当前位置:文档之家› 新型变压器绕组及油面温度计Terman应用

新型变压器绕组及油面温度计Terman应用

变压器用绕组温度计的误差分析

变压器用绕组温度计的误差分析 一.概述 随着对变压器运行安全要求的不断提高,绕组温度计(以下简称温度计)作为一种运行监护元件已愈来愈广泛地应用在变压器产品上。虽然一般温度计的使用说明中指出:“温度计内电热元件温度的增加正比于绕组与油箱顶部(油面)温度之差的增加”。严格来说,这一说法是不确切的.因为对不同结构的变压器绕组,虽然可使电热元件内流过的电流与统组负载电流成正比,但由于电热元件与绕组的冷却条件不可能完全相同,这就使得相同的电流变化却不一定在统组和电热元件内引起相同的温度变化,换句话说,在某些情况下,温度计显示的温度可能是“虚假”的.因而有必要对温度计应用的实际情况作一分析. 二.绕组温度计的工作原理 统组温度计是利用“热模拟”(thermalimage)原理间接测量统组热点温度的,其主要组成部分如图1所示.温度计的主要组 成部分:温包、测量波纹管及连接二者的毛细管,组成反映变压器顶层油温的测量系统;电流互感器、电流匹配器及电热元件,组成反映绕组负载电流变化的热模拟部分以及用于补偿环境温度的补偿波纹管. 测量系统中注满一种体积随温度变化的液体,将该系统中的温包置于

油箱顶部,以感应变压器顶层油温,顶层油温的变化,引起测量系统中液体的胀缩,导致测量波纹管的位移。 由电流互感器取得的与负载电流成正比的电流Ip经电流匹配器调整后,Ip变化为Is,加到测量波纹管内的电热元件上,该电流在电热元件上所产生的热量,使测量波纹管在原有位移的基础上产生一相应的位移增量,加大后的位移量经机械放大带动指针转动,从而在仪表上显示出对应负载电流的统组温度. 若通过电热元件的电流Is所产生的热量,使测量波纹管位移变化所带来的温度增量近似等于被测绕组热点温度对变压器顶层油温(即温包放置处油温)之差,则绕组温度计所显示的温度就反映了绕组的热点温度. 图2 三.绕组温度计的误差分析 在变压器的热计算完成以后,需要确定温度计的基准工作点,即所谓“整定”,它是以一定的绕组负载电流为基准,选取电流互感器电流

变压器绕组温度计说明书

BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T,由此二者之和T=T O+△T即可模拟变压器最热点温度。 本公司研制生产的新型BWR(WTYK)-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT(XST)数显仪或计算机系统,实现同步显示、控制变压器绕组温度,确保变压器正常运作。 二、型号说明: B W R - 04 TH 适用于湿热带 开关数目 绕组 温度计 变压器类产品用 输出信号: 1. 直接输出DC(4-20)mA电流信号,也可通过XMT数显仪显示其相应温度同时输出DC(4-20)mA电流信号及DC(0-5)V电压信号; 2. 直接输出端为DC(4-20)mA电流信号,也可通过XST数显仪显示其相应温度同时输出RS-485计算机接口。

BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 三、产品成套性: 绕组温度计组成有二部分: 1、现场一只嵌装电热元件及BL型电流匹配器的温度控制BWR(WTYK)-04, 如图1所示; 2、中心机房一台遥测控制仪XMT、(XST)。 四、工作原理: 当变压器带上负荷后,如图2所示,通过变压器电流互感器取出与负荷成正比的电流,经电流匹配器调整后,通过嵌装在弹性元件内的电热元件产生热量,使弹性元件的位移量增大。因此当变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。则BWR(WTYK)-04指示的温度是变压器顶层油温与绕组对油的温升之和,反映了被测变压器绕组的最热部位平均温度。

变压器绕组温度计

一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T ,由此二者之和T=T O +△T 即可模拟变压器最热点温度。 本公司研制生产的新型BWR (WTYK )-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT-288数显仪或计算机系统,实现同步显示,控制变压器,确保变压器正常运作。 二、型号说明: a)输出信号 A —直接输出DC (4-20)mA 电流信号,也可通过XMT-288数显仪显示其相应温度同时输出DC (4-20)mA 电流信号及DC (0-5)V 电压信号; V —直接输出DC (0-5)电压信号; RS —直接输出端为DC (4-20)mA 电流信号,也可通过XMT-288数显仪显示其相应温度同时输出RS-485计算机接口。 三、产品成套性: 绕组温度计组成有三部分: 1、现场一只嵌装电热元件的温度计BWR (WTYK )-04,如图1所示; B W R - -□ □ TH 适用于湿热带 输出信号a) 开关数目 绕组 温度计 变压器类产品用

