当前位置:文档之家› 偏析

偏析

偏析
偏析

偏析

目录

基本概念

金属学上的词语

焊缝中的偏析现象

基本概念

金属学上的词语

焊缝中的偏析现象

展开

编辑本段基本概念

合金中各组成元素在结晶时分布不均匀的现象称为偏析。焊接熔池一次结晶过程中,由于冷却速度快,已凝固的焊缝金属中化学成分来不及扩散,造成分布不均,产生偏析。

编辑本段金属学上的词语

根据铸锭的范围,偏析分为两大类:

1. 显微偏析。

2. 区域偏析(宏观偏析)

3.通道偏析(channel segregation)

其中,

显微偏析指发生在一个或几个晶粒之内,包括枝晶偏析、晶间偏析、晶界偏析和胞状偏析。

宏观偏析则发生在铸锭宏观范围内这一部分和那一部分之间。可分为正常偏析、反常偏析、比重偏析三类。

晶内偏析:该情况取决于浇铸时的冷却速度,偏析元素扩散能力和固相线倾斜度等.可以通过退火将偏析消除;.

区域性偏析:在较大范围内化学成分不均匀的现象,退火无法将该情况消除,这种偏析与浇温、浇速等有关;比重偏析:合金凝固时析出的初晶与余下的液体存在较大的比重差,最终导致材料出现分层、化学成分不均匀的情况。可采用降低浇温加大冷却速度,加入微量元素形成比重适当等。

通道偏析:凝固时,浓度较大的液态对流引起的偏析。溶质和浓度梯度影响了液态的密。

你可以判断出现偏析的种类,并针对性的采取一些措施。

编辑本段焊缝中的偏析现象

焊缝中的偏析现象有以下三种:

显微偏析

熔池一次结晶时,最先结晶的结晶中心金属最纯,后结晶部分含其它合金元素和杂质略高,最后结晶部分,即结晶的外

端和前缘所含其它合金元素和杂质最高。在一个柱状晶粒内部和晶粒之间的化学成分分布不均现象称为显微偏析。

区域偏析

熔池一次结晶时,由于柱状晶体的不断长大和推移,会把杂质“赶”向熔池中心,使熔池中心的杂质含量比其它部位多,

这种现象称为区域偏析。

焊缝的断面形状对区域偏析的分布影响很大。窄而深的焊缝,各柱状晶的交界在其焊缝的中心,因此焊缝中心聚集有较多的杂质,见图1。这种焊缝在其中心部位极易产生热裂纹。宽而浅的焊缝,杂质则聚集在焊缝的上部,见图1b,这种焊缝具有较高的抗热裂能力。

层状偏析

熔池在一次结晶的过程中,要不断地放出结晶潜热,当结晶潜热达到一定数值时,熔池的结晶就出现暂时的停顿。以后

随着熔池的散热,结晶又重新开始,形成周期性的结晶,伴随着出现结晶前沿液体金属中杂质浓度的周期变动,产生周期性的偏析称为层状偏析。层状偏析集中了一些有害元素,因此缺陷往往出现在层状偏析中。由层状偏析所造成的气孔。

第四节铸件中的偏析

所谓铸造偏析就是液态合金在铸型中凝固以后,铸件断面上各个部分及晶粒与晶界之间存在化学成分的不均匀现象。它有三种类型:即晶内偏析、区域偏析和比重偏析。有时铸件上只存在某一种类型的偏析,有时则几种类型同时并存。由于偏析的存在,铸件断面上或晶粒与晶界处的机械性能也不一致,从而会影响到铸件的使用寿命。为此,在铸件的生产中,应尽量防止偏析的产生。

1.晶内偏析

晶内偏析,又叫树枝晶偏析。其特征是在一个晶粒范围内,晶内和晶界处的化学成分不一致,熔点高的组元往往多分布于晶内,而熔点低的组元则往往多分布于晶界。如锡青铜铸件,晶粒内含铜多,而晶界处含锡多。

一般的产生晶内偏析,有两个条件:

(1)具有一定结晶温度范围的合金;

(2)在凝固过程中,合金原子的扩散速度小于结晶速度。

因为合金的结晶温度范围愈宽、铸件的冷却或结晶速度愈快,则晶内偏析愈严重。为防止晶内偏析,可以采用细化晶粒的措施,以缩短原子的扩散距离;或适当提高浇温,以延缓冷却速度,以达到延长原子的扩散时间等。对已产生晶内偏析的铸件,可通过长时间的扩散退火来减轻晶内偏析。

2.区域偏析

区域偏析是指在铸件的整个断面上,各部位的成分不一致的现象。主要因合金进行选择凝固所引起。区域偏析又分正向偏析和逆向偏析两类。

(1)正向偏析

所谓正向偏析是指铸造合金中,熔点较低的组元集中分布在铸件的中心或上部区域,其含量从铸件的先凝固区到其后凝固区逐渐递增。而逆向偏析则正好相反,熔点较低的组元集聚在铸件边缘。如硅黄铜铸件易出现正向偏析,即铸件中心含硅量较高;锡青铜件则易产生逆向偏析,即铸件表层中锡含量较多。

一般的,具有一定结晶温度范围的合金,均会产生一定程度的区域偏析,只是结晶温度范围较小的合金,倾向于产生正向偏析;而结晶温度范围较宽的结晶时形成发达的树枝晶的合金,则易产生逆向偏析。如锡青铜件表面的“锡汗”,就是当锡青铜表面先凝固一层硬壳后,由于某种应力的作用,硬壳出现裂纹,壳内未凝固的低熔点组元(锡)占多数的液态合金被挤出壳外而停留在铸件表面形成的。

即使采用均匀化扩散退火也无法消除区域偏析,因为偏析元素需经长距离的扩散,故区域偏析应以预防为主,一般有以下措施:

(1)选择成分合适的合金;

(2)合理的铸件结构,即避免厚大断面;

(3)正确控制冷却速度。

3.比重偏析

由于合金中组元比重的不同所引起的偏析,叫比重偏析。比重偏析的产生,有以下几种情况:

(1)合金中的两组元在液态下互不相溶,如铜-铝合金,当此类合金在液态放置过久时,将发生分层现象,比重大的组元沉在下面,比重小的组元浮在上面。

(2)液态合金在搅拌不均的情况下,由于选择凝固所生成的晶体,其比重与母液不同,或上浮或下沉,形成比重偏析。如巴氏合金中的铅基合金或锡基合金的偏析。

(3)铸件的凝固方向也会影响比重偏析。若铸件的凝固顺序是自下而上,对于初生晶的比重较大的合金而言,其比重较小的低熔点相很容易上浮,会加剧比重偏析;反之,当初生晶体的比重较小时,会减轻比重偏析。

总之,对易产生比重偏析的合金而言,必须采取防止措施,如控制熔炼工艺使合金成分均匀;尽量缩短液态合金的放置时间;加快冷却速度及合理控制铸件的凝固方向等。

五、合金的吸气

各种铸造合金,尤其是有色合金,在液态时都有吸收气体的特性。气体在合金中的溶解度,随温度的变化有如图3.17所示的规律。合金在固态时,气体的

溶解度很小,并随温度的升高,增加得也很少;当合金达到熔点时,气体的溶解度急剧增加,在液态合金中熔解的气体比固态合金中的多很多。

可以看出,气体在液态合金中的溶解度随温度的升高增加较快,直至达最高值后才开始下降;合金达到沸点时,气体的溶解度几乎等于零。一般的,铸造合金在熔炼时,正处于气体溶解度随温度升高而增加很快的阶段,甚至达到饱和。尤其是铝、镁合金具有较大的吸气倾向。当其浇注到铸型后,随着温度的降低,气体的溶解度将不断下降,结果就会析出气体。当析出的气体来不及从液态合金中跑出时,便会在铸件中形成气孔。如铝合金上的针孔。

