)]()()[(44),,(n n dy y y y yJ T

Q t z r s ωωβπ

式中:

)(]}/)[()1({)()]}(exp[1{)(0220220202020γσγγσγγβωch y y z ch y t y d s --++---= )cos(]}/)[()1({)()]}(exp[1{)(2222222n n n d n n s n y y z ch y t y γσγγσγγβω--++---=

其中,γo ,γn 分别为下列两个方程的根:

0)()()(020200=--γγγσγch y sh 220

y ?γ 0)cos()()sin(22=-+n n n n y γγγσγ

此处,

r z d d y s d d r z d K H K r h K r Tt t r Tt t r

H h H z z K K K 2022220

0,,,,,========**βμμμμσ 在实际工作中,在完整观测孔所观测到的降深是降深在整个含水层厚度上的平均值s (r ,t )。此时,上述解仍可用(4-86)式来表达,只是ω。(y)和创ωn (y)需要按下式重新定义:

0220220202020]}/)[()1({)()]}(exp[1{)(γσγγσγγβω--++---=y y th y t y s n n n n n s y y y tg y t y γσγγσγγβω]}/)[()1({)()]}(exp[1{)(2222222--++---= 延迟系数:delayed index 延迟指数,表征潜水含水层延迟给水效应影响持续时间的指标。一般来说延迟指数1/α

随重力给水介质的粒度的减小而增大,延迟给水效应影响的持续时间延长。

泰斯井流公式(Theis 公式):Theis’s eqation 描述无补给的承压水完整井非稳定运动过程中降深与抽水量之间关系的方程式,亦即Tt r at r u u W T Q s 44),(4*

22μπ===,

Theis 井函数:

∑∞=?--+--=22

!)1(ln 577216.0)(n n n n u u u u W

Jacob 公式:

*225.2ln 4μπr Tt T Q s = 实井:real well 实际的抽水井或注水井。 虚井:Virtual well 虚构的抽(注)水井,用以代替边界的作用。 映射法:image method 镜像法,利用渗流迭加原理,处理地下水边界问题时的一种计算方法。边界的影响可用虚

井的影响代替,把实际上有界的渗流区化为虚构的无限渗流区,把求解边界附近的单井抽水问题,化为求解无限含水层重实井和虚井同时抽水(注水)问题,从而求得原问题的解。

当直线边界附近有井或井群工作时,以边界对称面,在边界的另一侧虚设流量相同的井或井群时工作时,保持原水流条件,这样就以虚设的井或井群代替边界的作用。

隔水边界:不透水边界confining boundary 渗透性极差的舍水层边界即法线方向水力梯度(或流量)等于零的边界。

弱透水边界:weakly-permeable boundary 能通过一定流量的渗透性较弱的含水层边界。

透水边界:permeable boundary补给边界,供水边界,渗透在良好的含水层边界。

无限含水层:Unlimited aquifer 没有边界限制的、平面上无限分布的含水层。

半无限含水层:Semi-limited aquifer有一侧边界限制的、另一侧在平面上呈现无限分布的含水层。

扇形含水层:Fan-shape aquifer两个会聚边界所组成的呈扇型的含水层。

条形含水层:两条平行边界中间的含水层。

饱和度:表示岩石的空隙空间中水所占据部分所占的比例:

(6-2)

式中,S w为饱和度,无量纲;(V0) 0为典型单元体中的空隙体积。

田间持水量:在长时间重力排水后仍然保留在土中的水量称为田间持水量

毛管压力:

土壤水分特征曲线:反映毛管压强p c或毛管压力水头h c和土壤含水率θ或饱和度S w关系的曲线,称为水分特征

曲线

机械弥散:液体通过多孔介质流动时,由于速度不均一所造成的这种物质运移现象称为机械弥散。

分子扩散:分子扩散是由于液体中所含溶质的浓度不均一而引起的一种物质运移现象。

水动力弥散:水动力弥散就是多孔介质中所观察到的两种成分不同的可混溶液体之间过渡带的形成和演化过程。弥散系数:

纵向弥散系数:D xx称为纵向弥散系数

横向弥散系数:D zz称为横向弥散系数。

对流一弥散方程(水动力弥散方程):

上式称为对流一弥散方程(水动力弥散方程)。它右端后三项表示水流运动(习惯地把它喻为对流)所造成的溶质

运移,前三项表示水动力弥散所造成的溶质运移。

序号简述题答案

1 试分析在相同条件下进行人

工回灌时,承压含水层和潜水

含水层的贮水能力的大小。

潜水含水层的贮水能力可表示为Q=μ?HF;承压含水层的贮水能力可表示为Q=μ*?HF;式中Q为含水层水位变化时?H的贮水能力,?H为水位变化幅度;F为地下水位受人工回灌影响的范围。从中可以看出,因为承压含水层的弹性释水系数μ*远远小于潜水含水层的给水度μ,因此在相同条件下进行人工回灌时,潜水含水层的贮水能力远远大于承压含水层的贮水能力。

2 等水位线的疏密程度可以反

映出哪些水文地质条件?