2、现场一只BL型电流匹配器,如图1所示; 3、中心机房一台遥测控制仪(XMT-288)。 四、工作原理: 当变压器带上负荷后,如图2所示,通过变压器电流互感器取出与负荷成正比的电流,经电流匹配器调整后,通过嵌装在弹性元件内的电热元件产生热量,使弹性元件的位移量增大。因此当变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。则BWR(WTYK)-04指示的温度是变压器顶层油温与绕组对油的温升之和,反映了被测变压器绕组的最热部位平均温度。 电流匹配器是一种电流变换装置,它的作用是为BWR(WTYK)-04提供工作电流.从变压器的电流互感器输出的电流经电流匹配器变换后,向BWR(WTYK)-04内部的电热元件提供一个可调电流,从而能够达到模拟变压器绕组最热部位温度。 XMT-288仪表具有遥测变压器绕组温度及超温报警等功能。通过BWR

变压器温升.pdf

1.变压器的温度与周围空气温度的差叫变压器的温升。 2.在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀, 故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。 各部分允许温升为:线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 3.变压器上层油温,变压器线圈温度要比上层油温高10℃。国标规定:变压器绕组的极限 工作温度为105℃;(即环境温度为40时℃),上层温度不得超过95℃,通常以监视温度(上层油温)设定在85℃及以下为宜。 变压器异常运行主要表现在:声音不正常,温度显著升高,油色变黑,油位升高或降低,变压器过负荷,冷却系统故障及三相负荷不对称等。当出现以上异常现象时,应按运行规程规定,采取措施将其消除,并将处理经过记录在异常记录簿上。. q0 Q3 }2 `/ P8 U 在正常负荷和正常冷却条件下,变压器上层油温较平时高出10℃以上,或变压器负荷不变而油温不断上升,则应认为变压器温度异常。变压器温度异常可能是下列原因造成的: 1)变压器内部故障。如绕组匝间短路或层间短路,绕组对围屏放电,内部引线接头发热,铁芯多点接地使涡流增大而过热等。这时变压器应停电检修 2)冷却装置运行不正常。如潜油泵停运,风扇损坏停转,散热器阀门未打开。此时,在变压器不停电状态下,可对冷却装置的部分缺陷进行处理,或按规程规定调整变压器负荷至相应值。 变压器的温升: 变压器的温度与周围空气温度的差叫变压器的温升。 回答这个问题要提到变压器的允许温升,它的规定和依据? 在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀,故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。各部分允许温升为: 线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。 为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 一般变压器的主要绝缘是A级绝缘,规定最高使用温度为105度,变压器在运行中绕组的温度要比上层油温高10—15度。如果运行中的变压器上层油温总在80-90度左右,也就是绕组经常在95-105度左右。 如果变压器长时间在温度很高的情况下运行,会缩短内部绝缘纸板的寿命,使绝缘纸板变脆,容易发生破裂,失去应有的绝缘作用,造成击穿等事故;绕组绝缘严重老化,并加速绝缘油的劣化,影响使用寿命。所以能避免高温尽量避免,实在不行,时间也不宜太长。

变压器温度计相关知识

变压器温度计相关知识 由于变压器的使用寿命取决于它的绕组温度,绕组温度对绝缘材料起着决定性的作用。DL/T 572—1995《电力变压器运行规程》规定变压器的上层油温,一般不得超过95℃。上层油温如果超过95℃,变压器绕组的温度就要超过绕组绝缘物的耐热强度,从而加速绝缘物的老化。故变压器运行中,一般规定了85℃这个上层油温的界限。 为防止变压器油温过高,加速变压器的老化。故变压器一般安装温度计,油面温度计用来测量变压器油箱上层油温,监视变压器运行状态是否正常。 早期变压器一般只安装一只温度计,最近几年变压器油面温度计一般安装两只,主要对于容量较大的变压器,油箱内空间较大,变压器的发热和散热也是不均匀的,在变压器内不同的区域,温度相差可能较大,为了安全起见,需要较准确地测出变压器的油温,所以有时在变压器的长轴两端各设个信号温度计来检测其油温,以确保变压器更安全地运行。这样也可当其中一只温度计故障,由于一时无法安排停电处理,而无法监测变压器的油面温度。 这一年随着绕组温度计技术成熟,更在在1110kV安装绕组温度计,直接监测绕组温度计。 一、温度计的原理 变压器温度计是用来测量油箱里面上层油温的,起到监视电力变压器是否正常运行的作用。温度计按变压器容量大小可分为水银温度计、压力式(信号)温度计、电阻温度计三种测温方法。 通常800kVA以下的电力变压器箱盖上设有水银温度计座。当欲以水银温度计测量油面温度时,旋开水银温度计水银温度计是膨胀式温度计的一种,水银的冰点是:-38.87℃,沸点是:356.7℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。使用水银温度计时应注意以下几点:座上的盖子(运输时防雨用的)在座内注满变压器油,将水银温度计插入进行测量。