合金中所吸收的气体,主要来源于炉料、各种辅助材料、炉气及坩埚等熔化工具。对于极易吸气的合金,如铝、镁合金,在浇注过程中,一切与气体、水分接触的机会,均易导致吸气。在所吸收的气体中,最有害的是氢气。为了减少或避免液态合金吸气,应采取以下工艺措施:

(1)严格控制炉料及辅助材料的质量;

(2)做好熔炉及其它工具的预热等准备工作;

(3)正确控制熔炼和浇注工艺,如尽量减少液态合金在高温下保温的时间,

并避免其过热;对极易吸气的合金应在覆盖剂保护下熔炼,并在熔炼后期进行除

气处理。

(4)有条件时,对易吸气合金采用真空炉熔炼和在真空室内浇注。

大型锻件的缺陷与对策:偏析

钢中化学成分与杂质分布的不均匀现象,称为偏析。一般将高于平均成分者,称为正偏析,低于平均成分者,称为负偏析。尚有宏观偏析,如区域偏析与微观偏析,如枝晶偏析,晶间偏析之分。

大锻件中的偏析与钢锭偏析密切相关,而钢锭偏析程度又与钢种、锭型、冶炼质量及浇注条件等有关。合金元素、杂质含量、钢中气体均加剧偏析的发展。钢锭愈大,浇注温度愈高,浇注速度愈快,偏析程度愈严重。

(1)区域偏析

它属于宏观偏析,是由钢液在凝固过程中选择结晶,溶解度变化和比重差异引起的。如钢中气体在上浮过程中带动富集杂质的钢液上升的条状轨迹,形成须状∧形偏析。顶部先结晶的晶体和高熔点的杂质下沉,仿佛结晶雨下落形成的轴心∨形偏析。沉淀于锭底形成负偏析沉积锥。最后凝固上部区域,碳、硫、磷等偏析元素富集,成为缺陷较多的正偏析区。

防止区域偏析的对策是:

1)降低钢中硫、磷等偏析元素和气体的含量,如采用炉外精炼,真空碳脱氧(VCD)处理及锭底吹氩工艺。

2)采用多炉合浇、冒口补浇、振动浇注及发热绝热冒口,增强冒口补缩能力等措施。

3)严格控制注温与注速,采用短粗锭型,改善结晶条件。

在锻件横向低倍试片上,呈现与锭型轮廓相对应的框形特征,亦称框形偏析。因锭中偏析带在变形时,沿分模面扩展而呈现为框形。偏析带由小孔隙及富集元素构成,对锻件组织性能的均匀性有不良的影响。

电渣重熔以其纯净度高、结晶结构合理,成为生产重要大锻件钢坯的方法,但是如果在重熔过程中电流、电压不稳定,则会形成波纹状偏析。当电流、电压增高时,钢液过热,结晶速度减缓,钢液中的溶质元素在结晶前沿偏聚形成富集带;当电流、电压减小时,熔质元素偏聚程度减小,这种周期性的变化,便形成了波纹状的偏析条带。

区域偏析在横向低倍酸浸试片上呈分散的深色斑点状,称之为点状偏析。

(2)枝晶偏析

它属于微观偏析。树枝状结晶与晶间微区成分的不均匀性,可能引起组织性能的不均匀分布。采用扫描电镜(SEM)、波谱仪(WDS)、能谱仪(EDS)进行微区观察和成分分析可以检出并阐明原因,一般通过高温扩散加热,锻压合理变形与均匀化热处理可以消除或减轻其不良影响。

一般来说偏析分为树枝偏析和区域偏析,树枝偏析可以通过锻造,再结晶,高温扩散和锻后热

处理得到消除,区域偏析只能通过锻造来减轻其影响,是夹杂物分散,并将显微孔隙和疏松锻

合.对一些大直径的钢锭,还必须采取特殊的工艺措施才能保证锻件质量,我们经常给客户锻

造这种材质的齿轮,正常的情况不应该出现这么严重的偏析,因为齿轮冲孔的时候把最不好的

地方都冲掉了,我觉得一种情况是原材料偏析太严重,再一个就是锻后热处理没做,建议做一

下锻后热处理!

大方坯轴承钢中心偏析的成因及预防措施

大方坯轴承钢中心偏析的成因及预防措施 某钢特钢厂轴承钢生产流程为:50tUHPEAF(铁水热装比大于 50%)+50tLF+60tVD真空脱气+3机3流大方坯全弧形合金钢连铸机+铸坯入坑缓冷、部分连铸坯直接热送轧制成材。连铸机弧形半径为R11m/16m/32m,3点矫直,铸坯断面为180mm×220mm、260mm×300mm,采用全封闭无氧化保护浇注,结晶器液面自动控制,专用轴承钢结晶器保护渣保护浇注,二冷气雾冷却动态配水,结晶器+末端(M+F2EMS)复合式电磁搅拌,连铸坯重接部分切除、头尾坯优化等技术。连铸工艺生产轴承钢,铸坯表面质量良好,通过LF+VD真空处理和严格的无氧化保护浇注,钢中氧含量降低,平均氧的质量分数达到10×10-6以下,钢材热顶锻一次检验合格率达到100%。轴承钢生产中,中心碳偏析是其主要低倍缺陷。 中心偏析受钢水过热度、拉速、电磁搅拌、二冷区温度和连铸机的设备状况等因素影响。 连铸钢水的过热度对高碳铬轴承钢铸坯的质量有重要影响。因为高碳铬轴承钢固液两相区温度达到131℃,故中等过热度的钢液也有其柱状晶强烈增大趋势,在凝固后期由于连铸坯断面中心柱状树枝晶的搭桥而形成小钢锭的凝固结晶现象,铸坯产生中心偏析。过热度越低,中心偏析的评级越低。钢水中元素的偏析是随着凝固前沿的推移而逐渐产生的,影响偏析程度的主要因素为中间包钢水过热度和由过热度而决定的凝固前沿的温度梯度。在较高的温度梯度下,固液相线温差越大,使开始结晶和发生了结晶的固相成分差别愈大,体积收缩比也越大,偏析也愈严重。对轴承钢的低倍组织检验发现,在过热度较高的炉次产生中心增碳现象,该缺陷在钢材热酸蚀后的中心部位出现明显的黑色斑点。由于中间包钢水过热度的控制存在明显差异,导致连铸坯中心碳偏析存在较大差别。 拉速与连铸坯中心偏析评级有关。一般来讲,连铸坯的等轴晶区面积越大,中心偏析评级越低。降低拉速对铸坯质量有利,尤其是大方坯轴承钢,当铸坯在离开结晶器时,坯壳有足够的厚度以承受内部钢水的静压力,否则易产生鼓肚、致使枝晶间富集溶质的钢液向液相穴移动形成中心偏析。当断面和钢种一定时,

材料学基本概念

1、晶体 原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。 2、中间相 两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 3、亚稳相 亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。 4、配位数 晶体结构中任一原子周围最近邻且等距离的原子数。 5、再结晶 冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程) 6、伪共晶 非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。 7、交滑移