由达西定律Q=KJH可以知,在含水层的单宽流量Q保持不变时,等水位线的密集表示水力坡度J大,反映含水层渗透系数较小或含水层厚度较大;等水位线的稀疏表示水力坡度J小,反映含水层渗透系数较大或含水层厚度较小。

3 写出泰斯公式及各项符号的

含义;泰斯公式的主要用途是

什么?

Theis’s equation描述无补给的承压水完整井非稳定运动过程中降深与抽水量之间关系的方程式,亦即

Tt

r

at

r

u

u

W

T

Q

s

4

4

),

(

4

*

2

π

=

=

=

,式中s----抽水井的水位降深(m);Q----抽水井的流量(m3/d);T----含水层的导水系数(m2/d);W(u)----泰斯井函数;r----到抽水井的距离(m);a---含水层的导压系数(1/d);μ*----含水层的弹性是水系数;t----自抽水开始起算的时间(d)。

4

潜水井流的运动与承压含水

层中径流的运动有哪些不同? (1) 潜水井流特征:①流线与等水头线都是弯曲的曲线,井壁不是等水头面,抽水井附近存在三维流,井壁内外存在水头差值;②降落漏斗位于含水层内部,水位降落漏斗的曲面就是含水层的上部界面,导水系数T随时间t和径向距离r变化;③潜水含水层水位下降伴有弹性释水和重力疏干,为缓慢排水过程,抽水量主要来源于含水层疏干,称为潜水含水层的迟后效应。

(2) 承压水井流特征:①流线与等水头线在剖面上的形状不相同,等水头线近似直线,等水头面即为铅垂面,降深不太大时承压井流为二维流;②降落漏斗在含水层外部,成虚拟状态变化,但导水系数不随时间t变化;③承压井流的抽水量来自承压含水层水头降落漏斗范围内由于减压作用造成的弹性释放,是瞬时完成的。

5 稳定井流与非稳定井流

的区别

稳定井流中,当无垂向补给时,地下水流向井的过程中任一断面的流量都相等,并等于抽水井流量,地下水位h不随时间t变化。

非稳定井流中,地下水流向井的过程中,沿途不断得到含水层释放补给,通过任一断面的流量都不相等,井壁处流量最大并等于抽水井流量,地下水位h随时间t 而变化,初期变化大,后期变化减小。

6 考虑潜水含水层迟后疏干的

Boulton模型的假设条件是什

么?(1)均质、各向同性、隔水底板水平的无限延伸的含水层;(2)初始自由水面水平;

(3)完整井、井径无限小,降深s<

(4)水流服从Darcy定律;

(5)抽水时,水位下降,含水层的水不能瞬时排出,存在着迟后现象。

7 地下水流向井的稳定运动和

非稳定运动的主要区别是什

么?(1)从流量看,稳定井流不同断面的流量处处相等,都等于抽水井的流量;而任一断面非稳定井流的流量都不相等,沿着地下水流向流量逐渐增大,直至抽水井处为最大(抽水井的出水量)。(2)只要给定边界水头和井内水头,就可以确定稳定井流抽水井附近的水头分布,且水头分布不随时间发生变化;非稳定井流抽水井附近的水头分布是随抽水时间而不断发生变化的,例如Theis井流,在抽水初期水头降速快,1/u=1时达到最大,之后降速由大减小,最后趋于等速下降。

8 地下水流向不完整井的井流

特点是什么?(1)流向不完整井的水流形式与完整井流的水流形式有所不同,由于受井的不完整性影响,流线在井附近有很大弯曲,垂向分速度不可忽略,地下水流为三维流。

(2)在其它条件相同时,不完整井的流量小于完整井的流量,流量大小与不完整井过滤器长度L与含水层厚度M之比的增大而增大,当L/M=1时变成完整井。

(3)过滤器在含水层中的位置和顶、底板对水流状态有明显的影响,必须予以考虑。

9 流网的性质包括哪些?