变压器油面绕组温度计的基本知识

1、这里着重介绍油面温度计,因为绕组温度计的温度指示并非真实绕组温度体征,而是通过油顶层温度与电流互感器小信号叠加而成的模拟信号。 2、绕组温度计的信号介绍: B W Y -80 4 A J (TH) 湿热带防护 J、机电一体化、输出(4-20)mA A、铂电阻 开关数量 线性刻度 油面 温度计 变压器 BWY-804AJ(TH)油面温度计:仪表内装有四组可调控制开关,可分别用于变压器冷却系统控制及讯号报警。同时能输出与温度值对应的(4-20)mA电流信号和Pt100铂电阻值,供计算机系统和二次仪表使用。 组成:主要由弹性元件、传感导管、感温部件、温度变送器、数字式温度显示仪组成。由弹性元件、传感导管和感温部件构成的密封系统内充满感温介质,当被测温度变化时,感温部件内的感温介质的体积随之变化,这个体积增量通过传感导管传递到仪表内弹性元件,使之产生一个相对应的位移,这个位移经机构放大后便可指示被测温度,并驱动微动开关,输出开、关控制信号以驱动冷却系统,达到控制变压器温升的目的。通过嵌装在一次仪表内的变送器,输出(4-20)m A标准信号,输入计算机系统和二次仪表,实现无人电站管理使用说明: 1、仪表在运行中必须垂直安放。 2温包安装:使用前必须确认温度计座内注满了油且油面能够完全浸没PT100。 3、温包与表头间的软管必须有相应的固定,间距在300mm为宜。弯曲半径不得小于R100mm。多余的软管应按大于直径Φ200mm盘成圆,固定在变压器本体上。(毛细管内为惰性液体) 4、调整温度表必须在专用设备特定温度下进行。 5、切忌用手随意拨动表指针动作。 常见故障: 1、表盘指针不动作且回零---毛细管内液体泄露,该故障为不可修复故障。 2、数显显示异常:极性接反,变送器故障 绕组温度计的工作原理: 变压器绕组温度计的温包插在变压器油箱顶层的油孔内,当变压器负荷为零时,绕组温度计的读数为变压器油的温度。当变压器带上负荷后,通过变压器电流互感器取出的与负荷成正比的电流,经变流器调整后流经嵌装在波纹管内的电热元件。电热元件产生的热量,使弹性元件的位移量增大。因此在变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。变压器绕组温度计指示的温度是变压器顶层油温与线圈对油的温升之和,反映了被测变压器线圈的最热部位温度。 绕组温度计的档位选定: 1、选定档位需要的几个参数:变压器一次额定电流、CT变比、铜油温差 2、计算公式:IP=I*/CT变比,得出二次互感器额定电流.根据铜油温差查曲线得到IS

干式变压器绕组温升计算方法分析

干式变压器绕组温升计算方法分析 傅华强 2003 1发热与散热的平衡—绕组的稳定温升 绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。 绕组的散热是一个复杂过程。影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。因而绕组温升计算随其所用绝缘材料和结构的不同而不同。 2 绕组温升计算的数学模型 绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。公式运用的温度范围也是有限定的。如: τ= K Q X Q = W/S S=∑ αi S i 式中:τ—绕组温升; K—系数; X—与散热效果有关的系数,散热越好X的值越小; Q— 绕组的单位热负荷 W/m2 W—参考温度下的绕组损耗功率 W S— 等效散热面 m2 S i— 绕组散热面 m2 αi— 散热系数 2.1 不同结构型式的变压器所用的计算公式是不同的。 2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升

所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。 2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。 2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。实际上是由几条直线组成的近似曲线。 2.5 绕组的单位热负荷Q 是指在无遮盖的单位散热面上的功率(W/m2),有气道的散热面,则要确定气道的散热系数。 2.6如果计算所得温升离参考温度很远,由于计算所用绕组损耗功率离实际功率差得太大而误差很大,则应调整计算绕组损耗功率所用的参考温度。 3 确定数学模型的工厂方法 最实用的确定数学模型的方法是通过典型变压器的温升试验。无气道绕组的温升是最基本的,如绕在厚绝缘筒上的外线圈。线圈外部的面积大小就是有效散热面,先算出热负荷Q值,由试验所得温升与Q值在双对数座标纸上打点,最少要有3个试验数据,即可在对数坐标纸上连成一条合理的直线,从这条直线上确定公式的两个系数K和X。 τ= K Q X τ1 K = ———— Q1 X Lgτ2 - Lgτ1Lgτ2/τ1 X =———————— = ———— Lg Q2 - Lg Q1Lg Q2/Q1 式中:

变压器绕组温度场的二维数值计算

变压器绕组温度场的二维数值计算 2D N um erical Calcu lati on of T em peratu re F ield of W inding in T ran sfo r m er 傅晨钊,汲胜昌,王世山,李彦明 (西安交通大学电气工程学院,西安710049) 摘 要 分析变压器绕组的热源和散热条件,应用传热学和流体力学的原理建立其温度场和绝缘油流场的有限元方程,并确定了边界条件。得到绕组温度场和绝缘油流场的分布,并与实测温度值进行了比较,误差均在1K范围内,证明了此方法的正确性。 Abstract T h is paper analyzed the heat sources and the ther m al dispersi on conditi ons of transfo r m er w inding.T he finite elem ent equati ons of temperature field and flow field w ere built by ther modynam ics and hydrodynam ics p rinci p le. A t the sam e ti m e,boundary conditi ons w ere confir m ed. T he temperature distributi on and flow distributi on w ere giv2 en by so lving the equati ons.T he comparison betw een the calculated results and m easured results show s the agree2 m ent:T he difference w as less than1K.It w as verified that the temperature distributi on and flow distributi on could be so lved by th is m ethod. 关键词 变压器 绕组 温度场 有限元 Key words transfo r m er w inding temperature field fi2 nite elem ent 中图分类号 TM83 文献标识码 A 0 前 言 变压器绕组温升的分析和计算对产品的研制开发和运行维护十分重要。传统的平均温升概念不能全面准确反映绕组的真实状况。本文应用传热学和流体力学的原理建立绕组温度场和绝缘油流场的有限元方程,通过数值计算求出各点的温度和绝缘油流动的状况,得到整个变压器绕组的温度场分布。 1 变压器绕组的热源和散热分析 111 变压器绕组的热源 为集中研究绕组的温度场分布,制作的小型变压器绕组实体模型中无铁心,长方环氧箱体。变压器绕组的热源主要是绕组的电阻和绕组内部的涡流损耗,其表达式为: P=P R+P WL=I2R+P W L 其中,I、R、P WL分别为变压器绕组的电流、电阻和涡流损耗。计算中,单位热源q=P V,P为测量得到的有功损耗;V为绕组体积。 112 变压器绕组的散热分析 变压器绕组的散热主要是对流换热,包括箱壁外侧与外界空气的自然对流散热和油流与箱壁内侧和绕组的强制对流散热。 对流散热主要取决于两者之间的温差、对流换热系数和换热面积。由于箱壁的几何形状比较规则,自然对流换热系数Α1采用均值对计算结果影响不大。Α1由下式得到[1]: Α1=C(Κ H)(G r m P r)n, 其中,H为箱壁高度;G r m为葛拉晓夫数;P r为普朗特数;C和n为常数;Κ为空气导热系数。 由于受许多因素的影响,如油的物理特性、绕组的生热率和几何形状、各绕组的空间位置、边界条件和油的流动方式等,油流与绕组的强制对流散热相对复杂一些,其中各绕组的空间位置决定了它们和油之间的Α1相差很大,不能用均值近似。油的流动方式决定了换热的效果,可分为层流和湍流,两者流动状态和换热效果相差较大,须通过雷诺数R e判断: R e=ΘΤL c Λ, 其中,Θ为流体密度;Τ为流体流速;L c为特征尺寸;Λ为流体绝对粘度。当R e<2300时,流动方式为层流;超过时为湍流。 由此可知,必须将变压器绕组温度场和绝缘油流场问题联立,方可得到理想结果。 2 求解的微分方程和边界条件 首先进行4点假设: 1)稳态:当发热与散热达到热平衡时,绕组及油的温、速度分布不随时间变化; 2)常数:油的物理特性,如动力粘度、密度、比热恒定不可压缩; 3)绕组的发热是唯一热源,且单位时间单位体积发热量为常数,传热系数均匀; 4)外界空气温度恒定:油的流动和散热,其温度场和速度场受质量、动量和能量传递的共同支配,由下列方程组描述[2~3]: a1连续性方程 5u 5x+5Τ 5y=0, b1x方向的动量微分方程  Θ(u 5u 5x+Τ 5u 5y)=F x- 5p 5x+Λ( 52u 5x2+ 52u 5y2), c1y方向的动量微分方程  Θ(u 5Τ 5x+Τ 5Τ 5y)=F y- 5p 5y+Λ( 52Τ 5x2+ 52Τ 5y2), 1能量微分方程 ? 1 ? M ay.2002 H IGH VOL TA GE EN G I N EER I N G V o l.28N o.5