当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。 8、过时效 铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ ’,和θ。在开始保温阶段,随保温时间延长,硬度强度上升(时效强化),当保温时间过长,将析出θ ’,这时材料的硬度强度将下降,这种现象称为过时效。 9、形变强化 金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。 10、固溶强化 由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。 11、弥散强化 许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。 12、不全位错 柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 13、扩展位错 通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。 14、螺型位错

连铸坯中心偏析的研究_孙群

1, 2 热能工程

。过热度高,铸坯凝固前沿温度梯度大,保持定向传热的时间长,有利于柱状晶的生长,并可抑制等轴晶粒的形成。柱状晶发达会加重凝固过程的显微(枝晶)偏析,可导致尚未凝固的钢液杂质组元含量增加,加重中心偏析。 图1过热度对B类以上中心偏析比率的影响 如图1和图2所示,对铸坯硫印数据库进行统计,拉速为1.0m/min,铸坯尺寸为1450mm×230mm,相同冷却条件下,铸坯样本容量为99个,其中A类偏析2个,B类偏析76个,C类21个,所占比例依次为:2.0%,76.8%,21.2%,比较重的A类B类偏析共占78.8%。样本中的合格样品(B类0.5级以下)79个,合格率为79.8%。 图2钢水过热度对中心偏析合格率的影响 结果表明,随钢水过热度的增加,铸坯中心偏析程度增加。在所采用的浇铸条件下,当钢水过热度超过24℃后,铸坯中心偏析合格率急剧下降。 2.2拉速 拉速对铸坯中心偏析有重要影响,这是因为当拉速增加时,减少了钢水在结晶器内的停留时间,导致转移钢液过热量所需的时间增加,推迟了中心等轴晶的生产,有利柱状晶发展和轴向偏析。拉速增加,液相穴深度增大,更易形成凝固桥,造成中心偏析。 如图3所示,本研究统计了B类以上中心偏析出现的比率随拉速变化的规律。对硫印数据库整体进行统计,样本容量为318个,中心偏析A类3个,B类232个,C类83个,所占比例分别为0.9%,73.0%,26.1%。B类以上占73.9%。 图3拉速对B类以上中心偏析比率的影响 2.3辊道开口度 “鼓肚”理论认为,中心偏析的产生是由于铸坯在连铸过程中,凝固壳鼓肚或凝固收缩引起富集溶质残余液体流动,而使局部溶质聚集的结果。鼓肚与辊间距、辊子刚性、对中精度等有密切关系。鼓肚量与辊间距的4次方成正比,间距越大越容易鼓肚。另外,为减轻鼓肚,辊子要保持良好的刚性,防止变形,而且对中要好,要保持较高精度。缩小辊间距,特别是调整辊列系统的对中精度和保持夹辊的刚性,,对减轻鼓肚都十分有利。可见,辊子的开口度和对弧精度对中心偏析有很大影响。 经过计算,拉速为1m的铸坯的凝固终点在11~12段之间,约距结晶器弯月面21.9m。 2003年5月29日第11、12段的辊道开口度偏差值最小1.6mm,最大3.2mm。取数据库中前后7天的数据共12组进行分析,有11组合格,合格率为91.67%。2003年9月2日第11、12段的开口度偏差最小值1.6mm,最大值3.7mm。取数据库中前后7天的数据共20组进行分析,15组合格,合格率为75.00%。若取该日附近8组检验,5组合格,合格率为62.50%。分析可知,在凝固末端,辊道开口度控制精度偏差增大对中心偏析的改善不利,如图4所示。 图42003年9月2日辊道开口度变化 热能工程

冶金行业

冶金行业 汇编 讲明 为了深入贯彻落实科学进展观,加快建设富裕文明和谐新广西,广西壮族自治区人民政府提出到2012年,要实现以铝为主的有色金属产业、以

系列中型轿车为重点的汽车产业、以制糖为主的食品产业、以炼油为主的石化产业、以钢铁为主的冶金产业、以工程机械为主的机械产业、以电源建设为主的电力产业等七大支柱产业规模以上企业销售收入全部突破千亿元大关的目标。并决定于今年启动实施“千亿元产业重大科技攻关工程”,推动广西千亿元产业的技术水平和装备水平接近或达到全国先进水平。 广西将围绕千亿元产业进展的当前需求,重点支持对经济、社会进展具有重大意义的关键技术、共性技术的研究开发与应用。同时,开展具有优势和前瞻性技术研究,提升产业核心竞争力,增强广西产业进展的后劲。现将首批广西“千亿元产业重大科技攻关”项目汇编成册并印发,期望能得到国内外高校、科研机构、中介机构和有关单位的支持,参与到项目的研发中来,进行技术对接、合作开发。 有意向的科研机构、高校及有关中介机构、企业可与广西壮族自治区技术市场联系。

名目 冶金产业- 5 - 汽车用面板的研发- 6 - 炉外法精炼锰铁工艺技术与低碳锰铁的研发- 6 - 超级电解二氧化锰的研制- 6 - 年产600吨锰酸锂生产新技术及产业化- 6 - 有色金属材料产业- 7 - 风能、光能、LED新能源技术配套铝质零组件产品研发- 8 - A356合金及高纯铝新产品研发-8 - 锡精深加工技术研究与产业化- 8 - 高端超硬材料的研发- 9 - 从电锌净化渣中回收精镉- 9 - 拜耳法赤泥共伴生矿的产业化技术开发- 9 - 机械装备产业- 10 - 大型工程机械开发及产业化- 11 - 冷喂料排气挤出机及塑料注射成型机产品研发- 11 - 新型预应力锚具、起重设备、建筑设备及操纵系统关键技术研究开发- 11 - 高档数控五轴联动铣钻床- 12 - 木薯机械化系列产品研发与产业化- 12 - 新型水稻插秧机新产品研发- 13 - 电力产业- 14 - 串联电容器及装置研发- 15 - 2.5兆瓦直驱永磁风力发电机组及操纵系统研发- 15 - 石化产业- 16 - 年产60万吨催化-气分-炼气综合利用开发- 17 - 乙烯氧氯化法合成氯乙烯的工艺研究- 17 - 大型工程机械子午线轮胎成套设备及巨型胎硫化设备的研发- 17 -