①在各向同性介质中,流线与等水头线处处垂直,流网

为正交网格。

②在均质各向同性介质中,流网中每一网格的边长比为常数。

③若流网中各相邻流线的流函数差值相同,且每个网格的水头差值相等时,通过每个网格的流量不同。

④若两个透水性不同的介质相邻时,在一个介质中为曲边正方形的流网,越过界面进入另一个介质时则变成曲边矩形。

10 承压水井的Dupuit公式

的水文地质概念模型(1)含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给;

(2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从Darcy’s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层的弹性释水;

(3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运动出现稳定状态;

(4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相等,并等于抽水井的流量。

11 虚井的特征有哪些?(1)虚井和实井的位置对边界是对称的;

(2)虚井的流量和实井相等;

(3)虚井性质取决于边界性质,对于定水头补

给边界,虚井性质和实井相反;如实井为抽水井,

则虚井为注水井;对于隔水边界,虚井和实井性

质相同,都是抽水井;

(4)虚井的工作时间和实井相同;

初中物理所有公式总结

1. 电功(W):电流所做的功叫电功, 2. 电功的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时= 3.6×106焦耳。 3. 测量电功的工具:电能表(电度表) 4. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安 (A);t→秒)。 5. 利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6. 计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 7. 电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦 8. 计算电功率公式: (式中单位P→瓦(w);W→焦;t→秒;U→伏(V); I→安(A) 9. 利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。 10.计算电功率还可用右公式:P=I2R和P=U2/R 11.额定电压(U0):用电器正常工作的电压。 12.额定功率(P0):用电器在额定电压下的功率。 13.实际电压(U):实际加在用电器两端的电压。 14.实际功率(P):用电器在实际电压下的功率。 当U > U0时,则P > P0 ;灯很亮,易烧坏。当U < U0时,则P < P0 ;灯很暗,当U = U0时,则P = P0 ;正常发光。 (同一个电阻或灯炮,接在不同的电压下使用,则有 ;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例220V100W是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。) 15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。 16.焦耳定律公式:Q=I2Rt ,(式中单位Q→焦; I→安(A);R→欧

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

程序设计基础知识点)

第三部分程序设计基础 3.1 程序、程序设计、程序设计语言的定义 ⑴程序:计算机程序,是指为了得到某种结果而可以由计算机等具有信息处理能力的装置执行的代码化指令序列,或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列。 ⑵程序设计:程序设计是给出解决特定问题程序的过程,是软件构造活动中的重要组成部分。程序设计往往以某种程序设计语言为工具,给出这种语言下的程序。程序设计过程应当包括分析、设计、编码、测试、排错等不同阶段。 ⑶程序设计语言:程序设计语言用于书写计算机程序的语言。语言的基础是一组记号和一组规则。根据规则由记号构成的记号串的总体就是语言。在程序设计语言中,这些记号串就是程序。程序设计语言有3个方面的因素,即语法、语义和语用。 3.2 高级语言和低级语言的概念及区别 ⑴高级语言:高级语言(High-level programming language)是高度封装了的编程语言,与低级语言相对。

它是以人类的日常语言为基础的一种编程语言,使用一般人易于接受的文字来表示(例如汉字、不规则英文或其他外语),从而使程序编写员编写更容易,亦有较高的可读性,以方便对电脑认知较浅的人亦可以大概明白其内容。 ⑵低级语言:低级语言分机器语言(二进制语言)和汇编语言(符号语言),这两种语言都是面向机器的语言,和具体机器的指令系统密切相关。机器语言用指令代码编写程序,而符号语言用指令助记符来编写程序。 ⑶区别: 高级语言:实现效率高,执行效率低,对硬件的可控性弱,目标代码大,可维护性好,可移植性好低级语言:实现效率低,执行效率高,对硬件的可控性强,目标代码小,可维护性差,可移植性差 了解知识:CPU运行的是二进制指令,所有的语言编写的程序最终都要翻译成二进制代码。越低级的语言,形式上越接近机器指令,汇编语言就是与机器指令一一对应的。而越高级的语言,一条语句对应的指令数越多,其中原因就是高级语言对底层操作进行了抽象和封装,

