当前位置:文档之家› 驱动模块和桩模块

驱动模块和桩模块

驱动模块和桩模块
驱动模块和桩模块

什么是驱动模块和桩模块?为下面的函数构造一个驱动模块。

int divide(int a, int b)

{

int c;

if (b==0) {printf("除数不能为0"); return 0;}

c=a/b;

return c;

}

解:驱动模块是用以模拟被测模块的上级模块,它接收测试数据,传送数据给被测模块,启动被测模块,最后输出实测结果。

桩模块用以模拟被测模块工作过程中所调用的子模块。

函数驱动模块:

void main( )

{

int x,y,z;

scanf(“%d%d”,&x,&y);

z=divide(x,y);

printf(“%d”,z);

}

静态分析工具:

splint

在Linux命令行下,splint的使用很简单,检测文件*.c,只要这样使用就可以了:splint *.c

1.splint消息

我们通过以下例子来认识典型的splint告警信息:

1//splint_msg.c

2int func_splint_msg1(void)

3 {

4int a;

5return0;

6 }

7int func_splint_msg2(void)

8 {

9int* a = (int*)malloc(sizeof(int));

10 a = NULL;

11return0;

12 }

运行splint splint_msg.c之后,我们来看输出的告警信息:

splint_msg.c: (in function func_splint_msg1)

splint_msg.c:4:6: Variable a declared but not used

A variable is declared but never used. Use /*@unused@*/ in front of

declaration to suppress message. (Use -varuse to inhibit warning)

splint_msg.c: (in function func_splint_msg2)

splint_msg.c:10:2: Fresh storage a (type int *) not released before assignment:

a = NULL

A memory leak has been detected. Storage allocated locally is not released

before the last reference to it is lost. (Use -mustfreefresh to inhibit

warning)

splint_msg.c:9:37: Fresh storage a created

Finished checking --- 2 code warnings

蓝色字体部分:给出告警所在函数名,在函数的第一个警告消息报告前打印;

红色字体部分:消息的正文,文件名、行号、列号显示在的警告的正文前;

黑色字体部分:是有关该可疑错误的详细信息,包含一些怎样去掉这个消息的信息;

绿色字体部分:给出格外的位置信息,这里消息给出了是在哪里申请了这个可能泄露的内存。

在LabVIEW中驱动数据采集卡的三种方法

在LabVIEW中驱动数据采集卡的三种方法 作者:EEFOCUS 文章来源:EDN China 一、引言 近年来,面向仪器的软件开发平台,如美国NI公司LabVIEW的成熟和商业化,使用者在配有专用或通用插卡式硬件和软件开发平台的个人计算机上,可按自己的需求,设计和组建各种测试分析仪器和测控系统。由于LabVIEW提供的是一种适应工程技术人员思维习惯的图形化编程语言,图形界面丰富,内含大量分析处理子程序,使用十分方便,个人仪器发展到了使用者也能设计,开发的新阶段。 鉴于是工程技术人员自己编制,调用软件来开发仪器功能,软件成了仪器的关键。故人们也称这类个人仪器为虚拟仪器,称这种主要由使用者自己设计,制造仪器的技术为虚拟仪器技术(Virtual Instrumentation Technology)。使用虚拟仪器技术,开发周期短、仪器成本低、界面友好、使用方便、可靠性高, 可赋于检测仪初步智能,能共享PC机丰富的软硬件资源,是当前仪器业发展的一个重要方面。 虚拟仪器的典型形式是在台式微机系统主板扩展槽中插入各类数据采集插卡,与微机外被测信号或仪器相连,组成测试与控制系统。但NI公司出售的,直接支持LabVIEW的插卡价格十分昂贵,严重限制着人们用LabVIEW来开发各种虚拟仪器系统。在LabVIEW中如何驱动其它低价位的数据采集插卡,成为了国内许多使用者面临的关键问题。 二、三种在LabVIEW中使用国产数据采集插卡的方法 笔者将近年来工程应用中总结出的三种在LabVIEW中驱动通用数据采集插卡的方法介绍如下。介绍中,以某市售8通道12位A/D插卡为例。设插卡基地址为base=0x100,在C语言中,选择信号通道ch的指令是_outp(base,ch),启动A/D的指令是_inp(base),采样量化后的12位二进制数的高4位存于base+2中,低8位存于base+3中。 1、直接用LabVIEW的In Port , Out Port图标编程 LabVIEW的Functions模板内Adevanced \ Memory中的In Port 、Out Port 图标,与_inp、_outp功能相同,因此可用它们画程序方框图, 设计该A/D插卡的驱动程序。N个通道扫描,各采集n点数据的LabVIEW程序方框图如图1所示。图中用LabVIEW的计时图标控制扫描速率。