探测器的相关概念

高能射线穿过固态探测器时与介质晶体之间的相互作用是通过弹 性散射、光电吸收、康普顿散射以及附生电子-正电子对四种机制进 行的。其中,光电吸收和康普顿散射是较为主要的过程。在这个过 程中,入射光子的能量被介质材料中原子的外层电子所吸收,获得 能量后的电子由满带跃迁到导带,在导带上产生额外的电子,在满 带上留下空穴。与此同时,该电子还通过康普顿效应与半导体晶格 发生相互作用,将能量传递给后者。上述过程会产生大量的电子一 空穴对。如果此时在介质晶体两端加上足够高的外电场,那么这些 载流子将分别向两电极漂移,从而在探测器电极上形成一个脉冲电 流。 该电流经前置放大器放大后产生一个高度与探测器电流的时间积分成正比的输出电压脉冲。此电压脉冲通过成形放大器转换为高斯脉冲,进一步放大成形,在过滤掉背景噪声后,使信一噪比达到最高,然后将其输入多道脉冲幅度分析仪,由其记录在每个道数(道数表示脉冲的高度)上所测量到的脉冲数量并分别以数据和图谱的形式呈现出来。由于射线的能量与所产生的载流子数量成正比,而探测器内电流的时间积分又正比于载流子的数量,因此前置放大器产生的电压脉冲正比于入射射线的能量。最后多道分析仪给出的数据和图谱就表示了射线的能谱。 (l) 原子序数高:提高辐射粒子与探测材料原子之间相互作用的效果。 光电效应截面大小与γ射线能量和吸收物质的原子序数有关。粗略地 讲,随光子能量增大而减小,随Z的增大而增大。可由量子力学计算 公式得到。 (2) 禁带宽度大:控制热生电流。可探测到高能射线,提高高能射线 分辨率。并获得电阻高,漏电流低,从而降低探测器工作时的噪音 (3)高电阻率:高的电阻率可以使得探测器在高电压下具有低的漏电 流,这对于降低探测器工作噪声,提高能量分辨率。 (4)较高的本征μτ值(μ载流子迁移率,τ载流子寿命)。载流子的漂移 程是由载流子迁移率、载流子寿命以及应用电场的乘积所决定的。载 流子在被材料中的缺陷俘获中心俘获前的平均寿命与材料的不完整 性密切相关。而载流子的收集效率则取决于单位时间内光生载流子漂 移程与介质材料厚度的比例大小。理想情况下,载流子漂移程应该远 远大于介质材料的厚度,这样方能保证对载流子有一个完全的收集。 (5)能够制备出大体积的高纯度、低缺陷均匀材料。这是因为,大的探 测体积有利于接受更多的入射光子,这将显著提高探测器的灵敏度和 收集效率,缩短响应时间,从而提高探测效率。而高的纯度,好的均 匀性以及低的缺陷密度能够带来低的漏电流,优良的载流子传输特 性,同时能够避免在探测器两极间产生短路。 (6)易于在材料表面制备无极化效应的欧姆接触或肖特基势垒接触电极。满足该条件的探测器能耐承受高的反向偏压,漏电流小且正向电阻也小。 通常认为,Zn 的掺入量决定了本征Cd1-xZnxTe晶体的电阻率和禁带 宽度,即Zn 的掺入量越高,晶体的电阻率越高,禁带宽度越大。因 此,前人一般倾向于选择高的x 值( x = 0.1-0.2) 来生长晶体,但是大 的x 值会使晶体的熔点升高,加大了晶体生长的难度,影响了所获得 的晶体的质量,晶体偏离了本征态。在熔体法生长CdZnTe晶体时, 随Zn含量的增加,熔点会提高,在熔点温度下,晶体内各组元,尤 其是镉具有较高的平衡蒸汽压,一部分Cd从熔体中挥发,在晶体中 产生大量的镉空位,并使富余的T碲析出形成碲沉淀相,破坏了晶体 的化学计量比。Cd空位具有受主特性,相当于在晶体中掺杂,因而 显著提高晶体内载流子浓度,从而降低了电阻率。 沉淀的碲颗粒作为微观散射中心,对在晶体中转播的光有强的散射作用,从而极大程度地降低晶体的红外透过率。

偏析法高纯铝箔

偏析法高纯铝箔(铝光箔)试验技术方案 招标项目 招标文件 (招标编号:BTKJJ2009-01) 招标人:包头市科技局 二〇〇九年五月

目录 第一章投标方须知 (1) 一、目的、意义 (1) 二、招标项目名称: (1) 三、招标项目编号 (2) 四、招标人 (2) 五、资金来源及支付方式 (2) 六、投标前须知 (2) 七、投标人资格及联合投标的要求 (2) 八、投标文件的份数 (3) 九、投标文件的递交 (3) 十、投标文件的补充和修改 (4) 十一、投标费用 (4) 十二、投标人的法律责任 (4) 第二章项目主要内容和要求 (5) 一、本项目的主要研究内容: (5) 二、技术指标要求 (5) 第三章项目主要考核指标 (5) 第四章项目时间要求和成果形式 (6) 一、项目时间要求 (6) 二、项目成果形式及要求 (6) 第五章投标文件的编制 (6) 一、编制要求 (6) 二、投标文件封面格式 (6) 三、投标函 (8) 四、投标文件内容 (9)

五、附件 (格式附后) (10) 第六章开标、评标和定标 (17) 一、开标 (17) 二、评标 (17) 三、定标 (17)

第一章投标方须知 本招标文件仅适用于本次招标公告中所述项目。 一、目的、意义 国际上高纯铝成熟的生产工艺主要有两种:三层液电解法和偏析法。三层液电解法现在应用比较广泛,但与偏析法相比,后者有着省电、低能耗、环保的优势,偏析法工艺生产每吨高纯铝耗电仅为三层电解液法的1/9,而且偏析法是一个物理过程,不涉及其它的任何添加物质,不会产生任何有毒有害物质,符合当前环保生产的要求,包头铝业(集团)有限责任公司是国内首家采用偏析法实现高纯铝规模化生产的企业。目前,国内电容器高压铝光箔主要采用三层液电解技术生产的高纯铝为原料,其技术比较成熟,采用偏析法高纯铝为原料的还很少,其生产技术水平及产品性能方面与国外存在较大差距。该项目主要是拟以包铝集团现有国际先进的偏析法高纯铝为原料,针对偏析法高纯铝的特点,向国内招标研制以偏析法高纯铝为原料的铝光箔产业化工艺技术试验方案,并实现规模化生产,产品填补国内偏析法高纯铝板、光箔的空白,使我市形成完整的原铝液---偏析高纯铝---板、光箔----化成箔、腐蚀箔的产业链,带动包头高纯铝行业高附加值产品的发展,提升产品在国内外市场的竞争力。 二、招标项目名称: 偏析法高纯铝箔(铝光箔)试验技术方案

高纯金属技术及应用

高纯金属技术及应用 高纯金属材料概述 1.1高纯金属材料的定义 金属材料的纯度是相对于杂质而言的。广义上杂质包括化学杂质(元素)和物理杂质(晶体缺陷)。但是,只有当金属材料纯度极高时,物理杂质的概念才是有意义的。因此生产上一般仍旧以化学杂质的含量作为评价金属材料纯度的标准,即以主金属材料减去杂质总含量的百分数表示,常用N(nine 的第一个字母)代表,如99.9999%写为6N,99.99999%写为7N。此外,半导体材料还用载流子浓度(atom/cm3)和低温迁移率(cm2V-1S-1)表示纯度,金属材料用剩余电阻率RRR和纯度级R(Reinheitgrad)表示纯度,其中RRR=p298k/p4.2k( 式中p为金属材料在常温和液氦温度4.2 k以下的电阻值),R=﹣[lg(100-W)](式中W为主体金属材料含量,如某金属材料为99.999%,则R=﹣[lg(100-99.999)]=3)。国际上关于纯度的定义尚无统一标准,实际上“高纯”只有相对含义,是目前技术上所能达到的标准。随着提纯技术和检测水平的提高,金属材料的纯度在不断提高,例如,过去高纯金属材料的杂质为ppm级(百万分之几),而超纯半导体材料的杂质达ppb级(十亿分之几),并逐步发展到ppt级(一万亿分之几)。同时,各个金属材料的提纯难度不尽相同,如半导体材料中硅、锗称9N上为高纯,而难熔金属材料达6N以属于超高纯。 高纯金属主要用于电子化工材料和特殊合金材料,随着大规模集成电路的发展,计算机等电子、电器制品市场的迅速扩展,高纯金属的市场需要量不断增长,高纯金属是一种制备高纯试剂及标样配置的基体材料,同时还可应用于制备磁记录材料、磁传感器材料、光电材料和集成电路、氢化催化、大规模集成电路、原子反应堆保护材料、生物材料、航空发动机、低膨胀合金等高技术领域。随着高新技术的发展,多种金属已作为高新技术的战略物资,并要求将其提纯至非常高的纯度,高纯、超高纯金属的制备、特性及应用在现代材料科学和工程领域中属于新型的不断增长的领域。近年来,随着经济建设的快速发展,高强高导高纯金属及氧化物需求量将会大幅增加,性能和质量要求越来越高,高纯金属是提升国