油浸电力变压器温升计算设计手册

设计手册 油浸电力变压器温升计算

目 录 1 概述 第 1 页 热的传导过程 第 1 页 温升限值 第 2 页 1.2.1 连续额定容量下的正常温升限值 第 2 页 1.2.2 在特殊使用条件下对温升修正的要求 第 2 页 1.2.2.1 正常使用条件 第 2 页 1.2.2.2 安装场所的特殊环境温度下对温升的修正 第 2 页 1.2.2.3 安装场所为高海拔时对温升的修正 第 3 页 2 层式绕组的温差计算 第 3 页 层式绕组的散热面(S q c )计算 第 3 页 层式绕组的热负载(q q c )计算 第 3 页 层式绕组的温差(τq c )计算 第 4 页 层式绕组的温升(θqc )计算 第 4 页 3 饼式绕组的温升计算 第 4 页 饼式绕组的散热面(S q b )计算 第 4 页 3.1.1 饼式绕组的轴向散热面(S q bz )计算 第 4 页 3.1.2 饼式绕组的横向散热面(S q b h )计算 第 5 页 饼式绕组的热负载(q q b )计算 第 5 页 饼式绕组的温差(τq b )计算 第 5 页 3.3.1 高功能饼式绕组的温差(τq g )计算 第 5 页 3.3.2 普通饼式绕组的温差(τq b )计算 第 6 页 饼式绕组的温升(θq b )计算 第 7 页 4 油温升计算 第 8 页 箱壁几何面积(S b )计算 第 8 页 箱盖几何面积(S g )计算 第 9 页 版 次 日 期 签 字 旧底图总号 底图总号 日期 签字 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 01

油箱有效散热面(S yx )计算 第 9 页 4.3.1 平滑油箱有效散热面(S yx )计算 第 9 页 4.3.2 管式油箱有效散热面(S yx )计算 第10 页 4.3.3 管式散热器油箱有效散热面(S yx )计算 第12 页 4.3.4 片式散热器油箱有效散热面(S yx )计算 第14 页 目 录 油平均温升计算 第19 页 4.4.1 油箱的热负载(q yx )计算 第19 页 4.4.2 油平均温升(θy )计算 第19 页 顶层油温升计算 第19 页 5 强油冷却饼式绕组的温升计算 第21 页 强油导向冷却方式的特点 第21 页 5.1.1 线饼温度分布 第21 页 5.1.2 横向油道高度的影响 第21 页 5.1.3 纵向油道宽度的影响 第21 页 5.1.4 线饼数的影响 第21 页 5.1.5 挡油隔板漏油的影响 第21 页 5.1.6 流量的影响 第21 页 强油冷却饼式绕组的热负载(q q p )计算 第22 页 强油冷却饼式绕组的温差(τq p )计算 第23 页 强油冷却饼式绕组的温升(θq p )计算 第23 页 强油风冷变压器本体的油阻力(ΔH T )计算 第23 页 5.5.1 油管路的油阻力(ΔH g )计算 第23 页 5.5.1.1 油管路的摩擦油阻力(ΔH M )计算 第23 页 5.5.1.2 油管路特殊部位的形状油阻力(ΔH X )计算 第24 页 5.5.1.3 油管路的油阻力(ΔH g )计算 第25 页 5.5.2 线圈内部的油阻力(ΔH q )确定 第26 页 5.5.2.1 线圈内部的摩擦油阻力(ΔH q m )计算 第26 页 5.5.2.2 线圈内部特殊部位的形状油阻力(ΔH qT )计算 第27 页 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 02

变压器绕组温度计安装使用说明书

BWY——04系列 安装使用说明书MOUNTING & OPERATING MANUAL 桓仁温度测控仪表厂HUANREN INSTRUMENT AND METER PLANT

型号命名: 一、概述 变压器绕组温度计(以下简称温度计)是用于测量大型电力变压器绕组温度的专用仪表。它是在压力温度计的基础上,配备变流器(按JB/T8450-96标准规定,将匹配器更改为变流器) 构成。 变压器绕组温度计的型号主要是指变流器的选用,用户只须知道变压器电流互感器CT 二次额定电流。变流器一次电流根据表一便可以确定温度计型号。如变压器电流互感器的二 次额定电流IP=3.5A,由表一可知5>IP=3.5>3 因此选择BL-A型变流器。

