Extended cone-curvature based salient points detection and 3D model retrieval
- 格式:pdf
- 大小:869.85 KB
- 文档页数:23
Extendedcone-curvaturebasedsalientpointsdetection
and3Dmodelretrieval
YuJieLiu&XiaoDongZhang&ZongMinLi&HuaLi
Publishedonline:3January2012#SpringerScience+BusinessMedia,LLC2011
AbstractLocalfeatureextractionof3Dmodelhasbecomeamoreandmoreimportant
aspectintermsof3Dmodelshapefeatureextraction.Comparedwiththeglobalfeature,itis
moresuitabletodothepartialretrievalandmorerobusttothemodeldeformation.Inthispaper,
alocalfeaturecalledextendedcone-curvaturefeatureisproposedtodescribethelocalshape
featureof3Dmodelmesh.Basedontheextendedcone-curvaturefeature,salientpointsand
salientregionsareextractedbyusinganewsalientpointdetectionmethod.Thenextended
cone-curvaturefeatureandlocalshapedistributionfeaturecalculatedonthesalientregionsare
usedtogetherasshapeindex,andtheearthmover’sdistanceisemployedtoaccomplish
similaritymeasure.Aftermanytimes’retrievalexperiments,thenewextendedcone-
curvaturedescriptorweproposehasmoreefficientandeffectiveperformancethanshape
distributiondescriptorandlightfielddescriptorespeciallyondeformablemodelretrieval.
Keywords3Dmodelretrieval.Extendedcone-curvature.Salientpoints.Earthmover’s
distanceMultimedToolsAppl(2013)64:671–693DOI10.1007/s11042-011-0950-7
ResearchHighlightsExtendsthecone-curvatureanddefinetheconceptofextendedcone-curvatureofgeneralmeshandgivesamethodtocomputeextendedcone-curvatureontriangularmeshes.Analgorithmisproposedtodetectthesalientpointsbasedonextendedcone-curvatureandsalientregionsareextractedaccordingtothesesalientpoints.Extendedcone-curvaturefeatureandshapedistributionfeatureofthesalientregionsareusedtogetherasthemodelindexwhichperformsverywellinthe3DmodelretrievalwithEarthMover’sDistanceasthesimilaritymeasure.
Y.Liu(*):Z.LiSchoolofComputerScienceandCommunicationEngineering,ChinaUniversityofPetroleum,Qingdao266555,Chinae-mail:bilin_2008@163.com
X.ZhangCenterforHumanComputerInteraction,ShenzhenInstituteofAdvancedIntegrationTechnology,Qingdao266555,China
H.LiNationalResearchCenterforIntelligentComputingSystems,InstituteofComputingTechnology,ChineseAcademyofSciences,Beijing100190,China1Introduction
Sincethefastdevelopmentof3Dtechnologiesandcomputergraphicsattheendofthe
twentiethcentury,3Dmodelhasbeenwidelyused,suchascomputergames,movies,
mechanicalCAD,virtualrealityandsoon.Atthesametime,theInternetprovidesanother
platformtofacilitateitswideapplicationTherefore,theamountof3Dmodelsbecomes
largerandlarger.3Dmodelhasbeenregardedasthefourth-generationmultimediainfor-
mationaftervoice,imageandvideo.
However,3Dmodelingwithahighprecisionisstilladifficultandtime-consuming
procedure.Ifwecanreusetheexistingmodels,itwillbringagreatimprovementofthe
modelingefficiency.Buthowcanwefindtheexactmodelsfrommillionsof3dmodels
withintheshortesttime?
Keyword-based3Dmodelretrievalhasbeenusedtoassistuserstofinddesiredmodels
initially.Everymodelin3Dmodeldatabaseislabeledbyoneormorekeywords.Although
thismethodhashighretrievalspeedandaccurateresults,twodisadvantagespreventitfrom
beingwidelyapplied.Firstly,it’saverytime-consumingandlaborioustasktolabelall3d
modelsifthedatabaseishuge.Secondly,thekeywordscanbeeasilyaffectedbyhumans’
subjectivethoughts.Differentpeoplemayhavedifferentconceptsforthesamemodel.So
thistraditionalmethodcannotmeetallusers’demands.
Thecontent-based3Dmodelretrievalhasbeenaresearchhotspotsince2000.It
breaksthroughtheconstraintsofthekeyword-basedmethodandmakesuseofthe
visualfeatureofthemodelsasthemodelindexdirectly.Atpresentthereareseveral
content-based3Dmodelretrievalsystemsforinstance,thePrincetonUniversity’s3D
modelretrievalsystem[6].Therearefivemainmodulesintheseretrievalsystems:the
userinterface,3Dmodeldatabase,featuredatabase,featureextractionandsimilarity
computation.ThestructureofthesystemisshowninFig.1.Atfirst,featuresofall
themodelsinthemodeldatabaseareextractedofflinebyusingfeatureextraction
algorithmandthensavedinthefeaturedatabase.Whenusersubmitsaquerymodel
throughtheuserinterface,thefeatureofthequerymodeliscalculatedsoon.Thenthe
similaritybetweenthequerymodelandallmodelsinthedatabasearecomputedby
thedistancebetweenthefeatureofthequerymodelandthefeaturesinthefeature
database.Afterthat,thedatabasemodelsarerankedbythedistance.Themodels
rankedinthemosttoparethemostsimilartothequerymodel.Theranklistis
returnedgraphicallytotheuserinterfacewheretheretrievalresultisdisplayed.
Featureextractionof3Dmodelsdefinitelyplaysaveryimportantroleintheretrieval
system.Althoughtherehavebeentremendousfeatureextractionmethods,noneofthemcan
befitforallsituations.Manyfeaturedescriptorsfromthesemethodsusuallyarenon-
topologicalfeaturesthatcanbeaffectedbyshapedeformationeasily.Sometimestopological
featuressuchasgraphorskeletonarehiredtosolvetheproblem,buttheyneedmore
computationandareverysensitivetomodelnoisewhichwillbeanalyzedintherelated
worksection.Inthispaperalocalshapefeatureextractionmethodcalledextendedcone-
curvatureisproposed.
Therestofthispaperisorganizedasfollows.Therelatedworkisdescribedin
section2.Insection3extendedcone-curvatureisdefinedandthealgorithmto
computeextendedcone-curvatureofeachtriangularmeshisalsoexplained.Section4
givesthealgorithmtodetectthesalientpointsandsalientregionsof3Dmodelsand
Section5introducestheearthmover’sdistancetocomputesimilaritybetweenthese
salientfeatures.Thentheexperimentalresultsareshowninthesection6.Finally,
conclusionsaregiveninsection7
.672MultimedToolsAppl(2013)64:671–693