LED灯驱动电源的技术方案和使用模块

LED灯驱动电源的技术方案和使用模块 大功率LED灯驱动电源的技术方案和功能模块大功率发光二极管用于一般照明是本世纪的新课题,其节能、安全、长寿命的综合优势将引发下一轮照明产业的革命。生产和生活中的原始电源有各种形式,但无论那种电源,一般都不能直接给发光二极管供电。因此,要用发光二极管做照明光源就要解决电源变换的问题。大功率发光二极管实际上是一个电流驱动的低电压单向导电器件,给发光二极管供电的电源变换器的设计必须要注意发光二极管以下五个特点: 1、发光二极管是单向导电器件。由于这个特点,就要用直流电流或者单向脉冲电流给发光二极管供电。 2、发光管是一个具有P/N结结构的半导体器件,具有势垒电势,这就形成了导通门限电压,加在发光二极管上的电压值超过这个门限电压二极管才会充分到通。大功率发光二极管的门限电压一般在2.5V以上,正常工作时的管压降3―4V。 3、发光二极管的电流/电压特性是非线性的。流过发光二极管的电流在数值上等于供电电源的电动势减去发光二极管的势垒电势再除以回路的总电阻(电源内阻、引线电阻、发光管体电阻之和)。因此,流过发光二极管的电流和加在发光管两端的电压不成正比。 4、发光二极管的P/N结是负的温度系数温度升高发光二极管的势垒电势降低。由于这个特点,所以发光二极管不能直接用电压源供电,必须采取限流措施,否则随着管子工作时温度的升高电流会越来越大以至损坏。 5、流过发光管的电流和发光管的光通量的比值也是非线性的。发光二极管的光通量随着流过发光管的增加而增加,但却不成正比,越到后来光通量增加得越少。因此,应该使发光管在一个发光效率比较高的电流值下工作。另外,发光二极管也和其他光源一样,所能承受的电功率是有限的。如果加在发光二极管上的电功率超过一定数值,发光管可能损坏。有于生产工艺和材料特性方面的差异,同样型号的发光管的势垒电势以及发光管的内阻也不完全一样,这就导致发光管工作时的管压降不一致,再加上发光管势垒电势具有负的温度系数,因此,发光管不能直接并联使用。由于上述原因,用发光管作照明必须有合理的驱动。用原始电源给发光二极管供电有4种情况:1、低电压驱动。2、过渡电压驱动。3、高电压驱动。4、市电驱动。不同的情况在电源变换器的技术实现上有不同的方案。下面简要的介绍一下这几种情况下的电源驱动方法及其应用产品。 1、低电压驱动发光二极管低电压驱动就是指用低于发光二极管正向导通压降的电压驱动发光二极管,如一节普通干电池或者镍铬/镍氢电池,其正常供电电压在0.8----1.65V之间。低电压驱动发光二极管需要把电压升高到足以使发光二极管导通的电压值。对于发光二极管这样的低功耗照明器件这是一种常见的使用情况,如发光二极管手电,发光二极管应急灯,节能台灯等。由于受单节电池容量的限制,一般不需要很大功率,但要求有最低的成本和比较高的变换效率,考虑有可能配合一节5号电池工作,还要有最小的体积。其最佳技术方案是泵式升压变换器。 LED-1W1P是一种采用泵式升压方案的脉冲输出LED驱动模块,具有最简洁的电路结构,最低的生产成本,最小的体积,最高的变换效率,外加一个10 K的电位器就可以方便的0―100%连续脉宽调光。正常工作电压0.8----1.8V,起动电压0.6伏,完全熄灭电压低于0.35伏。最大输出功率1瓦。可以用来驱动一个350mA的1瓦大功率发光管或者并联驱动18个20mA 的小功率发光管。该模块非精密控制器件,电池电压降低输出功率会减小。该模块有5个引出脚,电源正极,电源负极,输出脚,还有两个调光控制脚,发光二极管正极接输出脚,负极接电源负极,控制极之间接一个10K电位器用于调光。如果不需要调光,把两个控制脚直接相连即可。模块为圆形结

L298N驱动模块使用说明

1.产品说明产品说明:: 本L298N 驱动模块,采用ST 公司原装全新的L298N 芯片,采用SMT 工艺稳定性高,采用高质量铝电解电容,使电路稳定工作。可以直接驱动两路3-16V 直流电机,并提供了5V 输出接口(输入最低只要6V),可以给5V 单片机电路系统供电(低纹波系数),支持3.3V MCU ARM 控制,可以方便的控制直流电机速度和方向,也可以控制2相步进电机,5线4相步进电机。是智能小车必备利器。

: 产品参数: .产品参数 1.驱动芯片:L298N双H桥直流电机驱动芯片 2.驱动部分端子供电范围Vs:+5V~+16V ; 如需要板内取电,则供电范围Vs:+6V~+16V 3.驱动部分峰值电流Io:2A 4.逻辑部分端子供电范围Vss:+5V~+7V(可板内取电+5V) 5.逻辑部分工作电流范围:0~36mA 6.控制信号输入电压范围(IN1 IN2 IN3 IN4): 低电平:-0.3V≤Vin≤1.5V 高电平:2.3V≤Vin≤Vss 7.使能信号输入电压范围(ENA ENB): 低电平:-0.3≤Vin≤1.5V(控制信号无效) 高电平:2.3V≤Vin≤Vss(控制信号有效) 8.最大功耗:20W(温度T=75℃时) 9.存储温度:-25℃~+130℃ 10.驱动板尺寸:55mm*45mm*33mm(带固定铜柱和散热片高度) 12.其他扩展:控制方向指示灯、逻辑部分板内取电接口。