金属概念

1.合金:是一种金属元素和一种或几种其它元素(金属或者非金属均可)熔合后而组成的具有进速特性的物质;合金可以由单一的一种固溶体构成,也可以由两种或两种以上的固溶体构成,还可以是固溶体和化合物构成,因为化合物硬度一般较高,工业用合金很少是单一化合物构成的;绝大多数实用的金属材料都是由一种或几种合金相所构成的合金。合金相的结构和性质以及各相的相对含量,各相的晶粒大小、形状和分布对合金的性能起着决定性的作用。 2. 组元:组成合金最基本的、能独立存在的物质称为组元,简称元。绝大多数情况下,组元即是构成合金的元素。但也有将化合物作为组元的,其条件是化合物在所研究的范围内,既不分解也不发生任何化学反应。根据组元的数量,可分为二元合金、三元合金或多元合金、如简单黄铜是由铜和锌两种元素组成的二元合金;硬铝是由铝、铜、镁三种元素组成的三元合金。 3. 相:合金中具有同一化学成分且结构相同的均匀部分称为相。相可分为固溶体和化合物两种基本类型。合金在固态下可以形成单相合金,也可以形成几种不同相的多相合金,合金中相与相之间有明显的界面。 4.固溶体:合金中两组元在液态和固态下都互相溶解,共同形成均匀的固相,这类固相称为固溶体;固溶体的一个特点是成分可以在一定范围内连续变化,这种变化不引起原来溶剂金属的点阵类型发生改变;固溶体不是混合物。如果合金由单一的一种固溶体构成,这种合金不是混合物。如果合金由两种或两种以上的固溶体构成,或者由固溶体和化合物构成,这种合金就是混合物。 所谓固溶体(solid solution)是指溶质原子溶入溶剂晶格中而仍保持溶剂类型的合金相。 这种相称为固溶体,这种组元称为溶剂,其它的组元即为溶质。工业上所使用的金属材料,绝大部分是以固溶体为基体的,有的甚至完全由固溶体所组成。例如,广泛用的碳钢和合金钢,均以固溶体为基体相,其含量占组织中的绝大部分。因此,对固溶体的研究有很重要的实际意义。 当一种组元A加到另一种组元B中形成的固体其结构仍保留为组元B的结构时,这种固体称为固溶体.B组元称为溶剂,A组元称为溶质.组元A、B可以是元素,可以是化合物.固溶体分成置换式固溶体和间隙式固溶体两大类.置换式固溶体溶质原子处于溶剂原子的位置上,即置换了溶剂原子,如α黄铜中,锌置换了铜原子;间隙式固溶体是溶质原子处于溶剂原子的间隙处,如α铁中,碳原子处在铁原子排列的间隙处. 间隙固溶体:又称插入固溶体、嵌入固溶体;溶质原子占据溶剂晶格中的间隙位置而形成的固溶体;若干溶质质点嵌入固相溶剂质点的间隙中而构成的固溶体;通常,插入溶质的半径与溶剂质点的半径相比特别小时易于形成;在金属键的物质中这类固溶体很普遍,添入的氩、碳、硼都容易处在这些晶格的间隙位置中。如碳溶入γ-铁中形成的间隙固溶体称为奥氏体;间隙固溶体的形成常有助于晶体的硬度、熔点和强度的提高置换固溶体:又称取代固溶体。溶质原子占据溶剂晶格中的结点位置而形成的固溶体称置换固溶体。当溶剂和溶质原子直径相差不大,一般在15%以内时,易于形成置换固溶体。铜镍二元合金即形成置换固溶体,镍原子可在铜晶格的任意位置替代铜原子。

过热度与中心偏析之间的关系

过热度与中心偏析之间的关系 过热度的计算需要知道中包温度,液相线温度。根据经验公式: 中包标准温度=液相线温度+中包标准过热度 而液相线温度 T L=1536.6-(90%[C]+8%[Si]+5%[Mn]+30%[P]+25%[S]+3[Al]+5%[Cu]+1.5% [Cr]+4%[Ni]+2%[Mo]+80%[N]+18%[Ti] 可以通过钢水中各个成分的含量确定来计算出液相线温度,然后根据连铸过程中中间包的温度,计算出中包过热度。 图1 过热度分布散点图 通过对武钢2010年7月至2011年3月的Q345B共计947炉钢水的中包过热度分析,得出以下结论:中包液相线温度均值为1503℃,中间包温度的均值为1531℃,中包过热度集中在20~40℃区间内,均值为28.25℃。存在7炉钢水过热度高于50℃,4炉钢水的过热度低于15℃。选取了其中过热度较高的炉次分析发现C026468(过热度60.77℃)根据液相线公式计算,其液相线温度为1480℃,与实际液相线平均温度相差较大,可认为是其成分不太稳定。而其中过热度较低的炉次C131758(过热度6.4℃)则是因为其中包温度(1518.25℃)过低。

图2 中心偏析级别与过热度关系图 取武钢三炼钢2010年7月至12月的中心偏析程度C1.0~C2.0的Q345B硫印坯共32块,其中C1.0共17块,C1.5共12块,C2.0共4块,作其与过热度之间的柱状关系图。从图中可以明显的看出C1.0级别的过热度均值为25.0763℃,C1.5级别的过热度均值为26.2884℃,C2.0级别的过热度均值为28.9316℃。随着中心偏析程度的提高,过热度呈增加的趋势。考虑到要降低中心偏析,必须尽可能的降低过热度,但是对于低碳钢,特别是含铝、铬、钛较高的钢种,钢液发粘,过热度会应该较高些。建议过热度应尽量控制在20℃~22℃。

偏析

偏析 编辑 合金中各组成元素在结晶时分布不均匀的现象称为偏析。焊接熔池一次结晶过程中,由于冷却速度快,已凝固的焊缝金属中化学成分来不及扩散,造成分布不均,产生偏析。 目录 1基本概念 2金属学上的词语 3焊缝中的偏析现象 ?显微偏析 ?区域偏析 ?层状偏析 1基本概念编辑 合金中各组成元素在结晶时分布不均匀的现象称为偏析。焊接熔池一次结晶过程中,由于冷却速度快,已凝固的焊缝金属中化学成分来不及扩散,造成分布不均,产生偏析。 2金属学上的词语编辑 根据铸锭的范围,偏析分为三大类: 1. 显微偏析。 2. 区域偏析(宏观偏析) 3.通道偏析(channel segregation) 其中, 显微偏析指发生在一个或几个晶粒之内,包括枝晶偏析、晶间偏析、晶界偏析和胞状偏析。 宏观偏析则发生在铸锭宏观范围内这一部分和那一部分之间。可分为正常偏析、反常偏析、比重偏析三类。 晶内偏析:该情况取决于浇铸时的冷却速度,偏析元素扩散能力和固相线倾斜度等.可以通过退火将偏析消除;. 区域性偏析:在较大范围内化学成分不均匀的现象,退火无法将该情况消除,这种偏析与浇温、浇速等有关;比重偏