表一 二、用途和原理 BWY-04Y(TH)变压器绕组温度计是为测量大型电力变压器的绕组温度而专门设计的,它能够间接测量变压器绕组温度,变压器绕组温度计内装有同步滑动电阻,配备二次远传数显仪表,可远距离监测变压器的温升。BWY-04B(TH)变压器绕组温度计装有同步滑动电阻和变送器,同时配备二次仪表(带稳压电源),可输出4-20MA标准电流信号,输入计算机,实现微机化管理。温度计装有4个控制开关,根据需要可分别用于冷却器(散热器)控制,报警信号和事故跳闸。 温度计主要由测量温包,指示仪表(图八)和变流器(图五)三部分组成,温包装在变压器油箱顶部,温包内密封的感温液体,通过毛细管和指示仪表内的测量元件(波纹管)相接,当变压器顶层油温变化时,感温液体的体积也随之改变,这个体积变化量通过毛细管的传递,促使指示仪表内的测量元件产生相应的位移,当变压器空载时,这个位移经机械传动、推动仪表指针偏转,仪表指针指示变压器油的温度。 当变压器加载后,如图一所示,通过变压器电流互感器CT二次输出与负载成正比例的电流,经变流器变流供给指示仪表测量元件(波纹管)内的电热元件,产生热量,使测量元件的位移量增大,因此在变压器加载后,测量元件位移量是由变压器顶层油温和变压器加载电流所决定。温度计在设计时,考虑流过电热元件的电流(变流器二次电流)所产生的测量元件位移增量即带来的温度指示增量,近似等于变压器绕组对油的温升。这样,温度计指示的温度是变压器顶层油温与绕组对油的温升之和。反映了被测变压器绕组温度。

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t :t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

浅谈变压器主变温度计故障的诊断及处理

浅谈变压器主变温度计故障的诊断及处理 摘要:变压器是电力系统中重要而又昂贵的输变电设备,它的工作状态直接关 系到电力系统的安全稳定运行,而变压器温度计(简称温度计)是变电站为掌握变压器运行情况而采用的最经济,使用频率最高的手段。本文作者分析了变压器主变温度计故障原因,并提出处理措施。 关键词:变压器;主变温度计;故障 0、引言 变压器是变电站的核心设备之一,变压器是由铁芯、线圈、油箱、油枕、呼吸器、防爆管、散热器、绝缘套管、分接开关、瓦斯继电器、还有温度计、热虹吸等附件组成。变压器在输配电系统中占有极其重要的地位,它的主要用途是升高电压把电能送到用电地区,再把电压降低为各级使用电压,以满足用电需要。变压器是连接各种电压等级母线的中间环节,一旦发生故障,轻则会造成大面积停电,给工农业生产带来极大的危害,重则会危及整个电力系统的稳定。面对变压器在运行中的各种异常及故障现象,每一个电力运行人员应能作出迅速而正确的判断与处理,尽快消除设备隐患及缺陷,从而保证变压器的安全运行及电力系统的安全稳定。变压器故障以超温为最常见,主变超温往往是变压器各种故障的先兆。我局对主变温度监控非常重视,在每个变电站都建立了主变温度监控档案,以便运行人 员及早发现主变温度异常的问题,同时还结合一些主变超温的处理方法,以防止主 变故障的发生。 1、变压器概述 电力变压器是电力系统中广泛使用的高压电器设备,其在运行的过程中一旦发生故障,极容易影响到整个电力系统的供电质量和稳定性,甚至是可能造成巨大的经济损失。因此在目前的工作中,以充分理解变压器的组成、运行原理并对常见的各种故障出现原因进行分析和诊断十分关键,对保证变压器的正常持续工作有着极为关键和重要的意义。 1.1变压器概念 所谓的变压器就是在工作的过程中利用电磁感应原理来对原有的电流和电压进行改变的一种装置,其在应用的过程中主要的构成有初级线圈、次级线圈以及铁芯等。在变压器的应用中,电压的交换、电流交换以及稳压等功能。 1.2工作原理 变压器是变化交流电压、交流电流的主要器件,当初级线圈中通过有交流电的时候,铁芯或者相关磁芯边会发生反应,产生一定的交流磁通,使得次级线圈在运行中产生感应电压或者电流。变压器通常都是有铁芯和磁芯两个线圈组成,其中还存在着两个或者两个以上的绕组,并通常,人们将其中连接电源的绕组叫做初级线圈、其余的绕组叫做次级线圈。 2、变压器温度计运行原理 变压器温度计有油温表和绕组温度计两种。温度计有两支指针,有实时温度测量的黑色指针,还有指示最高温度的红色指针,红色指针在仪表透镜上与调节钮连接在一起;红色指针为黑色指针走过的历史最高温度。 当温度上升时,黑色指针会推动红色指针,并将其推到最高温度的指示位,当黑色指示针返回的时候红色指针不返回;这样,我们可通过红色指针的读数,得知黑色指针走过的历史最高温度(显示该温度计所达到的最高温度)。 故主变压投运前,应先对指针复位调节时,使红色指针与黑色指针的右侧对