3.接口说明接口说明:: 图中蓝色端子为电机驱动输出端与驱动电源输入端,排针处为电机控制 逻辑输入端与5V 电源输出端 OUT4 OUT3 OUT2 OUT1 控制电机输出端 VDD GND 为驱动电源输入端输入电压+6-16V

机械设计试验指导书

上海百睿机电设备有限公司– https://www.doczj.com/doc/d318313641.html, 机械设计试验指导书 第一次机械设计结构展示与分析 一、实验目的 1.了解常用机械传动的类型、工作原理、组成结构及失效形式; 2.了解轴系零部件的类型、组成结构及失效形式; 3.了解常用的润滑剂及密封装置; 4.了解常用紧固联接件的类型; 5.通过对机械零部件及机械结构及装配的展示与分析,增加对其直观认识。 二、实验设备 机构模型;典型机械零件实物;若干不同类型的机器。 三、实验内容、步骤 在实验室要认识的典型机械零件主要有螺纹联接件、齿轮、轴、轴承、弹簧,具体内容如下: 1.各种类型的螺纹联接实物,各种类型的螺栓、螺母及垫圈实物,螺纹联接的失效实物,各种类型的键、销实物,各种类型的键、销失效实物,各种类型的焊接、铆接实物; 2.各种类型及各种材质的齿轮、齿轮加工刀具、蜗轮蜗杆、带、带轮、链条、链轮、螺旋传动的零部件实物,失效零件实物; 3.各种类型的轴、轴承实物,轴上零件的轴向固定和周向固定实物,轴瓦和轴承衬实物,轴承、轴、轴瓦失效实物; 4.各种类型的弹簧和弹簧失效实物,各种联轴器、离合器实物模型。 四、注意事项 注意保护零件陈列柜中的零件。 五、实验作业 1.请回答在实验室所见到的零部件如螺栓、键、销、弹簧、滚动轴承、联轴器、离合器各 有哪些类型? 2.请举出螺栓、键、齿轮、滚动轴承的一种使用情况以及相应的失效形式。 六、问题思考 1.传动带按截面形式分哪几种?带传动有哪几种失效形式? 2.传动链有哪几种?链传动的主要失效形式有哪些? 3.齿轮传动有哪些类型?各有何特点?齿轮的失效形式主要有哪几种? 4.蜗杆传动的主要类型有哪几种?蜗杆传动的主要失效形式有哪几种? 5.轴按承载情况分为哪几种?轴常见的失效形式有哪些? 6.联轴器与离合器各分为哪几类?各满足哪些基本要求? 7.弹簧的主要类型和功用是什么? 8.可拆卸联接和不可拆卸联接的主要类型有哪些? 9.零件和构件的本质区别是什么? 常用带传动效率测试分析实验台

驱动电路设计

驱动电路设计 在单片机采集完工件的温度信号后,通过算法计算出下一个工件的节拍,确定下一个工件的推出时间后,就要发出驱动信号,通过驱动电路驱动气缸。 本部分的设计思路是:单片机发出控制信号后,通过三极管驱动继电器,通过继电器的二次触点与气缸相连,驱动气缸。 3.3.1继电器的选择 气缸的额定电压220V,额定电流3A,根据气缸的电气参数,我们继电器选择汇科公司的HK4100F-DC5V-SH型号的继电器。 HK4100F-DC5V-SH的主要技术参数: 1.触点参数 触点形式:1C(SPDT)一组转换触点; 触点负载:3A 220V AC/30V DC; 阻抗:≤100mΩ; 额定电流:3A; 电气寿命:≥10万次; 机械寿命:≥1000万次; 2.线圈参数 阻值(±10%):120Ω; 线圈功耗:0.2W; 额定电压:DC 5V; 吸合电压:DC 3.75V; 释放电压:DC 0.5V; 工作温度:-25℃~+75℃; 绝缘电阻:≥100MΩ; 线圈与触点间耐压:4000V AC/1分钟; 触点与触点间耐压:750 V AC/1分钟; 转换型(Z型)这是触点组型。这种触点组共有三个触点,即中间是动触点,上下各一个静触点。线圈不通电时,动触点和其中一个静触点断开和另一个闭合,线圈通电后,动触点就移动,使原来断开的成闭合,原来闭合的成断开状态,达到转换的目的。这样的触点组称为转换触点。用“转”字的拼音字头“z”表示。 3.3.2 三极管的选择 因为AT89C52单片机的I/O口输出电流很小,极限值为15mA。所以要用三极管放大来驱动继电器。 1.功率PCM:大于5V×继电器电流(5×40mA=0.2W)的两倍;

dcdc驱动线路设计模块

DCDC驱动电路设计规范 2002年05月30日发布2002年05月30日实施艾默生网络能源有限公司

前言 本规范于2002.05.30首次发布。 本规范起草单位:研发业务管理部、一次电源开发部 本规范执笔人:茹永刚 本规范主要起草人:茹永刚、方旺林、吴建华、周代文、张华健、张强本规范标准化审查人:林攀 本规范批准人:方强 本规范修改记录:

更改信息登记表

目录 摘要 (5) 缩写词/关键词/解释 (5) 1.来源 (5) 2.适用范围 (5) 3.规范满足的技术指标(特征指标) (5) 4.详细电路图................... (5) 5.工作原理简介 (6) 6.设计、调试要点 (6) 7.局部PCB版图(可选项)................. .. (7) 8.元器件明细表(详见附录)................................. . (7) 9.设计实例 (7) 10.附录 (9) 附录1.元器件明细表 (9) 附录2.应用反例(可选项) (9)

摘要 本规范介绍了一种常用的MOSFET驱动线路,该电路适用于全桥、半桥等互补对称驱动电路(双正激线路同名端需更改),可以有效的消除由于MOSFET米勒效应引起的误导通。线路简单成本较低。 关键词 米勒效应、导通时间、关断时间 缩略词解释 一来源 本规范中的电路来源于H5415Z模块的实际应用,已经通过大批量运行得到验证, 二适用范围 该单元电路可用于一般的有双管驱动需求的整流模块中,如一次电源新50A整流模块、新25A整流模块、100A整流模块等等。 三规范满足的技术指标(特征指标) 驱动在新50A中的使用指标为: ——工作频率:80K ——驱动电压:12.5V ——驱动功率:1.23W(DC/DC管子采用IRFP460A) 四详细的电路图

IGBT驱动电路原理及保护电路

驱动电路的作用是将单片机输出的脉冲进行功率放大,以驱动IGBT.保证IGBT的可靠工作,驱动电路起着至关重要的作用,对IGBT驱动电路的基本要求如下: (1) 提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。 (2) 提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通。 (3) 尽可能小的输入输出延迟时间,以提高工作效率。 (4) 足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘。 (5) 具有灵敏的过流保护能力。 第一种驱动电路EXB841/840 EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us 以后IGBT正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。 当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6“悬空”.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。

如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低,完成慢关断,实现对IGBT的保护。由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。 典型接线方法如图2,使用时注意如下几点: a、IGBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。 b、由于IGBT集电极产生较大的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全工作。但是栅极电阻RG不能太大也不能太小,如果RG增大,

机械设计基础实验指导书

机械设计基础实验指导书

目录 实验一机构运动简图绘制 (1) 实验二齿轮范成原理 (2) 实验三带传动实验 (3) 实验四齿轮效率实验 (6) 实验五减速器拆装 (9) 实验报告一 (10) 实验报告二 (11) 实验报告三 (12) 实验报告四 (14) 实验报告五 (15)

实验一 机构运动简图的测绘和分析 一.实验目的 1. 学会根据实际机构或模型的构造测绘机构运动简图的技能。 2. 通过实验进一步理解机构的组成和机构自由度的意义及其计算方法。 二.实验设备 1. 机械实物及机械模型。 2. 钢板尺,游标卡尺,内、外卡尺。 3. 三角板,铅笔,橡皮,草稿纸等(自备)。 三.原理和方法 1. 原理 机构运动的性质与机构中构件的数目和运动副的类型、数目、相对位置有关。因此画机构运动简图时,应以规定的符号代表运动副,并以一定的比例尺按实际尺寸定出运动副间的相对位置,用尽可能简单的线条表示机构中各构件。这种用比例尺绘出的机构简单图形称为机构运动简图,若不按比例尺绘出,则称为机构示意图。 2. 测绘方法 ⑴缓慢驱动被测机构,仔细观察各构件的运动,分清各运动单元,从而确定机构构件的数目。 ⑵根据相连接两构件的接触情况及相对运动性质,确定各运动副的类型。 ⑶在草稿纸上绘出机构示意图。用1,2,3…依次标注各构件,用A,B,C …分别标注各运动副,在原动件上标出表示运动方向的箭头。 ⑷测量与机构运动有关的尺寸,并标注在草图上。 ⑸选长度比例尺图示长度实际长度=μ (m/mm )。在实验报告纸上画出机构运动 简图。