析:合金凝固时析出的初晶与余下的液体存在较大的比重差,最终导致材料出现分层、化学成分不均匀的情况。可采用降低浇温加大冷却速度,加入微量元素形成比重适当等。 通道偏析:凝固时,浓度较大的液态对流引起的偏析。溶质和浓度梯度影响了液态的密度。 你可以判断出现偏析的种类,并针对性的采取一些措施。 3焊缝中的偏析现象编辑 焊缝中的偏析现象有以下三种: 显微偏析 熔池一次结晶时,最先结晶的结晶中心金属最纯,后结晶部分含其它合金元素和杂质略高,最后结晶部分,即结晶的外端和前缘所含其它合金元素和杂质最高。在一个柱状晶粒内部和晶粒之间的化学成分分布不均现象称为显微偏析。 区域偏析 熔池一次结晶时,由于柱状晶体的不断长大和推移,会把杂质“赶”向熔池中心,使熔池中心的杂质含量比其它部位多,这种现象称为区域偏析。 焊缝的断面形状对区域偏析的分布影响很大。窄而深的焊缝,各柱状晶的交界在其焊缝的中心,因此焊缝中心聚集有较多的杂质。这种焊缝在其中心部位极易产生热裂纹。宽而浅的焊缝,杂质则聚集在焊缝的上部,这种焊缝具有较高的抗热裂能力。 层状偏析 熔池在一次结晶的过程中,要不断地放出结晶潜热,当结晶潜热达到一定数值时,熔池的结晶就出现暂时的停顿。 以后随着熔池的散热,结晶又重新开始,形成周期性的结晶,伴随着出现结晶前沿液体金属中杂质浓度的周期变动,产生周期性的偏析称为层状偏析。层状偏析集中了一些有害元素,因此缺陷往往出现在层状偏析中。由层状偏析所造成的气孔。

偏析法高纯铝项目可行性研究报告

偏析法高纯铝项目 可行性研究报告 目录 第一章总论 (4) 1.1 项目承办单位概况 (4) 1.2 项目提出背景 (4) 1.3 发展规划和行业政策 (6) 1.4 环境现状和生态影响调查 (6) 1.5 征地和拆迁 (7) 1.6 可行性研究报告编制依据、原则 (7) 1.8 项目简况和研究的结果 (7) 第二章市场预测 (10) 2.1 产品市场 (10) 3.2 高纯铝市场现状及预测 (12) 3.3 我国铝业与世界铝业的比较 (17) 3.4 主要竞争厂商状况 (18) 3.5 项目竞争优势 (21)

第三章建设规模、产品方案 (25) 3.1 建设规模 (25) 3.2 产品方案 (25) 第四章项目建设地点及建设条件 (26) 4.1 项目建设地点 (26) 4.2 项目建设条件 (26) 第五章技术方案、设备方案和工程方案 (30) 5.1 技术方案 (30) 5.3 工程方案 (31) 第六章总图运输与公用辅助工程 (35) 6.1 总图运输 (35) 6.2 给排水工程 (36) 6.3 供电工程 (37) 6.4 机电修、通讯设施 (37) 第七章企业信息化 (38) 7.1 建立企业信息化的意义 (38) 7.2 行业信息化现状 (38) 7.3 企业信息化实施方案 (38) 第八章节能、节水 (40) 8.1 编制依据 (40) 8.2 项目用能特点及节能原则 (40) 8.3 能耗指标及分析 (40) 8.4 节能措施 (41) 8.5 水耗指标 (42) 8.6 节水措施 (42) 8.7 循环利用生产废料,变废为宝,节约原材料 (42) 第九章环境保护及措施 (44) 9.1 厂区环境现状 (44) 9.2 设计采用标准 (44) 9.3 项目实施对环境的影响 (44)

偏析的概念与分类

关于偏析概念及分类 合金液在铸型中凝固以后,铸件断面各个部分,以及晶粒内部,往往有化学成分不均匀的现象,这就是偏析。 偏析是一种铸造缺陷。由于铸件各部分化学成分不一致,势必使其机械及物理性能也不一样,这样就会影响铸件的工作效果和使用寿命。因此,在铸造生产中,必须防止合金在凝固过程中产生偏析。 偏析可分为三种类型,即晶内偏析、区域偏析和比重偏析。对于某一种合金而言,所产生的偏析往往有一种主要型式,但有时,由于铸造条件的影响,几种偏析也可能同时出现。 一、晶内偏析 晶内偏析,又称树枝状晶偏析,简称枝晶偏析。其特征是同一个晶粒内,各部分化学成分不一致,并且往往在初晶轴线上含有熔点较高的成分多。如锡青铜在晶粒轴线上往往含铜较多,含锡较少,而枝晶边缘则相反,这就是晶内偏析。 铸件内产生晶内偏析,一般有二个先决条件,第一,合金的凝固有一定的温度范围;第二,合金结晶凝固过程中原子扩散速度小于结晶生长速度。一般的情况下,合金的凝固温度范围愈大,铸件结晶及冷却速度愈快,则原子扩散愈难于进行完全,晶内偏析现象愈严重。因此,晶内偏析多产生于凝固温度范围较大,能形成固熔体的合金中。 为了防止某些合金的晶内偏析,可以采取细化晶粒措施,以缩短原子扩散距离;或适当提高浇注温度,延缓冷却速度,以延长原子扩散时间但浇注温度不得过高,否则会造成氧化、吸气、晶粒粗大等弊病。当铸件内已存在晶内偏析时,可考虑采用长则间的扩散退火热处理,以求得到改善。 二、区域偏析 区域偏析,即在整个铸件断面上,各部分化学成分不一致的现象,它主要由于合金进行选择凝固所引起的。区域偏析可分为正向和逆向偏析正向偏析是熔点较低的成分或合金元素熔质集中在铸件的中心和上部,其含量从铸件边缘至中心逐渐增加。逆向偏析则相反,熔点较低的成分或合金元素熔质集聚在铸件边缘。

三层液法和偏析法对比

一、三层液电解精练法 1、基本原理:是在三层液电解法的电解槽内有三层溶体,而溶体按密度的不同自下而上分别为:阳极合金熔体层、电解质层和精铝层。 其中最下层的阳极熔体层由待精炼的原铝和加重剂(一般为铜)组成,通常原铝在其中占70%,铜占30%,该层的密度为3.2-3.7g/cm3,最重;中间层的电解质层一般为纯氟化物体系或氟氯化物体系组成,其密度为2.7-2.8/cm3;最上层精铝层是精练出来的铝液,密度为2.3g/cm3,最轻,其与石墨阴极或固体铝阴极相接触成为实际的阴极。因此,三层液电解精炼法是因精炼体系中依密度的差别而分上中下三层熔体组成而得名。 阳极极化是由两方面的原因引起,一是阳极表面上的A3+浓度和电解液本体中A13+浓度的存在差异,二是阳极合金表面的留浓度与合金本体中铝浓度存在差异,这两方面的原因引起阳板极化电势的产生,阳根根化电势一般为0.135。 2、三层液电解的电液效率很高,阴极电流效率一般在96%以上,阳板电流效率达100% 提高电流效率的方法有以下几个途经: A、电解温度低,只有750~800℃.只高出铝的熔点100℃,铝的溶解量少; B、电解过程没有气体析出,没有阳极效应,电解质不“沸腾”,对流循环很,电解过程平稳,铝的损失量很小; C、极距高达80~120mm; D、电解质与阴极铝液的密度差别较大,分层请除,的溶解失少。 3、三层液电解精练的技术参数: 电流/kA 18~100 工作电压/ 5.0~6.0 电解质温度/℃760~810 电解质电流密度/A.cm-30.57~0.70 电解质高度/cm 10~15 阴极铝高度(出铝后)/cm 12~16 阳极合会高度(如原铝前)/cm 20~35 阳极合金中Cu浓度/cm 30~40 明极电流效率/% >96 电能消耗(交速)/kw.h.kg-1(A1)18~19 精铝纯度/% 99.99 注: (1)GL采用的净化原铝方法是:三层液电解法与偏析法相结合的提纯净化模式。 其三层液电解法的各层厚度为: 阳极铝制合金层200-300m 电解液80-150m 精铝层150-200mm 上层预留层100-150mm (2)ZH采用的净化原铝方法是三层液电解法和偏析法两种提纯净化模式。 (3)QD采用的净化原铝方法是:三层液电解法的提纯净化模式。 其三层液电解法的各层厚度为: 阳极铝铜合金层180-200mm 电解液100-120m 精铝层150C200m 上层预留层100m