物理化学公式大全

物理化学公式集 热力学第一定律 功:δW=δW e+δW f (1)膨胀功δW e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f=xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。热Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容C=δQ/dT (1)等压热容:C p=δQ p/dT=(?H/?T)p (2)等容热容:C v=δQ v/dT=(?U/?T)v 常温下单原子分子:C v,m=C v,m t=3R/2 常温下双原子分子:C v,m=C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p—C v=[p+(?U/?V)T](?V/?T)p (2)理想气体C p—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=C p/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T1—T2) 热机效率:η=冷冻系数:β=-Q1/W

可逆制冷机冷冻系数:β= 焦汤系数:μJ-T==- 实际气体的ΔH和ΔU: ΔU=+ΔH=+ 化学反应的等压热效应与等容热效应的关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=Δr U m+RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius不等式: 熵函数的定义:dS=δQ R/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU=TdS-pdV dH=TdS+Vdp dF=-SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V的关系: C V=T C p=T Gibbs自由能与温度的关系:Gibbs-Helmholtz公式=- 单组分体系的两相平衡: (1)Clapeyron方程式:=式中x代表vap,fus,sub。(2)Clausius-Clapeyron方程式(两相平衡中一相为气相):=

地下水动力学知识点总结 (1)

基本问题

(2)同一断面(即r固定),s随t的增大而增大,当t=0时,s=0,符合实际情况。当t→∞时,实际上s不能趋向无穷大。因此,降落漏斗随时间的延长,逐渐扩展。这种永不稳定的规律是符和实际的,恰好反映了抽水时在没有外界补给而完全消耗贮存量时的典型动态。 (3)同一时刻、径向距离r相同的地点,降深相同。 184Theis公式反映的水 头下降速度的变化规 律 (1)抽水初期,近处水头下降速度大,远处下降速度小。当r一定时, s-t曲线存在着拐点。拐点出现的时间(此时u=1)为:。 (2)每个断面的水头下降速度初期由小逐渐增大,当=1时达到最 大;而后下降速度由大变小,最后趋近于等速下降。 (3)抽水时间t足够大时,在抽水井一定范围内,下降基本上是相同 的,与r无关。换言之,经过一定时间抽水后,下降速度变慢,在一 定范围内产生大致等幅的下降。 194Theis公式反映出的 流量和渗流速度变化 规律 (1)通过不同过水断面的流量是不等的,r值越小,即离抽水井越近 的过水断面,流量越大。反映了地下水在流向抽水井的过程中,不断 得到贮存量的补给。 (2)由于沿途含水层的释放作用,使得渗流速度小于稳定状态的渗 流速度。但随着时间的增加,又接近稳定渗流速度。 204 Theis公式反应的影 响半径在无越流补给且侧向无限延伸的承压含水层中抽水时,虽然理论上不可能出现稳定状态,但随着抽水时间的增加,降落漏斗范围不断向外扩展,自含水层四周向水井汇流的面积不断增大,水井附近地下水测压水头的变化渐渐趋于缓慢,在一定的范围内,接近稳定状态(似稳定流),和稳定流的降落曲线形状相同。 但是,这不能说明地下水头降落以达稳定。 214Theis配线法的原理由Theis公式两端取对数,得到 二式右端的第二项在同一次抽水试验中都是常数。因此,在双对数坐标系内,对于定流量抽水和标准曲线在形状上是 相同的,只是纵横坐标平移了距离而已。只要将二曲线重合,任选一匹配点,记下对应的坐标值,代入(4-10)式(4-11)式

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

物理化学公式归纳

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 此式适用于理想气体,近似地适用于低压的真实气 体。 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 2. 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B / n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任 意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 5. 德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为德华常数。 此式适用于最高压力为几个MPa 的中压围实际气体p ,V ,T ,n 的相互计算。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 1. 2. 焓的定义式 2. 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称能)变 此式适用于理想气体单纯pVT 变化的一切过程。 pV U H +=2,m 1 d V U nC T ?=?