实验二 齿轮范成原理 一.实验目的 1. 掌握用范成法加工渐开线齿轮的基本原理,观察齿廓曲线的形成。 2. 了解渐开线齿轮的根切现象和齿顶变尖现象,分析比较标准齿轮和变位齿轮的异同点。 二.实验设备与工具 1. 齿轮范成仪,剪刀,绘图纸 齿轮范成仪基本参数:25.0120mm 20**a ==?==c h m ,,,α,被加工齿轮齿数z =10。 2. 同学自备:圆规,三角板,铅笔,橡皮,计算工具。 三.原理和方法 范成法是应用一对共轭齿廓互为包络线的原理来加工齿轮齿廓的。实验时,齿条代表切削刀具,齿条节线与被加工齿轮的分度圆做纯滚动。这样,刀具刀刃各位置的包络线即为被加工齿轮的齿廓。由于刀刃是齿条型直线(相当于基圆半径无穷大的渐开线),所以包络出的齿廓必为渐开线。 当齿条中线与被加工齿轮分度圆相切并作纯滚动时,所加工的为标准齿轮;如果是齿条中线的一条平行线与被加工齿轮分度圆相切并作纯滚动时,所加工的为变位齿轮。 四.实验步骤 1. 根据齿条刀具的基本参数和被加工齿轮的齿数以及变位系数计算出标准齿轮和变位齿轮的分度圆直径、齿顶圆直径、齿根圆直径和基圆直径,并画在绘图纸上。 2. 将图纸固定在齿轮范成仪的圆盘上,对准中心,调节刀具中心线与齿轮毛坯分度圆相切,制作标准齿轮。开始时将刀具推向最右边,然后将溜板慢慢向左移动。每移动一定距离,在代表齿轮毛坯的图纸上用铅笔描下刀具的刀刃位置,直到形成三个完整的齿形为止。 3. 使刀具离开轮坯中心线,移动xm 毫米(=0.4×20),再用上法推出三个变位齿轮的齿形。

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

驱动模块、桩模块、单元测试

驱动模块: 驱动模块是用来模拟被测试模块的上一级模块,相当于被测模块的主程序。它接收数据,将相关数据传送给被测模块,启用被测模块,并打印出相应的结果。传统的单元测试包括了驱动模块(driver)和桩模块(stub)。驱动模块的目的很单纯,就是为了访问类库的属性和方法,来检测类库的功能是否正确; Normal002falsefalse false EN-US KO X-NONE MicrosoftInternetExplorer4 如果被测试模块中的函数是提供给其他函数调用的,在设计测试用例时就应该设计驱动模块(Driver)。 举例来说:驱动模块(Driver)可以通过模拟一系列用户操作行为,比如选择用户界面上的某一个选项或者按下某个按钮等,自动调用被测试模块中的函数。驱动模块(Driver)设置,使对模块的测试不必与用户界面真正交互。 桩模块: 桩模块(Stub)是指模拟被测试的模块所调用的模块,而不是软件产品的组成的部分。主模块作为驱动模块,与之直接相连的模块用桩模块代替。在集成测试前要为被测模块编制一些模拟其下级模块功能的“替身”模块,以代替被测模块的接口,接受或传递被测模块的数据,这些专供测试用的“假”模块称为被测模块的桩模块。 如果被测试的单元模块需要调用其他模块中的功能或者函数(method),我们就应该设计一个和被调用模块名称相同的桩模块(Stub)来模拟被调用模块。这个桩模块本身不执行任何功能仅在被调用时返回静态值来模拟被调用模块的行为。 举例说明:如果被测试单元中需要调用另一个模块customer的函数getCustomerAddress(customerID: Integer),这个函数应该查询数据库后返回某一个客户的地址。我们设计的同名桩模块(Stub)中的同名函数并没有真正对数据库进行查询而仅模拟了这个行为,直接返回了一个静态的地址例如"123 Newton Street"。桩模块(Stub)的设置使得单元测试的进行成为一个相对独立且简单的过程。 单元测试: 单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证。对于单元测试中单元的含义,一般来说,要根据实际情况去判定其具体含义,如C语言中单元指一个函数,Java里单元指一个类,图形化的软件中可以指一个窗口或一个菜单等。总的来说,单元就是人为规定的最小的被测功能模块。单元测试是在软件开发过程中要进行的最低级别的测试活动,软件的独立单元将在与程序的其他部分相隔离的情况下进行测试。 在一种传统的结构化编程语言中,比如C,要进行测试的单元一般是函数或子过程。在像C++这样的面向对象的语言中,要进行测试[1]的基本单元是类。对Ada语言来说,开发人员可以选择是在独立的过程和函数,还是在Ada

IGBT模块驱动电路

IGBT模块的使用和安装 1.简介 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT 综合了以上两种器件的优点,驱动功率小而饱和压降低。 GBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT 综合了以上两种器件的优点,驱动功率小而饱和压降低。 IGBT非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。[2] 2.发展历史 1979年,MOS栅功率开关器件作为IGBT概念的先驱即已被介绍到世间。这种器件表现为一个类晶闸管的结构(P-N-P-N四层组成),其特点是通过强碱湿法刻蚀工艺形成了V形槽栅。 80年代初期,用于功率MOSFET制造技术的DMOS(双扩散形成的金属-氧化物-半导体)工艺被采用到IGBT中来。[2]在那个时候,硅芯片的结构是一种较厚的NPT(非穿通)型设计。后来,通过采用PT(穿通)型结构的方法得到了在参数折衷方面的一个显著改进,这是随着硅片上外延的技术进步,以及采用对应给定阻断电压所设计的n+缓冲层而进展的[3]。几年当中,这种在采用PT设计的外延片上制备的DMOS平面栅结构,其设计规则从5微米先进到3微米。 90年代中期,沟槽栅结构又返回到一种新概念的IGBT,它是采用从大规模集成(LSI)工艺借鉴来的硅干法刻蚀技术实现的新刻蚀工艺,但仍然是穿通(PT)型芯片结构。[4]在这种沟槽结构中,实现了在通态电压和关断时间之间折衷的更重要的改进。硅芯片的重直结