腐蚀的定义

腐蚀的定义:腐蚀是材料受环境介质的化学、电化学和物理作用产生的损坏或变质现象。腐蚀的特点:自发性、普遍性、隐蔽性。 腐蚀的分类:(金属腐蚀和非金属腐蚀) 金属腐蚀分为: (机理)化学腐蚀、电化学腐蚀。 (破坏特征)全面腐蚀、局部腐蚀。 (腐蚀环境)大气、土壤、电解质溶液、熔融盐、高温气体等腐蚀。 局部腐蚀:应力腐蚀、疲劳腐蚀、磨损腐蚀、小孔腐蚀、晶间腐蚀、缝隙腐蚀、电偶腐蚀等电化学腐蚀的定义:金属与电解质溶液发生电化学作用而引起的破坏。 化学腐蚀:金属与非电解质直接发生化学作用而引起的破坏。 金属腐蚀:金属腐蚀是金属与周围环境之间相互作用,使金属由单质转变成化合物的过程。腐蚀速度:在均匀的腐蚀情况下,常用重量指标和深度指标来表示腐蚀速度。 极化的概念:电池工作过程中由于电流流动而引起电极电位偏离初始值的现象,称为极化现象,通阳极电流,阳极电位向正方向偏离称阳极极化;通阴极电流,阴极电位向 负方向偏离称阴极极化。 产生极化的根本原因:阳极或阴极的电极反应与电子迁移(从阳极流出或流入阴极)速度存在差异引起的。 标准氢电极:把电镀有海绵状铂黑(极细而分散的铂金粉)的铂金片插入氢离子活度1的溶液(酸性溶液)中,不断地通入分压101325Pa(1atm)的纯氢气冲击,使铂黑吸附氢气 至饱和,这是铂金片即为标准氢电极。 金属电化学腐蚀的热力学条件: (1)阳极溶解反应自发进行的条件:E A>E eM (2)阴极去极化反应自发进行的条件:E K>E0k (3)电化学腐蚀持续进行的条件:E e.M

铝合金车轮偏析分析2017.12.6

铝合金车轮偏析分析 1.偏析分类及原理 偏析是指在结晶过程中发生化学成分的不均匀现象。根据偏析的分布特点可分为微观偏析和宏观偏析。微观偏析分为晶内偏析和晶界偏析。宏观偏析又称谓区域偏析,分为正常偏析、逆偏析和比重偏析。 枝晶偏析,又称晶内偏析,是在一个晶粒内出现的成分不均匀 现象,常产生于具有结晶温度范围、能够形成固溶体的合金中。对 于溶质分配系数k0<1的固溶体合金,晶粒内先结晶部分含溶质较少,后结晶部分含溶质较多。这种成分不均匀性就是晶内偏析。固溶体 合金按树枝晶方式生长时,先结晶的枝干与后结晶的分枝也存在着 成分差异,因此又称为枝晶偏析。晶内偏析是一种不平衡状态,如 果能使溶质充分扩散即可消除,把铸件加热到低于固相线100-200℃,长时间保温则可减轻或消除晶内偏析。 晶界偏析:在合金凝固过程中,溶质元素和非金属夹杂物常富 集于晶界,使晶界与晶内的化学成分出现差异,这种成分不均匀现 象称为晶界偏析。晶界偏析的预防和消除方法同晶内偏析所采用的 措施相同,即细化经历和均匀化退火。 正偏析与负偏析:根据合金各部位的溶质浓度Cs与合金原始平 均浓度C0的偏离情况分,凡Cs>C0者,称为正偏析;Cs<C0者, 称为负偏析。 正常偏析:当合金的溶质分配系数k0<1时,凝固界面的液相中 将有一部分溶质被排出,随着温度的降低,溶质的浓度将逐渐增加,越是后来结晶的固相,溶质浓度越高。当k0>1时则与此相反,越是 后来结晶的固相,溶质浓度越低。按照溶质再分配规律,这些都是 正常现象,故称之为正常偏析。正常偏析使铸件性能不均匀,严重 时会使铸件在使用中皮怀,因为应尽量减少这种偏析。这种偏析不 能通过扩散退火来消除,只能采取一些适当的浇注工艺措施来加以