变压器知识点总结

变压器知识点总结 一、自耦变压器 1.自耦变压器有哪些缺点? 自耦变压器的缺点: 1)自耦变压器的中性点必须接地或经小电抗接地。当自耦变压器高压侧网络发生单相接地故障时,若中性点不接地,则在其中压绕组上将出现过电压,自耦变压器变比KA 越大,中压绕组的过电压倍数越高。为了防止这种情况发生,其中性点必须接地。中性点接地后,高压侧发生单相接地时,中压绕组的过电压便不会升高到危险的程度。 2)引起系统短路电流增加。由于自耦变压器有自耦联系,其电抗为同容量双绕组变压器的(1-1/KA),漏阻抗的标么值是等效的双绕组变压器的(1-1/KA)。所以自耦变压器电压变动小而短路电流较同容量双绕组变压器大。这就是自耦变压器使系统短路电流显著增加的原因。两侧过电压的相互影响。自耦变压器因其绕组有电的连接,当某一侧出现大气过电压或操作过电压时,另一侧的过电压可能超过其绝缘水平。 3)两侧过电压的相互影响。 4)使继电保护复杂。 5)调压困难。 2.变比选择 自耦变压器的变比通常接近于2 3.运行 自耦变压器的共用绕组导体流过的电流较小(公用绕组的电流比二次绕组电流小,二次电流有一部分直接流到了一次) 自耦变压器运行时,中性点必须接地。 自耦变压器一般用以联系两个中性点直接接地的电力系统。 二、呼吸器 1.更换变压器呼吸器内的吸潮剂时应注意什么? (1)应将气体保护改接信号。 (2)取下呼吸器时应将连管堵住,防止回吸空气。 (3)换上干燥的吸潮剂后,应使油封内的油没有呼气嘴并将呼吸器密封。 2.引起呼吸器硅胶变色的原因主要有哪些? 正常干燥时呼吸器硅胶为蓝色。当硅胶颜色变为粉红色时,表明硅胶已受潮而且失效。 一般已变色硅胶达2/3时,值班人员应通知检修人员更换。硅胶变色过快的原因主要有:(1)长时期天气阴雨,空气湿度较大,因吸湿量大而过快变色。 (2)呼吸器容量过小。 (3)硅胶玻璃罩罐有裂纹、破损。 (4)呼吸器下部油封罩内无油或油位太低,起不到良好的油封作用,使湿空气未经油封过滤而直接进入硅胶罐内。 (5)呼吸器安装不当。如胶垫龟裂不合格、螺丝松动、安装不密封而受潮。 3.变压器的呼吸器中的硅胶受潮后影变成粉红色。 4.变压器呼吸器的作用是用以清除吸入空气中的杂质和水分。 5.运行中的变压器呼吸器上层硅胶先变色,说明密封不好。 三、油 1.变压器的净油器是根据什么原理工作的? 答:运行中的变压器因上层油温与下层油温的温差,使油在净油器内循环。油中的有害物质如:水分、游离碳、氧化物等随油的循环被净油器内的硅胶吸收,使油净化而保持

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

变压器绕组温度计说明书

变压器绕组温度计说明书 BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T,由此二者之和T=T O+△T即可模拟变压器最热点温度。 本公司研制生产的新型BWR(WTYK)-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT(XST)数显仪或计算机系统,实现同步显示、控制变压器绕组温度,确保变压器正常运作。 二、型号说明: B W R - 04 TH 适用于湿热带 开关数目 绕组 温度计 变压器类产品用 输出信号: 1. 直接输出DC(4-20)mA电流信号,也可通过XMT数显仪显示其相应温度

同时输出DC(4-20)mA电流信号及DC(0-5)V电压信号; 2. 直接输出端为DC(4-20)mA电流信号,也可通过XST数显仪显示其相应温度同时输出RS-485计算机接口。 变压器绕组温度计说明书 BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 三、产品成套性: 绕组温度计组成有二部分: 1、现场一只嵌装电热元件及BL型电流匹配器的温度控制BWR(WTYK)-04, 如图1所示; 2、中心机房一台遥测控制仪XMT、(XST)。