机器人实验指导书

实验1机器人机械系统 一、实验目的 1、了解机器人机械系统的组成; 2、了解机器人机械系统各部分的原理和作用; 3、掌握机器人单轴运动的方法; 二、实验设备 1、RBT-5T/S02S教学机器人一台 2、RBT-5T/S02S教学机器人控制系统软件一套 3、装有运动控制卡的计算机一台 三、实验原理 RBT-5T/S02S五自由度教学机器人机械系统主要由以下几大部分组成:原动部件、传动部件、执行部件。基本机械结构连接方式为原动部件——传动部件——执行部件。机器人的传动简图如图2——1所示。 图2-1机器人的传动简图 Ⅰ关节传动链主要由伺服电机、同步带、减速器构成,Ⅱ关节传动链有伺服电机、减速器构成,Ⅲ关节传动链主要由步进电机、同步带、减速器构成,Ⅳ关节传动链主要由步进电机、公布戴、减速器构成,Ⅴ关节传动链主要由步进电机、同步带、锥齿轮、减速器构成在机器人末端还有一个气动的夹持器。 本机器人中,远东部件包括步进电机河伺服电机两大类,关节Ⅰ、Ⅱ采用交流伺服电机驱动方式:关节Ⅲ、Ⅳ、Ⅴ采用步进电机驱动方式。本机器人中采用了带传动、谐波减速传动、锥齿轮传动三种传动方式。执行部件采用了气动手爪机构,以完成抓取作业。 下面对在RBT-5T/S02S五自由度教学机器人中采用的各种传动部件的工作原理及特点作一简单介绍。1、同步齿形带传动 同步齿形带是以钢丝为强力层,外面覆聚氨酯或橡胶,带的工作面制成齿形(图2-2)。带轮轮面也制成相应的齿形,靠带齿与轮齿啮合实现传动。由于带与轮无相对滑动,能保持两轮的圆周速度同步,故称为同

步齿形带传动。 同步齿形带传动如下特点: 1.平均传动比准确; 2.带的初拉力较小,轴和轴承上所受的载荷较小; 3.由于带薄而轻,强力层强度高,故带速可达40m/s,传动比可达10,结构紧凑,传递功率可达200kW,因而应用日益广泛; 4.效率较高,约为0.98。 5.带及带轮价格较高,对制造安装要求高。 同步齿形带常用于要求传动比准确的中小功率传动中,其传动能力取决于带的强度。带的模数 m 及宽度b 越大,则能传递的圆周力也越大。 图2-2同步齿形带传动结构 2.谐波传动 谐波齿轮减速器是利用行星齿轮传动原理发展起来的一种新型减速器。谐波齿轮传动(简称谐波传动),它是依靠柔性零件产生弹性机械波来传递动力和运动的一种行星齿轮传动。 (一)传动原理 图2-3谐波传动原理 图2-3示出一种最简单的谐波传动工作原理图。 它主要由三个基本构件组成: (1)带有内齿圈的刚性齿轮(刚轮)2,它相当于行星系中的中心轮; (2)带有外齿圈的柔性齿轮(柔轮)1,它相当于行星齿轮; (3)波发生器H,它相当于行星架。 作为减速器使用,通常采用波发生器主动、刚轮固定、柔轮输出形式。

MOS管及MOS管的驱动电路设计

MOS管及MOS管的驱动电路设计 MOS管及MOS管的驱动电路设计 摘要:本文将对MOSFET的种类,结构,特性及应用电路作一简单介绍,并控讨了一下MOSFET驱动电路设计问题在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。右图是这两种MOS管的符号。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。下图是MOS管的构造图,通常的原理图中都画成右图所示的样子。(栅极保护用二极管有时不画) MOS管的三个管脚之间有寄生电容存在,如右图所示。这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,在MOS管的驱动电路设计时再详细介绍。

2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V 或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,使用与源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 右图是瑞萨2SK3418的Vgs电压和Vds电压的关系图。可以看出小电流时,Vgs达到4V,DS间压降已经很小,可以认为导通。 3、MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压(如 2SK3418特性图所示),这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