高纯金属

北京中金研新材料科技有限公司(CNM)是坐落于中关村科技园区的国家高新技术企业,由业内龙头企业为发起人,整合了国内科研院校的优势资源,吸收国内外先进科学的管理经验而成立。人才储备丰富,资金力量雄厚,通过ISO9001:2008质量体系及ISO14001:2004环境管理体系认证,具有自主进出口权。 北京中金研新材料科技有限公司在各种高纯材料、镀膜材料、溅射靶材、功能材料及应用技术研究开发方面,有着得天独厚的优势。以坚强的技术为基础,我公司开发了多个系列的新材料,这些产品牌号约百余种。已在航空航天、军工、信息电子、真空镀膜、冶金、功能材料、生物医药、新能源等行业获得广泛应用。目前拥有镀膜材料、溅射靶材、高纯材料、高纯合金等多条生产线,生产设备先进,工艺完善。 目前,我们的客户遍及美国.德国.日本.韩国.台湾.香港等十几个国家和地区,包括国内外科研军工,上市公司等知名企事业在内的六百余家单位。 北京中金研新材料科技有限公司下设镀膜材料、溅射靶材、金属粉末、高纯材料等事业部,热烈欢迎新老客户垂询。我公司秉承以诚信为本,科技为本的理念,致力打造成金属新材料行业的领头羊。 磁控溅射靶材 (可为电子与半导体,平面显示行业,建筑与汽车玻璃行业,薄膜太阳能电池行业,磁存储行业,工具行业,装饰行业提供高品质靶材)高纯单质金属溅射靶材(3N-6N):铝靶Al,铬靶Cr,铜靶Cu,镍靶Ni,硅靶Si,锗靶Ge, 铌靶Nb,钛钯Ti,铟靶In,银靶Ag,锡靶Sn,石墨靶C,钽靶Ta,钼靶Mo,金靶Au, 铪靶Hf,锰靶Mn,锆靶Zr,镁靶Mg,锌靶Zn,铅靶Pb,铱靶Ir,钇靶Y,铈靶Ce, 镧靶La,镱靶Yb,钆靶Gd,铂靶Pt等高纯单质金属溅射靶材。 高密度陶瓷溅射靶材(3N-5N):ITO靶、AZO靶,IGZO靶,氧化镁靶MgO、氧化钇靶Y2O3, 氧化铁靶Fe2O3,氧化镍靶Ni2O3,氧化铬靶Cr2O3、氧化锌靶ZnO、硫化锌靶ZnS、硫化镉靶CdS, 硫化钼靶MoS2,二氧化硅靶SiO2、一氧化硅靶SiO、二氧化锆靶ZrO2、五氧化二铌靶Nb2O5、 二氧化钛靶TiO2,二氧化铪靶HfO2,二硼化钛靶TiB2,二硼化锆靶ZrB2,三氧化钨靶WO3, 三氧化二铝靶Al2O3,五氧化二钽靶Ta2O5、氟化镁靶MgF2、硒化锌靶ZnSe、氮化铝靶AlN, 氮化硅靶Si3N4,氮化硼靶BN,氮化钛靶TiN,碳化硅靶SiC,铌酸锂靶、钛酸镨靶、钛酸钡靶、 钛酸镧靶等高密度陶瓷溅射靶材. 备注:CNM生产的陶瓷靶材采用世界最先进的陶瓷生产工艺—惰性气体保护热等静压烧结技术,相对密度大于95-99%。可以提供靶材的金属化处理及绑定服务。 高纯合金溅射靶材:镍钒合金靶Ni-V,镍铬合金靶Ni-Cr,钛铝合金靶Ti-Al,硅铝合金靶Si-Al,铜铟合金靶Cu-In,铜镓合金靶Cu-Ga,铜铟镓合金靶Cu-In –Ga,铜铟镓硒靶Cu-In –Ga-Se,不锈钢靶,锌铝合金靶Zn-Al,钨钛W-Ti,铁钴Fe-Co,白铜靶等高纯合金溅射靶材。 备注:CNM生产的高纯合金溅射靶材:晶粒度小150-60um,相对密度高(99-99.9%),纯度高(99.9-99.999%)。可以提供靶材的金属化处理及绑定服务。 真空镀膜材料 (镀制:复合膜,彩色膜,增透膜,透紫外膜,气敏传感器膜,高温介质膜,光学膜,激光装置滤光片,保护膜,透明导电膜,变色膜,优良的宽带增透膜,磁性薄膜,可见光区增透膜,红外增透膜,分光膜,多层膜,高反射膜,电阻膜,热反射膜,冷光膜膜) 高品质真空镀膜材料(4N-5N): 1.氧化物:一氧化硅SiO,二氧化硅SiO2,二氧化钛TiO2,二氧化锆ZrO2,二氧化铪HfO2, 一氧化钛TiO,五氧化三钛Ti3O5,五氧化二铌Nb2O5,五氧化二钽Ta2O5,氧化钇Y2O3 等高纯氧化物镀膜材料。 2.氟化物:氟化钕NbF3,氟化钡BaF2,氟化铈CeF3,氟化镁MgF2,氟化镧LaF3,氟化钇YF3, 氟化镱YbF3,氟化铒ErF3等高纯氟化物。 3.其它化合物:硫化锌ZnS,硒化锌ZnSe,氮化钛TiN,碳化硅SiC,钛酸镧LaTiO3, 钛酸钡BaTiO3,钛酸锶SrTiO3,钛酸镨PrTiO3,硫化镉CdS等真空镀膜材料。 4.金属镀膜材料:高纯铝Al,高纯铜Cu,高纯钛Ti,高纯硅Si,高纯金Au,高纯银Ag, 高纯铟In,高纯镁Mg,高纯锌Zn,高纯铂Pt,高纯锗Ge,高纯镍Ni,高纯金Au, 金锗合金AuGe,金镍合金AuNi,镍铬合金NiCr,钛铝合金TiAl,铜铟镓合金CuInGa, 铜铟镓硒合金CuInGaSe,锌铝合金ZnAl,铝硅合金AlSi等金属镀膜材料。 备注:CNM生产的真空镀膜材料均通过SGS认证,纯度高,溅点少,放气量小,薄膜均匀,附着力强,抗腐蚀性强,颜色均匀等优点。

连铸坯中心偏析控制技术的发展

连铸坯中心偏析控制技术的发展 1电磁搅拌技术 电磁搅拌技术是20世纪60年代开发的一种电磁冶金技术,其实质是借助电磁力的作用,强化铸坯液相穴中钢水的运动,从而改善钢水凝固过程中的流动、传热和迁移过程,达到改善铸坯质量的目的。电磁搅拌按安装位置有:结晶器电磁搅拌(M-EMS)、二冷区电磁搅拌(S-EMS)、凝固末端电磁搅拌(F-EMS)、结晶器及足辊区电磁搅拌(MI-EMS),为了生产的需要还可以将其任意组合来使用。搅拌形式有:旋转型、直线型、螺旋型。使用电磁搅拌技术,特别是结晶器电磁搅拌和二冷区电磁搅拌,可以显著增加连铸坯的等轴晶率,等轴晶率的提高有利于减少连铸坯的“晶桥”现象,从而减轻铸坯中心偏析。 实际生产中,对于铸坯凝固末端电磁搅拌技术,由于安装位置一定,而浇注钢种、拉坯速度等工艺参数发生变化,使得最佳的搅拌区位置偏离设备的位置,电磁搅拌效果差;同时,在该区域如果搅拌强度过于强烈,会导致铸坯液相穴中的轻相物质(如碳元素)向中心集聚,导致中心偏析更为严重。为此,可以采用长距离的弱搅拌方法或采用行波磁场型的F-EMS技术,使钢水在较大范围内进行上下交换,以改善中心偏析。 另外,冶金工作者还开发出一种水口注流电磁搅拌技术,在浸入式水口对钢液进行电磁搅拌,水口外壁通气冷却,为强化冷却效果,水口外壁开有许多凹槽。该技术中,既能保证钢水温降较大,实现低过热度浇注,又可防止水口堵塞。试验结果表明,该技术可以起到很好地控制铸坯中心偏析的作用。 2 低过热度浇注技术 连铸过程中,采用低过热度浇注时,钢水过冷度减小,临界形核半径变小,形核率高,晶核数量多,铸坯等轴晶率大幅度提高,有利于抑制晶桥的产生及铸坯凝固末端枝晶间钢液的不合理流动。但是,钢水过热度较低时,水口易堵塞,而且钢中夹杂物不易上浮。对于钢液中的夹杂物不易上浮问题,可以采用二次精炼手段及中间包冶金技术,提高钢液纯净度。对于钢水低温浇注时温度波动带来的浇注困难,冶金工作者开发出了中间包等离子加热技术及中间包电磁感应加热技术,可以保持钢液浇注温度的稳定。 3 结晶器插入钢带技术 O. V. Nosochenko和O. B. Isaev等人采用在板坯连铸结晶器插入钢带的技术来控制铸坯中心偏析。其基本原理是在结晶器内插入厚度为1.5mm厚的钢带,将钢带作为冷却剂,利用钢带的吸热和熔化,降低结晶器内钢水的过热度,实现提高铸坯等轴晶率,减小中心偏析程度的目的,同时还可实现微合金化。 该研究表明,钢带的碳含量在0.25%~0.40%时比较合适,应用的实际浇注钢种也多些,这是因为碳含量低于0.1%时,钢带强度亦低,熔点高,会导致结晶器内出现较多的较大未熔碎钢片,给浇注及铸坯质量带来不利影响。 受插入钢带宽度的影响,这一技术用在板坯连铸中较为合适,对方坯连铸而言,因断面尺寸小,应用这一技术存在空间不足的局限性;

相关主题
文本预览
相关文档 最新文档