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

地下水动力学知识点总结(可编辑修改word版)

基本问题 潜水含水层的贮水能力可表示为Q= HF; 承压含水层的贮水能力可表示为Q= HF; 式中Q——含水层水位变化时H 的贮水能力, H——水位变化幅度; F——地下水位受人工回灌影响的范围。 从中可以看出,因为承压含水层的弹性释水系数远远小于潜水含 水层的给水度,因此在相同条件下进行人工回灌时,潜水含水层的贮 水能力远远大于承压含水层的贮水能力。

等,并等于抽水井的流量。

式中s1、s2分别为r1和r2处的水位降深。 它与非稳定井流在长时间抽水后的近似公式完全一致。这表明,在无限承压含水层中的抽水井附近,确实存在似稳定流区。

符号的含义;泰斯公式的主要用途是什 么? 与抽水量之间关系的方程式,亦即 式中 s ——抽水井的水位降深,m ; Q ——抽水井的流量,m 3/d ; T ——含水层的导水系数,m 2/d ; W(u)——泰斯井函数; r ——到抽水井的距离,m ; a ——含水层的导压系数,m 2/d ; *——含水层的弹性是水系数; t ——自抽水开始起算的时间,d 。 (1)同一时刻随径向距离 r 增大,降深 s 变小,当 r →∞时,s →0, 这一点符合假设条件。 17 4 Theis 公式反映的降深变化规律 (2)同一断面(即 r 固定),s 随 t 的增大而增大,当 t=0 时,s=0,符合实际情况。当 t →∞时,实际上 s 不能趋向无穷大。因此,降落漏斗随时间的延长,逐渐扩展。这种永不稳定的规律是符和实际的,恰好反映了抽水时在没有外界补给而完全消耗贮存量时的典型动态。 (3)同一时刻、径向距离 r 相同的地点,降深相同。 (1)抽水初期,近处水头下降速度大,远处下降速度小。当 r 一定时,s-t 曲线存在着拐点。拐点出现的时间(此时 u=1)为: 。 Theis 公式反映的水 18 4 头下降速度的变化规 (2)每个断面的水头下降速度初期由小逐渐增大,当 =1 时达到最 律 大;而后下降速度由大变小,最后趋近于等速下降。 (3)抽水时间 t 足够大时,在抽水井一定范围内,下降基本上是相同 的,与 r 无关。换言之,经过一定时间抽水后,下降速度变慢,在一 定范围内产生大致等幅的下降。 19 4 Theis 公式反映出的 流量和渗流速度变化 (1)通过不同过水断面的流量是不等的,r 值越小,即离抽水井越近 的过水断面,流量越大。反映了地下水在流向抽水井的过程中,不断

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

(完整版)《C语言程序设计》基本知识点

《C语言程序设计》教学基本知识点 第一章C语言基本知识 1.C源程序的框架 尽管各个C源程序的功能千变万化,但框架是不变的,主要有:编译预处理、主函数()、函数n()等,主函数的位置不一定在最前面,可以在程序的中部或后面,主函数的名字固定为main。 2.C语言源程序的书写规则: (1)C源程序是由一个主函数和若干个其它函数组成的。 (2)函数名后必须有小括号,函数体放在大括号内。 (3)C程序必须用小写字母书写。 (4)每句的末尾加分号。 (5)可以一行多句。 (6)可以一句多行。 (7)可以在程序的任何位置加注释。 3.语句种类 语句是程序的基本成分,程序的执行就是通过一条条语句的执行而得以实现的,根据表现形式及功能的不同,C语言的基本语句可以分为五大类。 (1)流程控制语句 流程控制语句的功能是控制程序的走向,程序的流程有三种基本结构:顺序结构、分支结构和循环结构,任何复杂的程序都可以由这三种基本结构复合而成。其中后两种结构要用特定的流程控制语句实现。 (2)表达式语句 表达式语句的形式是:表达式;,即表达式后跟一分号“;”,分号是语句结束符,是一个语句必不可少的成分。表达式和表达式语句的区别在于表达式代表的是一个数值,而表达式语句则代表一种动作。最常见的表达式语句是赋值语句。 (3)函数调用语句 函数调用语句实际上也是一种表达式语句,形式为:在一次函数调用的小括号后面加上一个分号。 (4)空语句 空语句的形式就是一个分号,它不代表任何动作,常常作为一个意义转折点使用。 (5)复合语句 复合语句从形式上看是多个语句的组合,但在语法意义上它只相当于一个语句,在任何单一语句存在的地方都可以是复合语句。注意复合语句中最后一个语句末尾的分号不能少。复合语句右大括号后面没有分号。 4.运算符 用来表示数据各种操作的符号称为运算符。运算符实际上代表了一种类型数据的运算规则。不同的运算符具有不同的运算规则,其操作的数据类型必须符合该运算符的要求,运算结果的数据类型也是固定的。 根据参加操作的数据个数多少,可以将C语言的运算符分为单目运算符,双目运算符和三目运算符(三目运算符只有条件运算符一个)。 根据运算对象和运算结果的数据类型可分为算术运算符、关系运算符、逻辑运算符等。 5.表达式 表达式是由常量、变量、函数,通过运算符连接起来而形成的一个算式。一个常量,一个变量或一个函数都可以看成是一个表达式。 表达式的种类有: 算术表达式、关系表达式、逻辑表达式、赋值表达式、字位表达式、强制类型转换表达式、逗号

