当前位置:文档之家› 二次函数动点问题解答方法技巧含例解答案

二次函数动点问题解答方法技巧含例解答案

二次函数动点问题解答方法技巧含例解答案
二次函数动点问题解答方法技巧含例解答案

函数解题思路方法总结:

⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判

断图象的位置,要数形结合;

⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x

轴的一个交点坐标,可由对称性求出另一个交点坐标.

⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次

函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

动点问题题型方法归纳总结

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、

相似三角形、平行四边形、梯形、特殊角或

其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、抛物线上动点

5、(湖北十堰市)如图①,已知抛物线3

2+

y(a≠0)与x轴交于点A(1,0)和点B(-

ax

=bx

+

3,0),与y轴交于点C.

(1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法

07 08 09

两个一个两个

动点个

共同点:

⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

二次函数的动态问题(动点)

1.如图,已知抛物线1C 与坐标轴的交点依次是

(40)A -,,(20)B -,,

(08)E ,.

(1)求抛物线1C 关于原点对称的抛物线2C 的解析式;

(2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴

分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;

(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;

(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明

问题背景 特殊菱形两边上移动 特殊直角梯形三边上移动 抛物线中特殊直角梯形底边上移动 考查难点 探究相似三角形 探究三角形面积函数关系式 探究等腰三角形 考 点

①菱形性质

②特殊角三角函数

③求直线、抛物线解析式 ④相似三角形 ⑤不等式

①求直线解析式

②四边形面积的表示

③动三角形面积函数④矩形性质

①求抛物线顶点坐标 ②探究平行四边形 ③探究动三角形面积是定值

④探究等腰三角形存在性

①菱形是含60°的特殊菱形;

△AOB 是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。 ⑤利用a 、t 范围,运用不等式求出a 、t 的值。

①观察图形构造特征适当割补表示面积 ②动点按到拐点时间分段分类

③画出矩形必备条件的图形探究其存在性

①直角梯形是特殊的(一底角是45°) ②点动带动线动 ③线动中的特殊性(两个交点D 、E 是定点;动线段PF 长度是定值,PF=OA )

④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)

①特殊四边形为背景; ②点动带线动得出动三角形;

③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式;

理由.

[解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是

2(0)y ax bx c a =++≠,

则16404208a b c a b c c ++=??

++=??=-?

,,. 解得168a b c =-??

=??=-?

,,.

所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.

过点N 作NH AD ⊥,垂足为H .

当运动到时刻t 时,282AD OD t ==-,12NH t =+.

根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.

所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.

所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤.

(3)781

444

S t ??=--+ ??

?

(04t <≤). 所以7

4t =时,S 有最大值

81

4

. 提示:也可用顶点坐标公式来求.

(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.

所以OD ON =.所以2222OD ON OH NH ==+.

所以22420t t +-=.解之得126262t t ==-,(舍). 所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

2. (06福建龙岩卷)如图,已知抛物线234

y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线3

34y x t

=-

+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<.

(1)确定b c ,的值:__________b c ==,;

(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):

(______)(______)(______)B Q P ,,,,,;

(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由. [解] (1)9

4

b = (2)(40)B ,

(3)存在t 的值,有以下三种情况 ①当PQ PB =时

PH OB ⊥,则GH HB =

②当PB QB =时 得445t t -= ③当PQ QB =时,如图

解法一:过Q 作QD BP ⊥,又PQ QB = 则5

22

BP BD t =

= 又BDQ BOC △∽△ 解法二:作Rt OBC △斜边中线OE 则5

22

BC OE BE BE ==

=,, 此时OEB PQB △∽△

解法三:在Rt PHQ △中有222QH PH PQ = 32

057

t t ∴=

=,(舍去) 又01t <<

相关主题
文本预览
相关文档 最新文档