数据采集卡PCI-8344A驱动说明书

PCI-8344A驱动1.2版说明 一、驱动适用范围 1. 适用于windows98,2K,XP系统 2. 编程适用于VC,VB,Delphi等决大多数编程语言 二、与上一个版本驱动的区别 1. 增加了一些错误号 2. 函数名普遍加了前缀“ZT8344A” 3. 废弃了用结构体传递参数的方式 三、驱动函数的参数说明 请以这个版本驱动中的《PCI8344A.h》文件中所述为准。 《PCI8344A.h》是一个纯文本文件,可用写字板或WORD打开。 推荐:如果用 VC 或 UltraEdit 打开,其中的注释及关键字会有不同的颜色, 从而有助于阅读。 四、连续AD采集的编程思路 1. 首先在程序初始化时调用 ZT8344A_OpenDevice 函数,用于打开设备,只调一次即可; 2. 调用 ZT8344A_DisableAD 函数,禁止AD 调用 ZT8344A_ClearHFifo 函数,清硬件缓冲区(HFIFO) 调用 ZT8344A_ClearSFifo 函数,清软件缓冲区(SFIFO) 调用 ZT8344A_OpenIRQ 函数,打开HFIFO半满中断 调用 ZT8344A_AIinit 函数,做一些AD初始化工作 3. 在一个循环中不断调用ZT8344A_GetSFifoDataCount 判断SFIFO中数据的个数, 申请一个数组,并把这个数组中传入 ZT8344A_AISFifo 用于接收数据, 把读出的数据保存到文件或直接显示, 注意:SFIFO的默认大小为 819200,用户要不断读数,使SFIFO有空间放入新的来自 HFIFO的数,如果SFIFO中的有效数据的个数接近 819200,会使整个AD过程停止。如果想重新采集,必须重复2—3步。 4. 调用 ZT8344A_CloseIRQ 函数,停止采集过程 5. 在程序退出前调用 ZT8344A_CloseDevice 函数 提示:1. 在这版驱动中,板卡的序号是从1开始的 2. 如果函数返回 -1,应该调用ZT8344A_ClearLastErr 函数得到错误号, 然后去《PCI8344A.h》文件中查找这个错误号对应的含义。 3. 一旦错误号不为0,如果想重新使函数正常工作,必须调用 ZT8344A_ClearLastErr 函数清除错误号。

机械传动实验指导书

机械设计制造及自动化专业实验 机械传动系统方案设计和性能测试 实验指导书 2012-10-10 机械工程学院 实践技能及培训中心

目录 一、实验目的 (1) 二、实验设备介绍 (1) 三、实验任务 (3) 四、实验台的使用与操作 (3) 1.实验台各部分的安装连线 (4) 2.实验前的准备及实验操作 (4) 五、实验步骤 (5) 六、测试软件介绍 (6) 1.界面总览 (6) 2.数据操作面板 (6) 3.电机控制操作面板 (6) 4.下拉菜单 (7) 附录1机械传动方案设计和性能测试综合实验报告错误!未定义书签。 附录2实验系统各模块展示 (17) 附录3转矩转速传感器介绍 (18) 附录4实验注意事项 (26)

一、实验目的 1. 掌握机械传动合理布置的基本要求,机械传动方案设计的一般方法,并利用机械 传动综合实验台对机械传动系统组成方案的性能进行测试,分析组成方案的特点; 2. 通过实验掌握机械传动性能综合测试的工作原理和方法,掌握计算机辅助实验的 新方法。 3. 测试常用机械传动装置(如带传动、链传动、齿轮传动、蜗杆传动等)在传递运 动与动力过程中的参数曲线(速度曲线、转矩曲线、传动比曲线、功率曲线及效率曲线等),加深对常见机械传动性能的认识和理解; 二、实验设备介绍 1 实验台系统组成 “机械传动性能综合测试实验台”由机械传动装置、联轴器、变频电机、加载装置和工控机几个模块组成,另外还有实验软件支持。系统性能参数的测量通过测试软件控制,安装在工控机主板上的两块转矩转速测试卡和转矩转速传感器联接,如图1和图2所示。 图1 机械传动测试系统组成示意图 变频电机 ZJ 扭矩传感器 被试传 动机构 ZJ 扭矩传感器 负载 工控机 转速调节 负载调节 扭矩测量卡 扭矩测量卡 D/A 转换卡

基于L298N电机驱动模块的设计与实现

万方科技学院 模拟电子技术课程设计——基于L298N电机驱动模块的设计与实现 系部电气工程与自动化工程 专业名称电气自动化 班级电气(9)班 姓名乔梁 学号 1116202064 指导教师王允建

基于L298N电机驱动模块设计与实现 目录 一、摘要 (2) 二、步进驱动模块方案 1、方案一 (2) 2、方案二 (2) 三、硬件电路设计 3.1 L298N驱动模块 (2) 3.2 电机控制过程 (4) 3.3 步进电机模块 (6) 3.4 PCB设计 (7) 3.5 转速控制设计 (7) 3.6 基于L298N电机驱动模块的设计实物 (8) 四、实验仿真及调试 4.1 实验仿真结果 (8) 4.2 系统联调 (9) 五、总结 (9) 六、仪器清单 (10) 七、参考文献 (11)

基于L298N电机驱动模块的设计与实现 一、摘要 该设计实现了步进电机正传、反转、加速快转、减速慢转的功能,启动系统后,通过控制脉冲来控制系统,经过L298N驱动电路对脉冲进行处理,输出能直接控制步进电机的脉冲信号,在此基础上,重新分配I/O资源,同时可增加驱动芯片L298N的个数,在负载能力范围允许内,还能实现多台步进电机独立正传、反转、加速快转、减速慢转的控制。 二、步进驱动模块方案 1、方案一: A3972驱动模块是自动收发卡机的设计,是基于双工位(工作通道)的,所 以本驱动模块内部自带电机切换电路,可以驱动分时工作的两路电机,价格昂贵。 2、方案二: L298N是ST公司生产的芯片。主要特点是:工作电压高,最高工作电压可达46V,并且可以驱动两个二相电机,可以直接通过电源来调节输出电压;可以直接用单片机的I/O口提供信号,而且电路简单,使用比较方便。 经实验比较,L298N驱动模块运行可靠,取得效果较好,而且电路的电气性能和散热性能较好,此设计选用L298N驱动模块。 三、硬件电路设计 3.1 L298N驱动模块 L298N(实物图如图一)是ST公司生产的一种高电压、大电流电机驱动芯片。该芯片采用15脚封装。主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈

1394视频采集卡驱动问题的解决

1394视频采集卡驱动问题的解决 我家有个几年前买的磁带摄像机,支持1394接口转录视频。为此,我也特意买了1394视频采集卡。前几天,又把摄像机拿出来录了点视频,昨天,我想把视频转录出来,可是,把摄像机接到电脑上后,打开“会声会影”软件,居然没有识别到摄像机,一头雾水。 记得以前好用来的。忽然想起,一个月前系统重新做过,难道需要驱动程序吗?哎,好长时间(一年了吧)没有做视频采集了,忘记了当初安装时是否需要驱动程序。于是打开设备列表,发现第一项多了一个61883 class bus device标志成了黄色叹号!查看该设备属性,提示:“由于其配置信息(注册表中的)不完整或已损坏,Windows 无法启动这个硬件设备。(代码19)”。 我这款视频采集卡,买了很长时间了,记不得是否有驱动光盘或软盘了。于是在百度上搜索几款所谓的万能驱动,结果不是无法安装,就是安装后不起作用。继续百度,有网友说,xp系统,1394采集卡不需要安装驱动的。于是,我搜索“由于其配置信息(注册表中的)不完整或已损坏,Windows 无法启动这个硬件设备”,还真有新的发现:这种错误提示,只说明硬件驱动有问题,不仅是只1394卡,鼠标、键盘等,都有可能会发生这种情况。其中,有一项关于键盘的处理方法,是要定位的注册表CALSS中的一项,并删除相关内容,然后再安装驱动。百度了半天,也没有发现1394卡应该定位到哪个CLASS项...... 想来想去,感觉还是驱动问题。我继续观察设备列表,发现,当我关闭摄像机时,61883 class bus device就会消失,而打开摄像机时,61883 class bus device就会出现,而重新安装驱动时,又会提示找不到相关的驱动程序。会不会是1394卡的驱动有问题?于是,在摄像机开着的情况下,我删除了1394卡设备。然后,刷新设备列表,系统自动找到1394卡设备,并自动开始安装设备驱动程序。当驱动程序安装成功后,我意外的发现,问题解决了!! 我的系统是使用GHOST版本安装的,或许是因为这个原因吧。

d电源模块详解

一、电源模块的接口信号有以下几组: ⑴驱动器“准备好/故障”信号输出连接端X111 该连接端子一般与强电控制回落连接,采用“接线端子”,端子的作用如下: 74/73.2:驱动器“准备好”信号触点输出,“常闭”触点,驱动能力为AC250/2A或DC50/2A。 72/73.1:驱动器“准备好”信号触点输出,“常开”触点,驱动能力为AC250/2A或DC50/2A。 ⑵电源模块“使能”控制端X121 模块准备好信号和模块的过热信号。准备号信号与模块的拨码开关的设置有关,当S1.2=ON时,模块有故障时,准备好信号取消,而S1.2=OFF时,模块有故障和使能(63,64)信号取消时,都会取消准备好信号,因此在更换该模块的时候要检查模块顶部的拨码开关的设置,否则模块可能会工作不正常。所有的模块过载和连接的电机过热都会触发过热报警输出。 5.3/5.2/5.1:驱动器电源模块过电流触点输出(5.3/5.1为常闭,5.2/5.1为常开),驱动能力为DC50V/500MA。 9:24V直流电压输出端。 19:24V直流电压的地。 63:脉冲使能输入,该信号同时对所有连接的模块有效,该信号取消后,所有的轴的电源取消,轴以自由运动的形式停车。 64:控制使能输入,该信号同时对所有连接的模块有效,该信号取消时,所有的轴的速度给定电压为零,轴以最大的加速度停车。延迟一定的时间后,取消脉冲使能 9/48间的触点闭合后,主回路继电器闭合。 9/63间的触点闭合后,驱动器各坐标轴的控制回路开始工作。 9/64间的触点闭合后,驱动器各坐标轴的调节器开始工作。 ⑶辅助电压连接端X141 该连接端子一般与强电控制回落连接,供诊断和其它用途用。采用“接线端子”,端子的作用如下: 7: P24 ,驱动器DC24V辅助电压输出,电压范围为:+20.4---+28.8V,驱动能力为避免4V/500mA。 45:P15,驱动器DC15V辅助电压输出,驱动能力为15V/10mA。,44:N15,驱动器DC-15V辅助电压输出,驱动能力为-15V/10mA。

相关主题
文本预览
相关文档 最新文档