物理化学公式总结

第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。 上述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 适用于任意气体。 V RT n p /B B = 适用于理想气体 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m n R T nb V V an p =-+))(/(22

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

第一章 编程的基本概念

第一章,编程的基本概念 首先,作为介绍编程的基础章节,第一点要明白的就是什么是编程。 编程,简单来说就是为了让笨笨的计算机理解我们想让他干什么而编写程序(指令)。如果计算机没有了我们为他设定好的程序,那么它连“吃奶”都不懂得是什么回事,它的最初形态是只认识1和0的怪家伙,傻得很~ 我们通过编程,教会计算机在什么样的情况下应该如何处理问题,教会他1+1的情况是等于2,我们甚至不用跟他说为什么会这样,因为它不需要理解,它只需要按照我们编写的程序去执行,就可以了。 那么如何可以让计算机按照我们所想的去工作呢? 文中红色部分由小甲鱼提供,在此表示感谢。 1.1计算机语言 如果我们现在去百度搜索一下,什么是计算机语言,网上一定会有很多的答案。但是他们无非是介绍一门语言的作用,语法啊,优缺点等等。但是对于没有编程基础的人来说,这些简直就是天书。下面要先介绍一下什么是计算机语言。 首先,我们抛去“计算机语言”中的前三个字,只剩下“语言”。我相信这个词汇一定很熟悉。什么是语言?语言的作用是什么? 像中文,英文,俄文,日文这些都是语言,几乎每个国家或者地区都有自己的语言。语言是用来沟通的,如果我们都会同一门语言,那么我们的交流与沟通是很方便的。但是如果我们使用不同的语言,沟通的难度可想而知。 那么,在刚开始我提到过,计算机只不过是一个很笨的工具,我们需要告诉计算机怎么样去做。可以让计算机明白人的意思的语言便叫计算机语言。 1.2计算机可以“听”的懂什么语言? 和我们学习英语一样,首先要学习字母,然后学习单词,然后学习词组和句子,最后可以用句子来组成文章。通过一篇完成的文章可以表达出我们的意思,别人也可以看的明白。 计算机也是一样,但是计算机不可能像我们人类一样,计算机不可能学习一下汉语来和我们交流。计算机只能识别由1和0组成的二进制代码,也称为机器语言。也就是说,在计算机语言中,字母就是0和1,单词或者词组,就是0和1的各种组合,句子就是更多的0和1的组合所组成的。在计算机语言中,

物化各种公式概念总结

第一章热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 三、基本关系式1、体积功的计算 δW = -p 外d V 恒外压过程:W = -p 外ΔV 定温可逆过程(理想气体):W =nRT 1 2 21ln ln p p nRT V V = 2、热效应、焓:等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; ΔH =ΔU +Δ(pV ) 焓与温度的关系:ΔH =?2 1d p T T T C 3、等压热容与等容热容:热容定义:V V )(T U C ??=;p p )(T H C ??= 定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p ,m =a +bT +cT 2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p 外d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p C V (㏑T 2-㏑T 1)=nR(㏑V 1-㏑V 2)(T 与V 的关系) C p (㏑T 2-㏑T 1)=nR(㏑P 2-㏑P 1) (T 与P 的关系) 不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p 外(V 2-V 1)求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 2、相变化 可逆相变化:ΔH =Q =n ΔH ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W 3、实际气体节流膨胀:焦耳-汤姆逊系数:μJ-T (理想气体在定焓过程中温度不变,故其值为0;其为正值,则随p 降低气体T 降低;反之亦然) 4、热化学 标准摩尔生成焓:在标准压力和指定温度下,由最稳定的单质生成单位物 质的量某物质的定压反应热(各种稳定单质在任意温度下的生成焓值为0) 标准摩尔燃烧焓:…………,单位物质的量的某物质被氧完全氧化时的反应焓 第二章 热力学第二定律 一、基本概念 自发过程与非自发过程 二、热力学第二定律 热力学第二定律的数学表达式(克劳修斯不等式) T Q dS δ≥ “=”可逆;“>”不可逆

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

相关主题
文本预览
相关文档 最新文档