变压器绕组温度场的二维场计算

变压器绕组温度场的二维数值计算 2D Numerical Calculation of Temperature Field of Winding in T ransfor mer 傅晨钊,汲胜昌,王世山,李彦明 (西安交通大学电气工程学院,西安710049) 摘 要 分析变压器绕组的热源和散热条件,应用传热学和流体力学的原理建立其温度场和绝缘油流场的有限元方程,并确定了边界条件。得到绕组温度场和绝缘油流场的分布,并与实测温度值进行了比较,误差均在1K范围内,证明了此方法的正确性。 Abstr act This paper analyzed the heat sour ces and t he ther mal disper sion conditions of tr ansfor mer winding.T he finit e element equa tions of temperat ur e field and flow field were built by ther modynamics and hydrodynamics pr inciple. At the sam e time,boundary conditions wer e confirmed. The temper ature dist ribution and flow distr ibution were giv-en by solving the equations.The compar ison between t he calculated r esults and measur ed r esults shows the agree-ment:T he differ ence was less than1K.It was ver ified that the temper atur e distr ibution and flow distr ibution could be solved by this method. 关键词 变压器 绕组 温度场 有限元 Key words tra nsformer winding temperat ur e field fi-nite element 中图分类号 TM83 文献标识码 A 0 前 言 变压器绕组温升的分析和计算对产品的研制开发和运行维护十分重要。传统的平均温升概念不能全面准确反映绕组的真实状况。本文应用传热学和流体力学的原理建立绕组温度场和绝缘油流场的有限元方程,通过数值计算求出各点的温度和绝缘油流动的状况,得到整个变压器绕组的温度场分布。 1 变压器绕组的热源和散热分析 1.1 变压器绕组的热源 为集中研究绕组的温度场分布,制作的小型变压器绕组实体模型中无铁心,长方环氧箱体。变压器绕组的热源主要是绕组的电阻和绕组内部的涡流损耗,其表达式为: P=P R+P WL=I2R+P WL 其中,I、R、P WL分别为变压器绕组的电流、电阻和涡流损耗。计算中,单位热源q=P/V,P为测量得到的有功损耗;V为绕组体积。 1.2 变压器绕组的散热分析 变压器绕组的散热主要是对流换热,包括箱壁外侧与外界空气的自然对流散热和油流与箱壁内侧和绕组的强制对流散热。 对流散热主要取决于两者之间的温差、对流换热系数和换热面积。由于箱壁的几何形状比较规则,自然对流换热系数A1采用均值对计算结果影响不大。A1由下式得到[1]: A1=C(K/H)(Gr m P r)n, 其中,H为箱壁高度;Gr m为葛拉晓夫数;P r为普朗特数;C和n为常数;K为空气导热系数。 由于受许多因素的影响,如油的物理特性、绕组的生热率和几何形状、各绕组的空间位置、边界条件和油的流动方式等,油流与绕组的强制对流散热相对复杂一些,其中各绕组的空间位置决定了它们和油之间的A1相差很大,不能用均值近似。油的流动方式决定了换热的效果,可分为层流和湍流,两者流动状态和换热效果相差较大,须通过雷诺数R e判断: R e=Q T L c/L, 其中,Q为流体密度;T为流体流速;L c为特征尺寸;L 为流体绝对粘度。当R e<2300时,流动方式为层流;超过时为湍流。 由此可知,必须将变压器绕组温度场和绝缘油流场问题联立,方可得到理想结果。 2 求解的微分方程和边界条件 首先进行4点假设: 1)稳态:当发热与散热达到热平衡时,绕组及油的温、速度分布不随时间变化; 2)常数:油的物理特性,如动力粘度、密度、比热恒定不可压缩; 3)绕组的发热是唯一热源,且单位时间单位体积发热量为常数,传热系数均匀; 4)外界空气温度恒定:油的流动和散热,其温度场和速度场受质量、动量和能量传递的共同支配,由下列方程组描述[2~3]: a.连续性方程 5u/5x+5T/5y=0, b.x方向的动量微分方程  Q(u 5u 5x +T 5u 5y )=F x- 5p 5x +L( 52u 5x2 + 52u 5y2 ), c.y方向的动量微分方程  Q(u 5T 5x +T 5T 5y )=F y- 5p 5y +L( 52T 5x2 + 52T 5y2 ), ? 10 ? May.2002 HIGH VOLTAGE ENGINEERING Vol.28No.5

相关主题
文本预览
相关文档 最新文档